
Yet Another Event-Driven Process Chain

Jan Mendling1, Gustaf Neumann1, and Markus Nüttgens2

1 Vienna University of Economics and Business Administration, Austria
{firstname.lastname}@wu-wien.ac.at

2 University of Hamburg, Germany
nuettgens@hwp-hamburg.de

Abstract. The 20 workflow patterns proposed by Van der Aalst et al.
provide a comprehensive benchmark for comparing control flow aspects
of process modelling languages. In this paper, we present a novel class
of Event-Driven Process Chains (EPCs) that is able to capture all of
these patterns. This class is called “yet another” EPC as a tribute to
YAWL that inspired this research. yEPCs extend EPCs by the introduc-
tion of the so-called empty connector; inclusion of multiple instantiation
concepts; and a cancellation construct. Furthermore, we illustrate how
yEPCs can be used to model some of the workflow patterns.

1 Introduction

The 20 workflow patterns gathered by Van der Aalst, ter Hofstede, Kiepuszewski
and Barros [1] are well suited for analyzing different workflow languages: work-
flow researchers can refer to these patterns in order to compare different process
modelling techniques. This is of special importance considering the heterogene-
ity of process modelling languages (see e.g. [2]). Building on the insight that no
language provides support for all patterns, Van der Aalst and ter Hofstede have
defined a new workflow language called YAWL [3]. YAWL takes workflow nets
as a starting point and adds non-petri-nets constructs in order to support each
pattern in an intuitive manner (except implicit termination).

Besides Petri nets, Event-Driven Process Chains (EPC) [4] are another pop-
ular technique for business process modelling. Yet, their focus is rather related
to semi-formal process documentation than formal process specification. The de-
bate on EPC semantics has recently inspired the definition of a mathematical
framework for a formalization of EPCs in [5]. As a consequence, we argue that
workflow pattern support can also be achieved by starting with EPCs instead
of Petri nets. This paper presents an extension to EPCs that is called yEPCs.
In Section 2 we introduce EPCs and yEPCs. yEPCs include three extensions to
EPCs that are sufficient to provide for direct support of the 20 workflow patterns
reported in [1]. In Section 3 we discuss in detail how workflow patterns can be
expressed with yEPCs. In particular, we highlight the non-local semantics of the
XOR join, and its implications for workflow pattern support. After a survey on
related work (Section 4), we give a conclusion and an outlook on future research
(Section 5). An extended version of this paper is available as [6].

W.M.P. van der Aalst et al. (Eds.): BPM 2005, LNCS 3649, pp. 428–433, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Yet Another Event-Driven Process Chain 429

2 Yet Another Event-Driven Process Chain (yEPC)

EPCs are introduced as a modelling concept to represent temporal and logical
dependencies in business processes [4]. Elements of EPCs may be of function
type (active elements), event type (passive elements), or of one of the three con-
nector types AND, OR, or XOR. These objects are linked via control flow arcs.
Connectors may be split or join operators, starting either with function(s) or
event(s). In EPCs both OR join and XOR join have non-local semantics (cf.
[5,7]). Concerning the XOR join, this implies that it blocks when there is one in-
coming branch finished and another still active. For a formal discussion of these
semantics refer to Kindler [5]. Furthermore, process interfaces and hierarchical
functions (see e.g. [7,8]) can be used to link different EPC models. A hierarchi-
cal function can be regarded as a synchronous call to a sub-process. After the
sub-process has completed, navigation continues with the next function subse-
quent to the hierarchical function. The process interface can be regarded as an
asynchronous spawning off of a sub-process. There is no later synchronization
when a sub-process completes. For more on EPC sub-processes refer to [7].

Figure 1 illustrates the syntax elements of Yet Another Event-Driven Process
Chain (yEPC). This extension of EPCs is motivated by incomplete workflow
pattern support of EPCs. yEPCs reflect three measures that suffice to provide for
direct support of all workflow patterns. These measures include the introduction
of the so-called empty connector; an inclusion of a general multiple instantiation
concept; and the introduction of a cancellation concept. The EPC extensions
differ from Petri net extensions that were needed to define YAWL: Petri nets also
had to be extended with multiple instantiation and cancellation concepts, but
they lacked advanced synchronization patterns. EPCs, in contrast, miss support
for state-based patterns. It should be mentioned that yEPC extensions have no
impact on the validity of existing EPC models: this means valid EPCs according
to the definitions in [7] are still valid with respect to this new class of EPCs.

As mentioned above, EPCs cannot explicitly represent state-based workflow
patterns. This shortcoming can be resolved by introducing a new connector type
that we refer to as the empty connector. This connector is represented by a
cycle, just like the other connectors, but without any symbol inside. Also the
same syntax rules as for other connectors hold. We follow control flow semantics
as defined by Kindler [5], this means process folders (the EPC analogue to tokens

Event

Function

Hierarchical
Function

Process
Interface

OR-
Connector

XOR-
Connector

AND-
Connector

Empty
Connector

[min, max, required, creation]
Multiple instantiation parameters

Cancellation
area

Fig. 1. yEPC Symbols

430 J. Mendling, G. Neumann, and M. Nüttgens

of Petri nets) are placed on arcs. The empty split then has to be interpreted as a
hyperarc e.g. from the event before the empty split to the functions subsequent
to it; the empty join analogously as a hyperarc from e.g. multiple functions before
it to its subsequent event. Consider an event that is followed by an empty split
linking to multiple functions. The empty split allows all subsequent functions to
pick up the event. As a consequence, there is a run between the functions: the
first function to consume the event causes the other functions to be no more
active. This split semantics match the deferred choice pattern. Consider the
other case of an empty join with multiple input events. The subsequent function
is activated when one of these events has been reached. This behavior matched
the multiple merge pattern. We will explain in Section 3 why such semantics are
needed as an EPC extension.

The lack of EPC support for multiple instantiation has been discussed before
(see e.g. [9]). In yEPCs we stick to multiple instantiation as defined for YAWL.
YAWL defines a quadruple of parameters that control multiple instantiation.
The parameters min and max define the minimum and maximum cardinality of
instances that may be created. The required parameter specifies an integer
number of instances that need to have finished in order to complete multiple
instantiation. The creation parameter may take the values static or dynamic
which specify whether further instances may be created at run-time (dynamic)
or not (static). In the context of multiple instantiation, it is helpful to define
sub-processes in order to model complex blocks of activities that can be executed
multiple times as a whole. Accordingly, multiple instantiation parameters can be
specified for functions as well as for hierarchical functions and process interfaces.

Cancellation patterns have not yet been discussed for EPCs. We adopt the
concept of YAWL. Cancellation areas (symbolized by a lariat) may include func-
tions and events. The end of the lariat has to be connected to a function. When
this function completes, all functions and events in the lariat are cancelled.

3 Workflow Pattern Analysis of EPCs

In this section we will consider the EPC control flow semantics of Kindler [5]
which reflect the ideas of [4,7]. For multiple instantiation and cancellation the
concepts from YAWL are adopted. In the following we illustrate workflow pat-
terns (WP) 4,5, and 17 and their yEPC representation. A full workflow pattern
analysis can be found in [10]. We will speak of EPCs each time we make a state-
ment that holds for both yEPCs and EPCs. Otherwise, we will explicitly refer
to yEPCs when we present concepts that are not included in EPCs.

WP 4 (Exclusive Choice) and 5 (Simple Merge): WP 4 describes a point in
a process where a decision is made to continue with one of multiple alterna-
tive branches. This situation can be modelled with the XOR split connector of
EPCs. There has been a debate on the non-local semantics of the XOR join.
While Rittgen [11] and Van der Aalst [12] proposes a local interpretation, recent
research agrees upon non-local semantics (see e.g. [5,7]). This means that the
XOR join is only allowed to continue if exactly one of the preceding functions

Yet Another Event-Driven Process Chain 431

B

A mutex

C

E

pre-C

pre-B post-B

post-C

Fig. 2. yEPC Model for WP 17 Interleaved Parallel Routing

have finished, and it is not possible that the other functions will ever be executed.
Accordingly, EPC’s XOR join works perfect when used in an XOR block started
with an XOR split, but may block e.g. when used after an OR split depending
on whether more than one branch has been activated. Due to these non-local
semantics it is similar to a synchronizing merge but with the difference that it
blocks when further process folders may be propagated to the XOR join.

In contrast to this, WP 5 defines a simple merge without synchronization,
but building on the assumption that the joined branches are mutually exclusive.
The XOR join in YAWL [3] can implement such behavior with local semantics:
when one of parallel activities is completed the next activity after the XOR
join is started. But when the assumption does not hold, i.e., when another of
the parallel activities has finished the activity after the XOR join is activated
another time, and so forth. This observation allows two conclusions. First, there
is a fundamental difference between the semantics of the XOR join in EPCs
and YAWL: the XOR join in EPCs has non-local semantics and blocks if there
are multiple paths activated; the XOR join in YAWL has local semantics and
propagates each incoming process token without ever blocking. Accordingly, the
YAWL XOR join can also be used to implement WP 8 (multiple merge). Second,
as the XOR join in EPCs has non-local semantics, it cannot be used to model
WP 8. Hence, yEPCs use the empty connector for WP 8.

WP 17 (Interleaved Parallel Routing): Empty connectors can be used for
state-based patterns. Figure 2 shows the process model of WP 17 following
the ideas presented in [1]. The event at the center of the model manages the
sequential execution of functions B and C in arbitrary order. It corresponds to
the “mutual exclusion place (mutex)” introduced in [1]. The AND split after
function A adds a folder to this mutex event via an empty connector. The AND
joins before the functions B and C consume this folder and put it back to the
mutex event afterwards. Furthermore, they consume the individual folders in
pre-B and pre-C, respectively. These events control that each function of B and
C is executed only once. After both have been executed, there are folders in post-
B, post-C, and mutex. Accordingly, E can be started. In [13] sequential split and

432 J. Mendling, G. Neumann, and M. Nüttgens

join operators are proposed to describe control flow behavior of WP 17. Yet, it
is no clear what the semantics of these operators are when not used pairwise.

Altogether, WP 1 to 7, 10, and 11 are supported by EPCs. In contrast, yEPCs
provides additional modelling support of WP 8 (multiple merge), 9 (discrimina-
tor), 12-15 (multiple instantiation), 16 (deferred choice), 17 (interleaved parallel
routing), 18 (milestone), and 19-20 (cancellation). As a consequence, business
processes including control flow behavior that is related to previously unsup-
ported workflow patterns can now be represented appropriately using yEPCs.

4 Related Work

The workflow patterns proposed by [1] provide a comprehensive benchmark for
comparing different process modelling languages. A short workflow pattern anal-
ysis of EPCs is also reported in [3], yet it does not discuss the non-local semantics
of EPCs XOR join. In this paper, we highlighted these semantics as a major dif-
ference between YAWL and EPCs. Accordingly, we propose the introduction of
the empty connector in order to capture workflow pattern 8 (multiple merge).
There is further research discussing notational extensions to EPCs. In Rittgen
[11] a so-called XORUND connector is proposed to partially resolve semantical
problems of the XOR join connector. Motivated by space limitations of book
pages and printouts, Keller and Teufel introduce process interfaces to link EPC
models on different pages [8]. We adopt process interfaces in this paper to model
spawning off of sub-processes. Rosemann [13] proposes the introduction of se-
quential split and join operators in order to capture the semantics of workflow
pattern 17 (interleaved parallel routing). While the informal meaning of a pair
of sequential split and join operators is clear, the formal semantics of each single
operator is far from intuitive. As a consequence, we propose a state-based rep-
resentation of interleaved parallel routing inspired by Petri nets. Furthermore,
Rosemann introduces a connector that explicitly models a decision table and a
so-called OR1 connector to mark branches that are always executed [13]. Ro-
denhagen presents multiple instantiation as a missing feature of EPCs [9]. He
proposes dedicated begin and end symbols to model that a branch of a process
may be executed multiple times. Yet, this notation does not enforce that a begin
symbol is followed by a matching end symbol. As a consequence, we adopt the
concept of YAWL that permits multiple instantiation only for single functions
or sub-processes, but not for arbitrary branches of the process model.

5 Conclusion and Future Work

In this paper, we presented a novel class of EPCs called yEPCs that is able to
capture all 20 workflow patterns. Basically, yEPCs introduce three extensions
to EPCs: the introduction of the empty connector; the inclusion of a multiple
instantiation concept; and the inclusion of a cancellation concept. These exten-
sions permit some conclusions on the relation of Petri nets and EPCs in general.

Yet Another Event-Driven Process Chain 433

Towards workflow pattern support, both include extensions for multiple instanti-
ation and cancellation. In addition, Petri nets had to be extended with advanced
synchronization concepts. On the other hand, EPCs had to be modified to ad-
dress the state-based patterns. As a consequence, yEPCs and YAWL are quite
similar concerning their modelling primitives. The XOR join is the major differ-
ence between both. In future research, we aim to implement a transformation
between yEPCs available in EPML format and the interchange format of YAWL.

References

1. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow Patterns. Distributed and Parallel Databases 14 (2003) 5–51

2. Mendling, J., Neumann, G., Nüttgens, M.: A Comparison of XML Interchange
Formats for Business Process Modelling. In Feltz, F., Oberweis, A., Otjacques,
B., eds.: Proceedings of EMISA 2004 - Information Systems in E-Business and
E-Government. Volume 56 of Lecture Notes in Informatics. (2004)

3. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow
Language. Information Systems 30 (2005) 245–275

4. Keller, G., Nüttgens, M., Scheer, A.W.: Semantische Prozessmodellierung auf
der Grundlage “Ereignisgesteuerter Prozessketten (EPK)”. Heft 89, Institut für
Wirtschaftsinformatik, Saarbrücken, Germany (1992)

5. Kindler, E.: On the semantics of EPCs: Resolving the vicious circle. In J. Desel
and B. Pernici and M. Weske, ed.: Business Process Management, 2nd Interna-
tional Conference, BPM 2004. Volume 3080 of Lecture Notes in Computer Science.,
Springer Verlag (2004) 82–97

6. Mendling, J., Neumann, G., Nüttgens, M.: Yet Another Event-Driven Process
Chain (Extended Version). Technical Report JM-2005-05-27, Vienna University of
Economics and Business Administration, Austria (2005)

7. Nüttgens, M., Rump, F.J.: Syntax und Semantik Ereignisgesteuerter Prozessketten
(EPK). In J. Desel and M. Weske, ed.: Proceedings of Promise 2002, Potsdam,
Germany. Volume 21 of Lecture Notes in Informatics. (2002) 64–77

8. Keller, G., Teufel, T.: SAP(R) R/3 Process Oriented Implementation: Iterative
Process Prototyping. Addison-Wesley (1998)

9. Rodenhagen, J.: Ereignisgesteuerte Prozessketten - Multi-Instantiierungsfähigkeit
und referentielle Persistenz. In: Proceedings of the 1st GI Workshop on Business
Process Management with Event-Driven Process Chains. (2002) 95–107

10. Mendling, J., Neumann, G., Nüttgens, M.: Towards Workflow Pattern Support of
Event-Driven Process Chains (EPC). In M. Nüttgens and J. Mendling, ed.: Proc.
of the 2nd Workshop XML4BPM 2005, Karlsruhe, Germany. (2005) 23–38

11. Rittgen, P.: Quo vadis EPK in ARIS? Ansätze zu syntaktischen Erweiterungen
und einer formalen Semantik. WIRTSCHAFTSINFORMATIK 42 (2000) 27–35

12. van der Aalst, W.M.P.: Formalization and Verification of Event-driven Process
Chains. Information and Software Technology 41 (1999) 639–650

13. Rosemann, M.: Erstellung und Integration von Prozeßmodellen - Methodenspez-
ifische Gestaltungsempfehlungen für die Informationsmodellierung. PhD thesis,
Westfälische Wilhelms-Universität Münster (1995)

	Introduction
	Yet Another Event-Driven Process Chain (yEPC)
	Workflow Pattern Analysis of EPCs
	Related Work
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.33333
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.33333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

