## Quantitative Data Analysis: A Companion for Accounting and Information Systems Research

#### **Teaching Materials**

Created by Willem Mertens, Amedeo Pugliese & Jan Recker

Teaching Notes: Quantitative Data Analysis ~ © Copyright 2017 W. Mertens, A. Pugliese & J. Recker. All Rights Reserved. ~

# **Copyright Notice**

© Copyright 2017 W. Mertens, A. Pugliese & J. Recker. All Rights Reserved.

Teaching Notes: Quantitative Data Analysis ~ © Copyright 2017 W. Mertens, A. Pugliese & J. Recker. All Rights Reserved. ~

#### What these materials are about

Offering a guide through the essential steps required in quantitative data analysis

#### 1. Introduction

- 2. Comparing Differences Across Groups
- 3. Assessing (Innocuous) Relationships
- 4. Models with Latent Concepts and Multiple Relationships: Structural Equation Modeling
- 5. Nested Data and Multilevel Models: Hierarchical Linear Modeling
- 6. Analyzing Longitudinal and Panel Data
- 7. Causality: Endogeneity Biases and Possible Remedies
- 8. How to Start Analyzing, Test Assumptions and Deal with that Pesky p-Value
- 9. Keeping Track and Staying Sane



# Part 1: Exploring Data and Testing Assumptions



There are three kinds of lies: lies, damned lies, and statistics.

Benjamin Disraeli

Statistics are no substitute for judgment.

Henry Clay



- 1. Exploring Data
  - Structuring data
    - Basics
    - Variable types
  - Cleaning data and eliminating outliers
  - Visualising data
- 2. Understanding data
  - Distributions, means and standard deviations
  - Models and significance
  - Correlations and differences

- 3. Testing assumptions
  - Independence
  - Homoscedasticity
  - Normality
    - Skew and kurtosis
    - Transformations
- 4. Scales and factors
  - Basics
  - PCA/EFA vs. CFA

## **Structuring data**

- 1. Exploring data
- One row per case, one variable per column

|          | Age | Gender | Role      |  |
|----------|-----|--------|-----------|--|
| Person 1 | 19  | F      | Student   |  |
| Person 2 | 53  | F      | Professor |  |
| Person 3 | 27  | М      | Admin     |  |
|          | ••• |        |           |  |

Depends on unit of analysis (e.g. person)

### **Structuring data**

1. Exploring data

Nested data

|          | Age           | Gender | Role 1         | Role 2         | Role 3     |
|----------|---------------|--------|----------------|----------------|------------|
| Person 1 | 19            | F      | Student        | Tutor          | -          |
| Person 1 | <del>19</del> | F      | Tutor          |                |            |
| Person 2 | 53            | F      | Professor      | Head of School | Supervisor |
| Person 2 | <del>53</del> | F      | Head of School |                | <b>↑</b>   |
| Person 2 | <del>53</del> | F      | Supervisor     |                |            |
| Person 3 | 27            | Μ      | Admin          | -              | -          |
|          |               |        |                |                | •••        |

## **Structuring data**

1. Exploring data

- Recoding data: variable types
  - Categorical variables
    - Nominal (e.g. role)
    - Dichotomous (e.g. gender)
    - Ordinal (e.g. hierarchical level)
  - Continuous variable
    - Interval (e.g. degrees): 5-10 = 15-20
    - Ratio (e.g. weight): O is nothing, 10 = 2\*5

|          | Age | Gender | Role 1    | Role 2         | Role 3     |
|----------|-----|--------|-----------|----------------|------------|
| Person 1 | 19  | 1      | Student   | Tutor          | -          |
| Person 2 | 53  | 1      | Professor | Head of School | Supervisor |
| Person 3 | 27  | 2      | Admin     | -              | -          |
|          | ••• | •••    | •••       | •••            |            |

## **Cleaning data and eliminating outliers**

- 1. Exploring data
- Cleaning data
  - = Taking out *unreliable* (not inconvenient) cases
    - Missing data (or listwise/pairwise)
    - Extreme tendencies (e.g. all 6/all 1)
    - Improbable response time (e.g. outliers)
    - Inconsistent responses (e.g. age < tenure)</li>
  - ≠ Introducing bias
    - Consistent application of rules
    - Mindful of hypotheses and method (IV/DV)
    - Consider power and credibility

## **Cleaning data and eliminating outliers**

1. Exploring data

- Eliminating outliers
  - Outliers are highly improbable or erroneous values
    - They can influence statistics --> introduce bias
    - They affect generalizability
    - The decision to exclude depends on the RQs
  - How to find outliers
    - Box-plots
    - Histograms
    - Scatter plots
    - z-scores <-3.29 or >3.29 (see slide 16)





### Visualising data

1. Exploring data

Histograms





## Visualising data

- 1. Exploring data
- Scatter plots



#### Distributions, means and standard deviations

2. Understanding data

Frequency distributions



#### Distributions, means and standard deviations

2. Understanding data

Probability distributions - e.g.: normal distribution



## Models and significance

2. Understanding data

- Models
  - Attempt to explain/summarise data
  - Vary in how well they "fit" the data
    - E.g.: mean is a model; *s* illustrates fit
  - Fit
- Significance
  - Hypothesis testing involves comparing two models (H<sub>0</sub> vs. H<sub>1</sub>)
  - Comparing models is done using test statistics: variance explained by the model/variance not explained by the model
  - If the probability of observing this test statistic, or anything more extreme, is smaller than .05/.01/.001, then we conclude statistical significance (i.e. H<sub>1</sub> explains the data better than H<sub>0</sub>)



#### Significance ≠ importance

Non-significance does not say anything about H<sub>0</sub>

#### **Correlations and differences**

2. Understanding data

Example of a model/hypothesis test: difference between means = t-test



#### **Correlations and differences**

2. Understanding data

Example of a model/hypothesis test: difference between means = t-test



#### **Correlations and differences**

2. Understanding data



#### Most common assumptions for linear analyses

- 3. Testing assumptions
- Independence
  - Data was collected from independent sources
  - Variable measurements were independent (e.g. regression)
- Homoscedasticity/homogeneity of variance
  - Variance is equal in different (sub-)samples
- Normality
  - Sampling distribution/errors/data follow a normal distribution --> have limited skew and kurtosis

#### Independence

- 3. Testing assumptions
- Data was collected from independent sources
  - No repeated measures
  - No mutual influence between participants
  - No nested structures (see HLM module)
- Variable measurements were independent
  - No priming, framing, context or other question order effects
  - In regression-based models:
    - Variables are unrelated to external (exogenous) variables
    - Errors are independent

#### Homoscedasticity/homogeneity of variance

- 3. Testing assumptions
- One variable, multiple groups (e.g. *t*-test): spread of values is equal across different groups
  - Visual test: scatter- or boxplot
  - Statistical test: Levene's test for equality of variance
    - When significant (p < .05): no homo-scedascity (i.e. heteroscedascity)</p>





Levene's test will usually be significant in large samples; use other tests (e.g. Hartley's F<sub>max</sub>)

#### Homoscedasticity/homogeneity of variance

- 3. Testing assumptions
- Two variables (e.g. regression): spread of errors/residuals is equal across different values of x



### Normality

- 3. Testing assumptions
- In many statistical tests
  - Sampling distribution is normally distributed
    --> test normality of sample
    - Visually testing normality of (sub-)sample data
      - Histograms (see slide 10)



"Normal normal qq" by Skbkekas - Wikipedia

25

#### Normality

#### 3. Testing assumptions

- Statistical tests for normality of (sub-)sample data
  - Compute descriptives including skew and kurtosis
  - Convert skew and kurtosis to z-scores, e.g.:



Shapiro-Wilk test: significant (p < .05) when NOT normal</li>

#### Normality

#### 3. Testing assumptions

- In regression-based models
  - Errors/residuals, not indicators need to be normally distributed
  - Same visual principles as Q-Q plot apply



PP Plot

Please note: in this case, both graphs do not represent the same data

## What if assumptions are violated?

- 3. Testing assumptions
- Correct data
  - Exclude outliers
  - Transform data, e.g.:
    - Log-, square root and reciprocal (1/x) transformations shorten the right tale (i.e. correct positive skew)
    - The same transformations applied to the reverse score (score highest score + 1) correct for negative skew

The same transformation has to be applied to variables that are compared directly

- Turn to tests that are robust against violations or to non-parametric tests, e.g.
  - Mann–Whitney U for group comparisons
  - Kendall's tau for dependence between two variables

#### **Scales and factors - basics**

4. Scales and factors

 Scales are sets of indicators that measure the same latent variable / factor

≠ response scales!

- E.g. To aid me in my teaching, overall, I feel Powerpoint ... is:
  - Easy to Learn
  - Easy to manipulate
  - Clear to interact with
  - Flexible to interact with
  - Difficult to master (reverse scored)
  - Very cumbersome (reverse scored)



#### **Scales and factors - basics**

4. Scales and factors

Visualisation of scale with three indicators measuring one latent variable / factor:



#### **Principal component analysis**

4. Scales and factors

- Run PCA with no restriction on the number of factors and with a scree plot
- Decide how many factors to retain based on eigenvalues, scree plot and R<sup>2</sup>
  - Separate mountain from scree
  - Eigenvalue > 1
    - Eigenvalue: proportion of variance explained by factor (sum = # variables)
  - Cumulative  $R^2 > .6$

### **Principal component analysis**

4. Scales and factors

- Run PCA again
  - Restrict the number of extracted factors
  - Rotate factors orthogonally or oblique based on theory (or trial and error/inspection of the component correlation matrix)
  - Study the component matrix (orthogonal) or pattern matrix (oblique) to interpret factors and exclude indicators when
    - Loading is small (< .4/.7) on all factors</li>
    - Loadings are high for multiple factors (> .4/.7)
    - Difference between loadings on different factors < .2</li>
  - Run PCA again after each exclusion

### **Principal component analysis**

#### 4. Scales and factors

- Once a stable solution has been reached, evaluate reliability and unidimensionality of scales
  - Inter-item correlation when # indicators for factor is 2
    - Should be significant
  - Chronbach's Alpha when # indicators for factor is > 2
    - Should be higher than .7
    - "Alpha if item deleted" should be lower than Alpha
      - If not: exclude item and run PCA again

# End of Part 1

© Copyright 2017 W. Mertens, A. Pugliese & J. Recker. All Rights Reserved.