Quantitative Data Analysis: A Companion for Accounting and Information Systems Research

Teaching Materials

Created by Willem Mertens, Amedeo Pugliese & Jan Recker

Teaching Notes: Quantitative Data Analysis ~ © Copyright 2017 W. Mertens, A. Pugliese & J. Recker. All Rights Reserved. ~

Copyright Notice

© Copyright 2017 W. Mertens, A. Pugliese & J. Recker. All Rights Reserved.

Teaching Notes: Quantitative Data Analysis ~ © Copyright 2017 W. Mertens, A. Pugliese & J. Recker. All Rights Reserved. ~

What these materials are about

Offering a guide through the essential steps required in quantitative data analysis

- 1. Introduction
- 2. Comparing Differences Across Groups
- 3. Assessing (Innocuous) Relationships
- 4. Models with Latent Concepts and Multiple Relationships: Structural Equation Modeling
- 5. Nested Data and Multilevel Models: Hierarchical Linear Modeling
- 6. Analyzing Longitudinal and Panel Data
- 7. Causality: Endogeneity Biases and Possible Remedies
- 8. How to Start Analyzing, Test Assumptions and Deal with that Pesky p-Value
- 9. Keeping Track and Staying Sane

Part 5: Hierarchical Linear Modeling

Teaching Notes: Quantitative Data Analysis ~ © Copyright 2017 W. Mertens, A. Pugliese & J. Recker. All Rights Reserved. ~

- 1. Theoretical background
 - Multilevel research
 - Assumptions, agreement and reliability
 - Building the measurement model
 - (Multilevel) regressions and Random Coefficient Modeling
- 2. Demonstration using HLM7
 - Importing data
 - Specifying the model
 - Interpreting results

THEORETICAL BACKGROUND

Multilevel research: what is it?

- Effect of group membership on individual outcomes
 --> Top-down
- E.g. effect of IQ (level 1), teacher expectations (level 2) on student performance

7

Multilevel research: what is it?

Multilevel research: traditional approaches

- Aggregate individual-level variables
 - X Individual variance is lost (IQ)
 - X Effects get inflated because of the loss of variance
- Assign group-level variables to individuals
 - X Violation of 'independence of observations' (correlated error terms)
- ==> Hierarchical Linear Modeling

Assumptions, agreement and reliability (1)

- Assumptions that apply for regression
 - (Reliable and valid measurement model)
 - Linearity
 - Normality
 - Independence
 - Homoscedasticity (homogeneity of variance)
- However:
 - Independence and homoscedasticity only within-group
 - Additional assumptions when using peer-ratings (e.g. students rate teacher)
 - a. Inter-rater consistency
 - b. Reliability of group means
 - c. Inter-rater agreement

Assumptions, agreement and reliability (2)

- a. Inter-rater consistency: Intraclass Correlation (1) (ICC(1))
 - ICC(1) = $\frac{\tau_{00}}{\tau_{00} + \sigma^2}$
 - τ_{00} = between-group variance
 - σ^2 = within-group variance
 - > Part of variance that is explained by between-group variance (i.e. by group membership)
 - From ANOVA: ICC(1) = $\frac{MSB MSW}{MSB + [(k-1)*MSW]}$
 - MSB = between-group mean square
 - MSW = within-group mean square
 - k = within-group size

Assumptions, agreement and reliability (3)

- b. Reliability of group means: Intraclass Correlation (2) (ICC(2))
 - From ANOVA: ICC(2) = $\frac{MSB MSW}{MSB}$
 - MSB = between-group mean square
 - MSW = within-group mean square

> Part of between group variance that is not explained by within-group variance

Assumptions, agreement and reliability (4)

c. Within-group inter-rater agreement: r^*_{wg}

- $r_{wg}^* = 1 \frac{\overline{\sigma}_x^2}{\sigma_{EU}^2}$
 - $\overline{\sigma}_x^2$ = average within-group variance
 - σ_{EU}^2 = variance under uniform distribution = $(A^2 1)/12$ with A = number of response categories

> Ratio of average within-group variance per estimated variance without groups

Recap: Homoscedasticity / Homogeneity of Variance

Two variables (e.g. regression): spread of errors/residuals is equal across different values of x

Recap: Normality

- In many statistical tests
 - Sampling distribution is normally distributed --> test normality of sample
 - Visually testing normality of (sub-)sample data
 - Histograms (see slide 10)
 - Q-Q plots: theoretical vs. actual quantiles

"Normal normal qq" by Skbkekas - Wikipedia

2

З

Recap: Normality

- Statistical tests for normality of (sub-)sample data
 - Compute descriptives including skew and kurtosis
 - Convert skew and kurtosis to z-scores, e.g.:

Shapiro-Wilk test: significant (*p* < .05) when NOT normal

Recap: Normality

- In regression-based models
 - Errors/residuals, not indicators need to be normally distributed
 - Same visual principles as Q-Q plot apply

What if assumptions are violated?

- Correct data
 - Exclude outliers
 - Transform data, e.g.:
 - Log-, square root and reciprocal (1/x) transformations shorten the right tale (i.e. correct positive skew)
 - The same transformations applied to the reverse score (score highest score + 1) correct for negative skew

The same transformation has to be applied to variables that are compared directly

- Turn to tests that are robust against violations or to non-parametric tests, e.g.
 - Mann–Whitney U for group comparisons
 - Kendall's tau for dependence between two variables

Building the measurement model

- For individual-level variables (IQ)
 - Classical approach to creating and evaluating scales (e.g., CFA, Cronbach's Alpha)
- For group-level variables (teacher expectations)
 - Test for consistency, reliability of group means, agreement based on individual-level items
 - Aggregate items to the group level (average)
 - Create and evaluate scale based on aggregated items

For alternatives see: Peterson, M. F., & Castro, S. L. (2006). Measurement metrics at aggregate levels of analysis: Implications for organization culture research and the GLOBE project. *The Leadership Quarterly, 17*, 506-521.

(Multilevel) regressions

Classical linear regression

(Multilevel) regressions

- Hierarchical Linear Model
 - Level 1: $Y_i = \beta_{0j} + \beta_{1j}X_{ij} + r_i$

• Level 2: $\beta_{0j} = \gamma_{00} + \gamma_{01}Z_j + \mu_{0j}$ $\beta_{1j} = \gamma_{10} + \gamma_{11}Z_j + \mu_{1j}$

(Multilevel) regression / HLM / Random Coefficient Modeling

Cross-sectional

Differences Between Group Mean Change and Intraunit Change

Different types of models

- Hierarchical linear models
 - 2 Levels
 - More levels
 - E.g. student performance per class (per school)
- Hierarchical multivariate linear models
 - 2 or more levels
 - Multiple outcome variables
 - E.g. student performance per class over time
- Cross-classified multilevel models (see Leckie 2013)
 - 2 or more levels
 - Units can belong to multiple groups
 - E.g. student performance per class and neighbourhood

APPLICATION

Import data (the easy way)

- Make level 1 and level 2 file
 - Level 1: each student is one row (case)
 - Level 2: each class/teacher is one row (case)

Recap: Structuring data

One row per case, one variable per column

Student	Age	Class	IQ	Performance	•••
1	19	1	95	5.9	•••
2	53	1	93	6.3	•••
3	27	2	105	6.5	
4	2	107		4.7	
	•••	•••			

Depends on unit of analysis (e.g. person)

Structuring data

Multilevel data: split into level 1 and level 2

Level 1

Student	Class	IQ	Performance	•••
1	1	95	5.9	
2	1	93	6.3	
3	2	105	6.5	
4	2	107	4.7	
5	2	118	5.4	
6	2	79	5.5	

Level 2

Class	Expectation	•••
1	7	
2	5	
3	4	

Import data (the easy way)

Make level 1 and level 2 file

- Level 1: each student is one row (case)
- Level 2: each class/teacher is one row (case)

Build Multivariate Data Matrix (MDM)

ect MDM typ	e		
Nested Mo	dels		
HLM2	© HLM3	© HLN	14
Hierarchic	al Multi∨aria	ate Linea	r Models
© HMLM	C HMLM2		
Cross-clas	sified Mode	ls	
⊚ нсм2	© HLM-H	СМ	🖱 НСМЗ
_			
	OK	Cano	el

Import data (the easy way)

	Click this button to save the input info to an MDMT file	Enter the name of the MDM file here
	Click this button to open an already existing MDMT file an existing MDMT file	ge Select the input file type from this drop-down list box
Click this button to open a level-1 file	Make MDM - HLM2 MDM template file File Name Open mdmt file Save mdmt file Edit mdmt file Structure of Data - this affects the notation only! © cross sectional (persons within groups) © longitudinal (occasions within persons)	MDM File Name (use mdm suffix) nput File Type SPSS/Windows
Click this button (enabled when a level-1 file is open) to open the Choose Variables dialog box Select the options for missing data here	Level-1 Specification Browse Level-1 File Name: Missing Data? © No © Yes © making mdm © running analy	Choose Variables
Click this button to open a level-2 data file Click this button (enabled	Level-2 Specification Browse Level-2 File Name:	Choose Variables
when a level-2 file is open) to open the Choose Variables dialog box	Spatial Dependence Specification Include spatial dependence matrix Browse Spatial Dep. File Name:	Choose Variables
	Make MDM Check Stats	Done

Specifying the model

WHLM: hlm2 M	DM File: Student_performance	
File Basic Setting	s Other Settings Run Analysis Help	
Outcome >> Level-1 << Level-2	LEVEL 1 MODEL (bold: group-mean centering; bold italic: grand-mean centering) PERFORMA = $\beta_0 + r$	
INTRCPT1	LEVEL 2 MODEL (bold italic: grand-mean centering)	
PERFORMA	$\beta_0 = \gamma_{00} + u_0$	
		Mixed -

Specifying the model

- Mean centring
 - RAW: original score
 - Group: individual score minus group mean
 - Does not control for between-group variance in level 1 variables when testing level 2 variables
 - Grand: individual score minus total sample mean
 - Yields intercepts and slope parameters that are easier to interpret
 - Overall average becomes reference point
 - E.g. if I have average intelligence, my group membership will have γ₀₀ influence on my performance

Interpreting the results

Based on basic model = one-way ANOVA

2 1 22760

- "reliability estimate" = ICC(1)
- > "final estimation of variance component" tests significance of between-group variance

$\sigma^2 = 1.33/60$	r mai estimation	of variance	components				
τ INTRCPT1.β ₀ 0.11949		Random Effect	Standard Deviation	Variance Component	<i>d.f</i> .	χ^2	<i>p</i> -value
Random level-1 coefficient INTRCPT1, β_0	Reliability estimate 0.260	INTRCPT1, u ₀ level-1, r	0.34567 1.15655	0.11949 1.33760	143	195.88435	0.002

Final actimation of variance common enter

- Robust SE means robust against violations of assumptions --> if non-robust SE and robust SE differ you should check assumptions
 - Residual plots like with regression
 - Other assumptions: see Raudenbush and Bryk (2002)
- Coefficient for intercept level 2 (γ_{00}) = average performance

Interpreting the results

More advanced model

LEVEL 1 MODEL (bold: group-mean centering; bold italic: grand-mean centering)

PERFORMA = $\beta_0 + \beta_1(IQ) + r$

LEVEL 2 MODEL (bold italic: grand-mean centering)

 $\beta_0 = \gamma_{00} + \gamma_{01}(EXPECTAT) + u_0$

 $\beta_1 = \gamma_{10} + u_1$

- Coefficient is similar to regression
- Coefficient is different from 0 when *t*-ratio is significant

Final estimation of fixed effects:

Fixed Effect	Coefficient	Standard error	t-ratio	Approx. d.f.	<i>p</i> -value
For INTRCPT1, β_0					
INTRCPT2, y ₀₀	6.025300	0.053885	111.818	142	< 0.001
EXPECTAT, yol	0.272556	0.077423	3.520	142	< 0.001
For IQ slope, β_l					
INTRCPT2, γ_{10}	0.302148	0.065899	4.585	439	<0.001

Final estimation of fixed effects (with robust standard errors)

Fixed Effect	Coefficient	Standard error	t-ratio	Approx. d.f.	p-value
For INTRCPT1, β_0					
INTRCPT2, y ₀₀	6.025300	0.053689	112.226	142	< 0.001
EXPECTAT, yo1	0.272556	0.081977	3.325	142	0.001
For IQ slope, β_l					
INTRCPT2, γ_{10}	0.302148	0.084492	3.576	439	< 0.001

Test for multilevel mediation

- (Unrealistic) example: teacher expectations --> IQ --> student performance
 - Step 1: level 1 model: $PERF_{ij} = \beta_{0j} + r_{ij}$; level 2 model: $\beta_{0j} = \gamma_{00} + \gamma_{01}^* EXPECT_{ij} + u_{0j}$
 - Step 2: level 1 model: $PERF_{ij} = \beta_{0j} + \beta_{1j} \cdot IQ_{ij} + r_{ij}$ level 2 model: $\beta_{0j} = \gamma_{00} + \gamma_{01} \cdot EXPECT_{ij} + u_{0j}$
 - Step 3: level 1 model: $IQ_{ij} = \beta_{0j} + r_{ij}$ level 2 model: $\beta_{0j} = \gamma_{00} + \gamma_{01}^* \text{ EXPECT}_{ij} + u_{0j}$
 - Step 4: Interpret coefficients
 - Coefficient of EXPECT not significant in Step 3? No mediation
 - Coefficient of EXPECT equal in step 1 and 2? No mediation
 - Coefficient of EXPECT significant in Step 1 and step 3, but not in step 2? Full mediation
 - Coefficient of EXPECT significant in all steps, but lower in step 2 than 1? Partial mediation

Krull and MacKinnon (1999, 2001)

• If full mediation: Level 1: $PERF_{ij} = \beta_{0j} + \beta_{1j} \cdot IQ_{ij} + r_{ij}$ Level 2: $\beta_{0j} = \gamma_{00} + u_{0j}$ $\beta_{1j} = \gamma_{10} + \gamma_{11} \cdot EXPECT_{j} + u_{1j}$

References

Referred to in slides

- Bliese, P. D. (2000). Within-group agreement, non-independence, and reliability: implications for data aggregation and analysis. In K. J. Klein & S. W. J. Kozlowski (Eds.), Multi-level theory, research and methods in organizations: Foundations, extensions, and new directions (pp. 349-381). San Francisco, CA: Jossey-Bass
- Lindell, M. K., Brandt, C. J., & Whitney, D. J. (1999). A Revised Index of Interrater Agreement for Multi-Item Ratings of a Single Target. Applied Psychological Measurement, 23(2), 127-135. doi: DOI: 10.1177/01466219922031257
- Peterson, M. F., & Castro, S. L. (2006). Measurement metrics at aggregate levels of analysis: Implications for organization culture research and the GLOBE project. The Leadership Quarterly, 17(5), 506-521. doi: http://dx.doi.org/10.1016/j.leaqua.2006.07.001
- Krull, J. L., & MacKinnon, D. P. (1999). Multilevel Mediation Modeling in Group-Based Intervention Studies. Evaluation Review, 23(4), 418-444. doi: 10.1177/0193841x9902300404
- Krull, J. L., & MacKinnon, D. P. (2001). Multilevel Modeling of Individual and Group Level Mediated Effects. Multivariate Behavioral Research, 36(2), 249-277. doi: 10.1207/S15327906MBR3602_06
- Hofmann (1997) An Overview of the Logic and Rationale of Hierarchical Linear Models. Journal of Management, 23(6), 732-744

Key resources

- K. J. Klein & S. W. J. Kozlowski (2000), Multi-level theory, research and methods in organizations: Foundations, extensions, and new directions. San Francisco, CA: Jossey-Bass
- S. W. Raudenbush and A. S. Bryk (2002), Hierarchical Linear Models: Applications and data analysis methods. Thousand Oaks, CA: Sage Publications, Inc.
- G. D. Garson (2012), "Introductory guide to HLM with HLM 7 software (Chapter 3)" in G. D. Garson (editor), Hierarchical Linear Modeling: Guide and Applications. Thousand Oaks, CA Sage Publications, Inc.; can be downloaded from <u>http://www.sagepub.com/upm-data/47529_ch_3.pdf</u>
- Software: <u>http://www.ssicentral.com/hlm/resources.html</u>
- Leckie, G. (2013). Cross-Classified Multilevel Models Concepts. LEMMA VLE Module 12, 1-60. http://www.bristol.ac.uk/cmm/learning/course.html

End of Part 5

© Copyright 2017 W. Mertens, A. Pugliese & J. Recker. All Rights Reserved.