
Ekkart Kindler, Markus Nüttgens (eds.)

Business Process Reference Models

Proceedings of the Workshop on
Business Process Reference Models (BPRM 2005)

Satellite workshop of the
Third International Conference on Business Process Management (BPM)
Nancy, France, September 5, 2005

Volume Editors

Ekkart Kindler
Department of Computer Science
University of Paderborn
D-33100 Paderborn
Germany
email: kindler@upb.de

and

Markus Nüttgens
Universität Hamburg
WISO Fakultät
Wirtschaftsinformatik
Von-Melle-Park 9
D-20146 Hamburg
Germany
email: markus.nuettgens@wiso.uni-hamburg.de

Preface

Reference models for business processes have been a successful means for de-
signing, redesigning, tailoring, and implementing business processes. Still there
is no common understanding of reference models for business processes:

• What is a reference model?

• What makes them different from a business process model?

• What should be covered by a reference model?

• What is their purpose and how should they be used?

• How should they be designed and presented?

The workshop brings together people from different application areas, using
different notations and formalisms, in order to present and discuss their point
of view. The workshop should help

• to share experiences with the use of reference models,

• to better understand the purpose and the role of reference models,

• to identify the aspects that should be covered by reference models,

• to discuss notations and meta models for reference models, and, eventu-
ally,

• to come up with a technology to efficiently design and to use reference
models.

We are happy that the workshop on Business Process Reference Models was
accepted as a satellite event of BPM 2005, and we would like to thank the local
organizers for their work and support in organizing this event. Moreover, we
would like to thank the Program Committee and all referees for helping select
and improve the contributions to this workshop. Many thanks also to all au-
thors for their contributions.

July 2005, Ekkart Kindler and Markus Nüttgens

i

Program Committee

W. v. d. Aalst, Eindhoven, The Netherlands

J. Becker, Münster, Germany

J. v. Brocke, Münster, Germany

C. Bussler, Galway, Ireland

P. Dadam, Ulm, Germany

S. Dustdar, Vienna, Austria

E. Kindler (co-chair), Paderborn, Germany

P. Loos, Mainz, Germany

M. Nüttgens (co-chair), Hamburg, Germany

A. Oberweis, Karlsruhe, Germany

F. Rump, Emden, Germany

O. Thomas, Saarbrücken, Germany

Referees

Otmar Adam

Peter Fettke

Bettina Kaffai

Christian Seel, Dipl.-Kfm.

Christian Seel, MScIS

Jörg Zwicker

ii

Table of Contents

Business Process Reference Models: Survey and Classification 1
P. Fettke, P. Loos, J. Zwicker

Understanding the Term Reference Model in Information
Systems Research: History, Literature Analysis and Explanation 16
O. Thomas

Towards a Reference Model for Work Distribution in
Workflow Management Systems . 30
M. Pesic, W.M.P van der Aalst

An Open and Formalism Independent Meta-Model for
Business Processes . 45
B. Axenath, E. Kindler, V. Rubin

On the Syntax of Reference Model Configuration –
Transforming the C-EPC into Lawful EPC Models . 60
J. Recker, M. Rosemann, W.M.P. van der Aalst, J. Mendling

Configurable Process Models as a Basis for Reference Modeling 76
W.M.P. van der Aalst, A. Dreiling, F. Gottschalk, M. Rosemann,
M.H. Jansen-Vullers

iii

iv

Business Process Reference Models:
Survey and Classification

Peter Fettke, Peter Loos, and Jörg Zwicker

Johannes Gutenberg University Mainz, Information Systems and Management,
55099 Mainz, Germany

{fettke, loos, zwicker}@isym.bwl.uni-mainz.de
http://isym.bwl.uni-mainz.de

Abstract. Within the Information Systems field, reference models have been
known for many years. The aim of this paper is to survey and to describe well-
known reference models for business processes. Our analysis of 30 process ref-
erence models is based on a framework consisting of criteria such as application
domain, used process modeling languages, model’s size, known evaluations and
applications of process reference models. Furthermore, we identify model do-
mains, which have been dealt with, describe similarities and differences be-
tween the available process reference models, and point to open research ques-
tions.

1 Introduction

Information modeling is a core vehicle to analyze, design, implement, and deploy
information systems [1]. However, the modeling process is often resource consuming
and faulty. As a way to cope with these failures and to improve the development of
enterprise-specific models, the idea of reference modeling was born [2-4].

While an application model represents a particular enterprise system, a conceptual
model represents a class of similar enterprise systems. It is a conceptual framework
that can be used as a blueprint for information system construction [5]. To use a par-
ticular reference model, it must be adapted to the requirements of a particular enter-
prise. Reference models are also called universal models, generic models, or model
patterns. The term reference model for business processes refers to a specific type of
reference model. A process reference model represents dynamic aspects of an enter-
prise, e.g. activity sequences, organizational activities required to satisfy customer
needs, control-flow between activities, particular dependency constraints etc. [6].

In publicly available sources, numerous more or less elaborated process reference
models are proposed. The main objective of this paper is to identify, to survey and to
describe the well-known process reference models. Compared to existing reference
model surveys [5, 7], this study is more comprehensive and focuses on reference
models for business processes.

Our study is of both practical and theoretical importance. From a practical point of
view, the selection of an appropriate process reference model is difficult and compli-
cated. One presumption of reusing a reference model is to know its availability, its

application domain, its potentials and limitations etc. A model survey can offer such
information. Thus, this instrument fosters a rational and systematic model selection
process.

Beside the practical relevance, surveys of reference models are of importance for
the theory of enterprise modeling in general and for the theory of reference modeling
in particular. Surveys of reference models can show varieties, gaps and areas of im-
provements. The results of a survey represent a meaningful basis for new and ad-
vanced reference models. Even if such an investigation does not take place in con-
junction with the development of a new reference model, at least the scope of already
developed reference models should be made clear by such a survey afterwards. There-
fore, a survey of process reference model stimulates the scientific progress of refer-
ence modeling.

The paper unfolds as follows: Section 1 motivates this piece of research. We intro-
duce a framework for describing and classifying process reference models in Section
2. In Section 3, we use this framework to describe 30 well-known process reference
models. The obtained results are discussed in Section 4. The paper ends with some
concluding remarks.

Reference Model

General
Characterization Construction Application

Tool Support

Evaluation

Size

Modeling Framework
Modeling Language(s)

Domain

Access
Responsibility for Modeling

Origin

Use Case(s)
Reuse and Customization

Application Method(s)

Primary Literature (Secondary Literature)
Name

No.

Construction Method

Fig. 1. Criteria for describing process reference models

2 Framework

Existing reference models could be structured regarding numerous points of view.
Figure 1 illustrates and structures the here considered criteria for characterizing proc-
ess reference models. Beside universal characteristics, suitable for the complete
spread of reference models, the description and classification of process reference
models requires particular consideration of process-related criteria. The several uni-
versal and process-specific criteria of the framework are described in the following:
− Identification: The identification of reference models is made by running numbers

and reference model names. References, wherein the reference models are de-
scribed, are also specified (primary literature). This information is completed with

additional references (secondary literature) wherein certain reference model prop-
erties are explained. The specification of secondary literature particularly supports
to provide information about limited accessible reference models.

− General Characterization: To generally characterize a reference model, the origin,
responsibility for modeling, access, and availability of tool support are stated.
• Origin: The origin informs about the classification of the person(s) who have

developed the reference model. In this regard, both science and practice can be
distinguished.

• Responsibility for Modeling: This criterion describes the persons or organiza-
tions developed the reference model.

• Access: The access specifies the accessibility to the reference model by third
parties. If the reference model is completely obtainable over usual ways of li-
brarianship the access is classified as “open”. The access is “closed”, if the re-
sponsible person(s) or institution provides no possibility for using and recogniz-
ing the reference model by third parties. If the access is neither open nor closed
the access is classified as “limited”. This is the case, e.g., if the reference model
can be purchased as standalone product or it is accessible over an internet
server, which does not belong to official librarianship. If the access to the refer-
ence model is closed the information of all aforementioned and following crite-
ria is based on statements from the specified primary and secondary literature.

• Tool Support: This criterion describes whether the reference model can be
automatically used by a software tool or whether the reference model is only
available in paper or digital copy.

− Construction: The following six criteria address the construction of process refer-
ence models:
• Domain: The domain describes the field of application from perspective of the

person(s) or institution responsible for developing the reference model. The cri-
terion is distinguished into domain differentiation and domain description.
Specifying the domain differentiation serves to distinguish varying principles of
domain classification. So far, several differentiation approaches have been pro-
posed. Using [8] in this framework, a widely elaborated approach is considered.
With this, basically different principles of differentiation can be identified: Insti-
tutional differentiation is based on institutional characteristics of the intended
business system (e.g. “Industrial Enterprise”, “Insurer” or “Bank”); functional
differentiation is realized through business functions as differentiation charac-
teristic (e.g. classical business functions like “Distribution Logistic”, “Produc-
tion Planning and Control” or newer functions like “Facility Management”,
“Knowledge Management”, “Controlling”); object-driven differentiation where
business objects serves as differentiation characteristic (e.g. “Life Insurance” or
“Branch Business”); enterprise type-driven differentiation is based on special
enterprise characteristics (e.g. a book publisher can be considered as a special
type of a publisher.). Also universal reference models exist which cannot be
classified based on one of the aforementioned principles. Beside the domain dif-
ferentiation, the domain description specifies the intended field of the reference
model’s application using some words.

• Modeling Language(s): The language criterion states the modeling language(s)
used to represent the reference model. To address the particular consideration

and description of process reference models, modeling languages or diagram
types used to represent process models of the reference model are particularly
specified. Further modeling languages are additionally described.

• Modeling Framework: This criterion describes whether a modeling framework
is part of the reference model. A framework can structure relevant elements esp.
diagrams of a reference model and their relationships at a higher level of ab-
straction. This serves the reduction of complexity and provides an overview of
elements and relationships within the reference model.

• Size: So far, appropriate size metrics for models of different modeling languages
do not exist [7]. To give a vague impression about the size of the described ref-
erence models, several metrics can be used. The number of represented dia-
grams and views pose as general attributes. As a special process-related metric,
the number of process steps within represented process diagrams is stated. The
aforementioned sizes of smaller models (<30) are exactly counted, the size of
bigger models are estimated. Estimated values have to be rounded off to full
decade. If the access to the model is closed the information is based upon state-
ments of given references.

• Construction Method: This criterion states the modeling concept used by the re-
sponsible person(s) or institution for developing the reference model.

• Evaluation: This criterion describes the used methods for evaluating the refer-
ence model by the person(s) or institution responsible for developing the refer-
ence model or by third parties. Evaluation methods are only considered, if they
are explicitly intended for model evaluation by the evaluator. Besides the
method, it is stated whether the result of performed evaluation is inter-subjective
verifiable.

− Application: The following three criteria address the application of process refer-
ence models:
• Application Method(s): This criterion describes the known method resp. concept

for applying the reference model.
• Reuse and Customization: This criterion lists concepts for reusing and customiz-

ing of model elements in the scope of the model’s application.
• Use Case(s): The use case(s) describes how often the reference model was ap-

plied to construct an application model. Like to the evaluation method, the ap-
plication of the reference model is also completed by the information whether
the number and extent of use cases are inter-subjective verifiable.

3 Results

Reference models are represented in various modeling languages. From all reference
models, process reference models are identified for this survey using the modeling
language representing the reference models. If one of the reference models is repre-
sented in one or more established process modeling languages it is recorded as busi-
ness process reference model. Within the survey, we identify and describe 30 well-
known process reference models. These models are depicted in the table within the
appendix of this paper.

3.1 General Characterization

In the following, the models are characterized regarding the criteria origin, responsi-
bility for modeling, access and tool support:
− Origin: Practitioners developed eight reference models. The design of the other 22

models was partly or completely done by scientists.
− Responsibility for Modeling: Fifteen reference models were developed by one

person, the author of the primary reference, and eight models by several persons.
Furthermore, enterprises are responsible for the development of four models, two
models were developed by associations and one model was created by an inde-
pendent office of the British government.

− Access: The access is open to 16 reference models of the survey, closed to eight
models and limited to six models.

− Tool Support: Fifteen reference models are only published as paper copy, and eight
models can directly be handled in a tool. Finally, no statement is given by the re-
sponsible person(s) to the remaining seven models.

3.2 Construction

Domain. Due to missing standards, reference models cannot be described based on a
consistent domain framework. A classifying description of the results and an associ-
ated quantitative analysis is only possible through the subjective-driven specification
of the domain differentiation. So, 11 reference models are provided for institutional
context. Further 12 models are classified into the functional context. Finally, seven
models cannot be exactly classified based on the differentiation principle as described
in chapter 2.

Using the domain description from the responsible designer(s), reference models
for the information systems’ development in industrial enterprises exist (e.g.
“Aachener PPS”-model or SCOR). Further subjects of reference modeling are finan-
cial service providers (e.g. insurer or banks), book publishers or special business
functions like knowledge management, logistic and environmental data management.

Modeling Language(s). To represent reference models, several modeling languages
are used. Widely-accepted modeling languages, such as the Entity-relationship Model
(ERM) and the Unified Modeling Language (UML), are applied. Furthermore, model-
ing languages like the Semantic Object Model (SOM), function trees or special ob-
ject-oriented languages, are used. Some designers use modeling languages which are
exclusively developed to construct the correspondent reference model.

To model the business process view of the reference models, Event-driven Process
Chains (EPC) are used in many cases. Also parts of further languages and language
frameworks are utilized to design the processes. For example, the activity and use
case diagrams as parts of the UML are particularly often used. SOM and the Multi-
Perspective Enterprise Modeling (MEMO) similarly possess views for business proc-
ess modeling. Further languages and diagram types are e.g. the process chain diagram
(VKD), value chain diagram, task chain diagram or proprietary languages.

Modeling Framework. To structure the elements and relationships of the process
reference models, modeling frameworks can be used. In 18 cases, the designer(s) of
the models and/or the authors of the literature references make statements about a
framework as part of the reference model. In 10 of the 18 cases, the author explicitly
negates the existence of an appropriate framework. In the remaining eight cases, the
existence of a framework is stated or it is represented and described.

Size. While determining of model’s size, values have only been acquired, if the proc-
ess reference models are represented within the given references or the author(s)
specifies the appropriate number. Where the metrics could be determined: The num-
ber of used diagrams ranges from one up to estimated 450, whereas in the most cases
the number does not exceed 50 diagrams. The number of views ranges from one to
four. Finally, the number of process steps as process-related size ranges from esti-
mated 50 to 300 and in one case to 1500 steps.

Construction Method. Statements on the development process are identified regarding
14 of the analyzed process reference models. Four of these cases explicitly refer to a
used procedure model, build up on such a model or introduce an own model. The
designers of the remaining 10 reference models circumscribe the applied procedure
using only few words without comprehensively explicit the chosen procedure. For
example, the designers describe their reference models as “deductive derived” or
“constructed within the scope of case studies” resp. “constructed on case examples”.

Evaluation. Methods and procedures for evaluating the quality are only determined
for 15 reference models. These cases can be distinguished into two groups:
1. Evaluation approach: Information on how an evaluation of the reference models

can be done is stated in two cases. The information is depicted without document-
ing concrete results. The proposals cover a comparison of a reference model with
an enterprise or the annotation of a necessary empirical evaluation.

2. Results: In regard to 13 reference models, results of evaluations are described by
authors of according literature references. The results base on different procedures:
− In three cases, the reference model was evaluated through the prototypical im-

plementation within a software product.
− In three cases, the reference model was used for case studies in more or less real

conditions: The spread ranges from simple, fictitious examples to reality-similar
utilizations.

− In one case, a questioning of model users was organized to determine the possi-
bilities of utilizations.

− In two cases, an ad hoc evaluation was carried out compiling several arguments
to show preferences and limitations of the reference model from the view of the
evaluator.

− In two cases, a thought experiment was performed by the author. This is a way
to evaluate the reference model through demonstrating exemplary application
within a hypothetical context.

− In further two cases, a prototypical or exemplary application of the reference
model within a fictitious context is described without a real application.

3.3 Application

Application Method. Possible potentials of process reference modeling only unfold
with applying the reference models. Thirteen of the identified process reference mod-
els cover proposals including configurational options for the model’s application
process. Most of them (twelve authors) develop a model-based procedure model for
specific application purposes. Typical examples are reference model-based procedure
model: for knowledge management [9], for developing information and communica-
tion architecture [10]. For the SAP R/3 reference model, a model-based procedure
model is not proposed. Instead, contributions exist wherein the application of the
model is exemplary described [11-13].

Reuse and Customization. Statements on concepts for reusing and customizing of
elements within the reference models are only provided with nine of the entire 30
models. Similar to the modeling language, one reference model can comprise more
than one concept. The specialization of the developed models and the usage of build-
time operators are often used concepts. Beside others, a particular case is the usage of
model variants for different application contexts in one model.

Use Case(s). Use cases are also a way of evaluating; similar to case studies but inde-
pendently realized. The real application projects are not construed as ex ante evaluat-
ing studies rather than the project results are used as ex post evaluation. In nine of the
entire 30 cases, the reference models were used within real projects. In the remaining
21 cases, statements on real applications are not available, although, in one case, the
author explicitly states that no real application has taken place.

4 Discussion

4.1 Identified Reference Models

Within this survey, 30 process reference models are described and classified. The
quantification does not raise the claim of a comprehensive survey. In fact, because of
the lack of space, this paper shall document 30 well-know process reference models.
From a practical point of view, the determination whether a reference model is a
process reference model, is difficult and bases on subjective distortions:
− It is complicated to answer whether a reference model is a collection of many indi-

vidual models or an overall model. For example, it can be argued that the SKO-
reference model consists of two reference models, the SKO-reference data model
and the SKO-reference process model. Moreover, it is unclear how to describe
model variants; either as part of a comprehensive reference model or as several in-
dividual reference models.

− Further difficulties arise with presenting one reference model in several publica-
tions. A decision is necessary whether these models are similar representations of
different reference models or different representations resp. versions of the same

model. Moreover, interpretational problems arise with incompletely published
models.

− Finally, the decision whether a “reference model” is a reference model in the here
implied intuitive conception, is often complicated.

4.2 General Characterization

In publicly available sources, numerous more or less elaborated process reference
models are proposed. Most of them were developed within science. In spite of this, it
can be suspected that process reference models can be found in the reality of enter-
prise modeling. Nevertheless, the survey and classification illustrates a lack of im-
plementation of the analyzed reference models in real environments. This can de-
pends on several reasons:
− Many reference models are partly not accessible or only limited accessible. This

fact is plausible in regard to reference models developed within practice, but the
limitation of reference models from science is inappropriate. Moreover, 20 of the
analyzed reference models with origin in science do not possess tool support. From
the view of reference modeling objectives, the propagation and application of the
models is prohibited by the lack of access and missing tool support. In fact, it is
necessary to fully publish the models for practical application and provide ade-
quate tool support.

− From a practical point of view, the selection of an appropriate process reference
model is difficult and complicated. One presumption of reusing a reference model
is to know its availability and application-relevant information. It can be suspected
that many available reference models, in particular the models developed in sci-
ence, are not public. Application methods resp. procedure models to apply refer-
ence modeling in practical context do not regard the multiplicity of existing mod-
els; at least we do not know such methods resp. procedures. Moreover, the field of
reference modeling is not comprehensively established within practical enterprise
modeling.

Further reasons for the low application of the reference models are associated with
characteristics like used representation language, possibility of inter-subjective
evaluation, existence of appropriate application method etc. Primary gaps are identi-
fied within the correspondent, following sections.

4.3 Construction

Domain. The differentiation of application domains is done in several ways. Using the
principles of differentiation introduced in chapter 2, the analyzed reference models
can only be classified as institutional and functional domains. Furthermore, some
reference models cannot be exactly classified. These two issues do not show a lack of
reference models for certain domains. In fact, it points out difficulties regarding the
differentiation. So, the introduced differentiation criteria do not exclude from each
other but partly overlap. For example, a book publisher can be both a special enter-
prise type and an institution. Also enterprises which perform production planning and

control functions are regularly classified as industry. The difficulty cannot be deepen
any further. Instead, it shall be stressed that the differentiation of a reference model is
not trivial and it has to be done with utmost diligence: Finally, the differentiation of
the domain determines the intended field of application and as consequence the refer-
ence model’s potential.

Modeling Language(s). Reasons like more or less objective properties, personal pref-
erences, available tools etc. hamstring the development of standardized modeling
languages. Nevertheless, it is desirable to explicit the special requirements to a model-
ing language before using to design a reference model. Only this guarantees inter-
subjective proving and makes the language a subject of criticism. It should also be
pointed out which constructs a language has to provide for serving as efficient refer-
ence modeling language. Furthermore, the question of whether configuration mecha-
nism for modeling languages can be usefully constituted in reference modeling exists.
Currently, only few authors evaluate languages before designing a reference model.

Construction Method. So far, only few authors explicit the procedure of their model’s
construction. Two types of procedure models can be generally distinguished:
− Empiric-oriented design methods develop reference models based on a class of real

enterprises.
− Deductive-oriented design methods derive a reference model from formal-logical

and mathematical inferences.
A rating of both procedures is ambivalent: Empiric-oriented methods neglect possible,
but, up to now, unrealized design concepts of business systems. On the other hand,
deductive methods suggest a compelling nature which is not present within the reality
of model design. Although, this procedure does not perform invulnerable inferences,
it based on simple plausibility deliberations.

Advantages and disadvantages of both procedures shall not be discussed in more
detail. Though, we do not know any work investigating this problem from an empiri-
cal point of view. An intensive analysis of effects of several design methods for refer-
ence model is desirable.

Evaluation. The evaluation of reference models is of high importance and an extraor-
dinary challenge. Both acceptable evaluation criteria and methods are not established
[14]. On the one hand, the scientific perspective demands precise, consistent and
complete reference models. On the other hand, from perspective of application, sim-
plicity and understandability are of relevance. Hence, conflicts of objectives can arise.

Although, several results of reference model evaluation exist, considerable more
need for research is noticed. Existing evaluation results cannot often be evaluated by
third parties. For example, some evaluators only argue that the reference model stands
the practical application. Furthermore, standardized methods and criteria for evalua-
tion do not exist.

Meanwhile upcoming contributions with reference model evaluation by third par-
ties and by the author are a favorable development (e.g. [15]). In some cases, these
contributions can be critical assessed from a methodical point of view (e.g. low valid-
ity), but we recommend such evaluations: These contributions are essential to evalu-
ate the potentials of reference models. Only evaluations by third parties ensure the
reference models’ independency and usability.

The evaluation by third parties is often failed because of practical limitations: As
already mentioned and criticized in section 4.2, the reference models are partly not
accessible or only limited accessible. For evaluating the reference models by third
parties, it is necessary to fully publish the models.

4.4 Application

As several procedures are known within the field of reference model design, no stan-
dardized application methods have been presented. Although, it is obvious that only
one design method can be used for the development of one reference model, it is
possible that several application methods can be used to apply a reference model.
Nevertheless, the realization of similar task at the reference models’ application can
be assumed:
− Selection of one reference model: Identified application methods abstract from this

question and only take one given reference models into account. Although,
Schwegmann originally proposes to decide according to instinct whether a new
reference model shall be developed or an existing reference model shall be selected
and reused [16].

− Configuration and adaptation of one reference model: For this purpose, ap-
proaches like a configurational reference modeling are described [17], although
they are not widely implemented by existing reference models.

5 Conclusion and Further Research

This paper analyzes the body of process reference models available in public sources.
The main contribution of our work is three-folded: First, we propose a new frame-
work to describe business process reference models. In this study, we use this frame-
work to survey well-known business process reference models. However, the pro-
posed framework can be used to guide the developing process of new models, too.
Second, we demonstrate the applicability of the framework by describing 30 business
process reference models. This survey fosters the model selection process during
application model development. Third, our analysis of the obtained results points to
open research questions. For instance, the development of language constructs for
reusing and customizing of model elements in the scope of the model’s application or
the evaluation of languages before designing a reference model.

Our work has some limitations: First, we do not introduce the term reference model
formally. Instead, our analysis is based on a rather intuitive conception, which may
lead to misunderstandings. However, we believe it is not easy to give an acceptable
explication of the term reference model, because, e.g., the term is both used as a one-
and two-place predicate [18]. Second, our survey is mainly based on a literature re-
view. We suspect that business process reference models can be found in the reality of
enterprise modeling, too. However, we only survey models that are already described
in literature. So, our study is just based on secondary information. Third, the frame-
work used to describe reference models is limited. May be, it will be necessary to

extend the framework and to define the used criteria in a more rigorously way. Also
the justification of the used criteria has to be more stringent in future.

In the future, we try to overcome the mentioned limitations. Our long-term re-
search objective is to develop the conceptual foundations for reference model cata-
logs. Reference model catalogs are inspired by construction catalogs used in enginee-
ring disciplines and provide systematic and comprehensive information about all
known reference models. To achieve this objective, we will develop a formalized
notion of the term reference model first. Second, we are preparing empirical studies to
describe and to explain reference modeling processes found in reality. Third, we will
use ontology technology to capture our framework and to describe the known body of
reference models.

Acknowledgement. This paper presents results from the research project “Reference
modeling with reference model catalogs” funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation).

References

1. Wand, Y., Weber, R.: Research Commentary: Information Systems and Conceptual Mod-
eling - A Research Agenda. Information Systems Research 13 (2002) 4, 363-377

2. Mertins, K., Bernus, P.: Reference Models. In: Schmidt, G. (ed.) Handbook on Architec-
tures of Information Systems. Springer, Berlin et al. (1998) 615-617

3. Mišic, V. B., Zhao, J. L.: Evaluating the Quality of Reference Models. In: Storey, V. C.
(ed.) Conceptual Modeling - ER 2000 - 19th International Conference on Conceptual
Modeling, Salt Lake City, Utah, USA, October 9-12, 2000 Proceedings. Springer, Berlin et
al. (2000) 484-498

4. Scheer, A.-W., Nüttgens, M.: ARIS Architecture and Reference Models for Business
Process Management. In: Oberweis, A. (ed.) Business Process Management - Models,
Techniques, and Empirical Studies. Springer, Berlin et al. (2000) 376-389

5. Fettke, P., Loos, P.: Classification of reference models - a methodology and its application.
Information Systems and e-Business Management 1 (2003) 1, 35-53

6. Becker, J., Kugeler, M., Rosemann, M.: Process Management. Springer (2003)
7. Van Belle, J.-P. W. G. D.: A Framework for the Analysis and Evaluation of Enterprise

Models. University of Cape Town (2003)
8. Mertens, P., Lohmann, M.: Branche oder Betriebstyp als Klassifikationskriterien für die

Standardsoftware der Zukunft? Erste Überlegungen, wie künftig betriebswirtschaftliche
Standardsoftware entstehen könnte. In: Verbundtagung Wirtschaftsinformatik 2000, 110-
135

9. Warnecke, G., Gissler, A., Stammwitz, G.: Referenzmodell Wissensmanagement - Ein
Ansatz zur modellbasierten Gestaltung wissensorientierter Prozesse. IM Information Ma-
nagement & Consulting 13 (1998) 1, 24-29

10. Rohloff, M.: Das Prozessrahmenwerk der Siemens AG: Ein Referenzmodell für betriebli-
che Geschäftsprozesse als Grundlage einer systematischen Bebauung der IuK-Landschaft.
In: Becker, J., Knackstedt, R. (eds.): Wissensmanagement mit Referenzmodellen: Konzep-
te für die Anwendungssystem- und Organisationsgestaltung. Physica-Verlag, Heidelberg
(2002) 227-235

11. Keller, G., Lietschulte, A., Curran, T. A.: Business Engineering mit den R/3-
Referenzmodellen. In: Nüttgens, M. (ed.) Electronic Business Engineering - 4. Internatio-
nale Tagung Wirtschaftsinformatik 1999. Physica-Verlag, Heidelberg (1999) 397-423

12. Lietschulte, A., Keller, G.: Modellgestüzte R/3 Einführung. In: Mertens, P. (ed.) Refe-
renzmodellierung '98: Anwendungsfelder in Theorie und Praxis, 14. Juli 1998. For-
schungsinstitut für Rationalisierung an der RWTH Aachen, Aachen (1998) 5-1 - 5-8

13. Curran, T. A., Keller, G.: SAP R/3 Business Blueprint - Business Engineering mit den
R/3-Referenzprozessen. Addison-Wesley, Bonn et al. (1999)

14. Fettke, P., Loos, P.: Multiperspective Evaluation of Reference Models - Towards a
Framework. In: Jeusfeld, M. A., Pastor, Ó. (eds.): Conceptual Modeling for Novel Appli-
cation Domains - ER 2003 Workshops ECOMO, IWCMQ, AOIS, and XSDM, Chicago,
IL, USA, October 13, 2003. Springer, Berlin et al. (2003) 80-91

15. Taylor, C., Probst, C.: Business Process Reference Model Languages: Experiences from
BPI Projects. In: Proc. INFORMATIK 2003 - Innovative Informatikanwendungen, Band
1, Beiträge der 33. Jahrestagung der Gesellschaft für Informatik e.V. (GI), 29. September -
2. Oktober 2003 in Frankfurt am Main (2003) 259-263

16. Schwegmann, A.: Objektorientierte Referenzmodellierung - Theoretische Grundlagen und
praktische Anwendung. DUV, Wiesbaden (1999)

17. Becker, J., Delfmann, P., Dreiling, A., Knackstedt, R., Kuropka, D.: Configurative Process
Modeling - Outlining an Approach to Increased Business Process Model Usability. In:
Proc. Information Resources Management Association Conference (2003) 615-619

18. Fettke, P., Loos, P.: Referenzmodellierungsforschung. Wirtschaftsinformatik 46 (2004) 5,
331-340

19. Luczak, H., Kees, A.: Das Aachener PPS-Modell. In: Proc. Referenzmodellierung '98:
Anwendungsfelder in Theorie und Praxis, 14. Juli 1998, RWTH Aachen (1998) 2-1 - 2-9

20. ten Voorde, H.: Dynamic Enterprise Modeling. In: Proc. Referenzmodellierung '98 - An-
wendungsfelder in Theorie und Praxis, 14. Juli 1998, RWTH Aachen (1998) 7-1 - 7-22

21. Krcmar, H., Dold, G., Fischer, H., Strobel, M., Seifert, E. K.: Informationssysteme für das
Umweltmanagement - Das Referenzmodell ECO-Integral. Oldenbourg (2000)

22. Frank, U.: Modeling Products for Versatile E-commerce Platforms - Essential Require-
ments and Generic Design Alternatives. In: Arisawa, H., Kambayashi, Y., Kumar, V.,
Mayr, H. C., Hunt, I. (eds.): ER 2001 Workshops, HUMACS, DASWIS, ECOMO, and
DAMA. Springer, Berlin et al. (2002) 444-456

23. Becker, J., Schütte, R.: Handelsinformationssysteme. Landsberg/Lech (1996)
24. Hochstein, A., Hunziker, A.: Serviceorientierte Referenzmodelle des IT-Managements.

HMD - Praxis der Wirtschaftsinformatik (2003) 232, 45-56
25. Kaiser, T. M., Bach, V., Vogler, P., Österle, H.: Eine Methode für die Konzeption von

Intranets. HMD - Praxis der Wirtschaftsinformatik (1999) 209, 94-104
26. Buchwalter, J.: Elektronische Ausschreibungen in der Beschaffung - Referenzprozeßmo-

dell und prototypische Realisierung. Eul, Lohmar, Köln (2002)
27. Gerber, S., Mai, A.: Ein Referenzmodell für das Filialgeschäft von Banken als betrieblli-

che Wissensplattform. In: Becker, J., Knackstedt, R. (eds.): Wissensmanagement mit Refe-
renzmodellen: Konzepte für die Anwendungssystem- und Organisationsgestaltung. Physi-
ca-Verlag, Heidelberg (2002) 195-206

28. Haas, C., Ahlemann, F., Hoppe, U.: Organisationale Integration von E-Learning in Unter-
nehmen - ein Referenz-Informationsmodell. In: Schoop, E. (ed.) Wirtschaftsinformatik
2003/Band I - Medien - Märkte - Mobilität. Physica, Heidelberg (2003) 707-726

29. Herrmann, G.: Verläßlichkeit von Geschäftsprozessen - Konzeptionelle Modellbildung
und Realisierungsrahmen. Logos, Berlin (2002)

30. Kluger, M. A.: Beitrag zur effizienten Anwendung der dynamischen Unternehmensmodel-
lierung. Verlag Praxiswissen, Dortmund (1999)

31. Krömker, M.: Werkzeug zur durchgängigen Systemunterstützung der Angebotserstellung
in der Unikat- und Kleinserienfertigung. Verlag Mainz, Aachen (2000)

32. Kruse, C.: Referenzmodellgestütztes Geschäftsprozessmanagement: ein Ansatz zur pro-
zessorientierten Gestaltung vertriebslogistischer Systeme. Gabler, Wiesbaden (1996)

33. Mertens, P.: Integrierte Informationsverarbeitung 1 - Administrations- und Dispositions-
systeme in der Industrie. 12 edn. Gabler, Wiesbaden (2000)

34. Mertens, P., Griese, J.: Integrierte Informationsverarbeitung 2 - Planungs- und
Kontrollsysteme in der Industrie. 9 edn. Gabler, Wiesbaden (2002)

35. Neumann, S.: Workflow-Anwendungen in technischen Dienstleistungen - Eine Referenz-
Architektur für die Koordination von Prozessen im Gebäude- und Anlagenmanagement.
Logos, Berlin (2003)

36. Pumpe, D.: Ein Referenzmodell zur Planung und Steuerung der Abläufe in Seehafen-
Containerterminals. Mensch-und-Buch, Berlin (2000)

37. Remme, M.: Konstruktion von Geschäftsprozessen: ein modellgestützter Ansatz durch
Montage generischer Prozesspartikel. Gabler, Wiesbaden (1997)

38. Rüffer, T.: Referenzgeschäftsprozeßmodellierung eines Lebensversicherungsunterneh-
mens. In: Proc. Modellierung betrieblicher Informationssysteme - Proceedings der MobIS-
Fachtagung 1999, 14. und 15. Oktober 1999, Universität Bamberg (1999) 86-107

39. Schaich, C.: Informationsmodell zur fachübergreifenden Beschreibung intelligenter Pro-
duktionsmaschinen. Utz, München (2000)

40. Schlagheck, B.: Objektorientierte Referenzmodelle für das Prozess- und Projektcontrolling
- Grundlagen - Konstruktion - Anwendungsmöglichkeiten. DUV, Wiesbaden (2000)

41. Tzouvaras, A.: Referenzmodellierung für Buchverlage: Prozess- und Klassenmodelle für
den Leistungsprozess. Cuvillier, Göttingen (2003)

42. Keller, G., Teufel, T.: SAP R/3 Process Oriented Implementation - Iterative Process Proto-
typing. Addison-Wesley, Harlow et al. (1998)

43. Gerber, S., Hiestermann, A., Kittlaus, H.-B.: Management von Prozeßmodellen dezentraler
BPR-Projekte mit Hilfe eines zentralen Referenzprozeßmodells. In: Nüttgens, M. (ed.) E-
lectronic Business Engineering - 4. Internationale Tagung Wirtschaftsinformatik 1999.
Physica, Heidelberg (1999) 375-395

44. Eisenreich, A.: Das SKO-Datenmodell - ein Referenzmodell für die Sparkassenorganisati-
on. In: Becker, J., Knackstedt, R. (eds.): Referenzmodellierung 2002: Methoden - Modelle
- Erfahrungen. Institut für Wirtschaftsinformatik der Westfälischen Wilhelms-Universität
Münster, Münster (2002) 121-132

45. Gerber, S., Müller-Luschnat, G.: Sind Referenzprozeßmodelle in der betrieblichen Praxis
sinnvoll? - Ein Beispiel aus der Dienstleistungsbranche. In: Schürr, A. (ed.) Modellierung
'99 - Workshop der Gesellschaft für Informatik e. V. (GI), März 1999 in Karlsruhe. Teub-
ner, Stuttgart, Leipzig (1999) 27-42

46. Supply-Chain Council Inc. SCOR Overview. Overview of the SCOR Model v3.0.[Online].
Available: www.supply-chain.org

47. Stephens, S.: The Supply Chain Council and the Supply Chain Operations Reference
Model. Supply Chain Management 1 (2001) 1, 9-13

48. Holten, R., Melchert, F.: Das Supply Chain Operations Reference (SCOR)-Modell. In:
Becker, J., Knackstedt, R. (eds.): Wissensmanagement mit Referenzmodellen: Konzepte
für die Anwendungssystem- und Organisationsgestaltung. Physica-Verlag, Heidelberg
(2002) 207-226

49. Huan, S. H., Sheoran, S. K., Wang, G.: A review and analysis of supply chain operations
reference (SCOR) model. Supply Chain Management - An International Journal 9 (2004)
1, 23-29

50. GDV (Ed.). Anwendungsarchitektur der deutschen Versicherungswirtschaft. Gesamtver-
band der deutschen Versicherungswirtschaft e. V. [Online]. Available: http://www.gdv-
online.de/vaa/

51. Scheer, A.-W.: Wirtschaftsinformatik - Referenzmodelle für industrielle Geschäftsprozes-
se. 7 edn. Springer, Berlin et al. (1997)

52. Scheer, A.-W.: 20 Jahre Gestaltung industrieller Geschäftsprozesse. Industrie Management
20 (2004) 1, 11-18

Appendix

Domain
Differen-
tiation Domain Description

Process Modeling
Language(s)

1 "Aachener PPS"-Model [19] Science Authors Closed Yes Function
Production, Planning and
Control Systems Proprietary Process Model

2 Baan Reference Model [20] Practice Baan Closed Yes Others n.S. Proprietary Process Model

3 ECO-Integral [21] Science Authors Open No Function
Operational Environmental
Protection EPC

4

Enterprise Modeling for E-
Commerce (ECOMOD)
Reference Model [22] Science Authors Limited n.S. Others

Internet Platform for
Commerce MEMO-OrgML

5 "Handels-H"-Model [23] Science Authors Open No Institution
Enterprises doing
Commercial Functions EPC

6
Information Technology
Infrastructure Library (ITIL) ([15, 24]) Practice

Office of
Government
Commerce Limited No Function IT-Management Verbal

7
PROMET I-NET Reference
Model [25] Science Authors Closed No Others Intranet Conception Proprietary Process Model

8
Process Framework of
Siemens AG [10] Practice Siemens AG Closed n.S. Others

Development of
Information and
Communication
Landscape Graphical and Verbal

9
Buchwalter's Reference
Model [26] Science Author Open No Function

Electronical ITB-Systems
in Procurement

Value Chain Diagram, Task
Chain Diagram

10
Reference Model of
Gerber/Mai [27] Practice Authors Closed Yes Institution

Branch Business of
Banks

Process Hierarchy-
Diagrams

11
Reference Model of Haas et
al. [28] Science Authors Closed n.S. Function

E-Learning Processes in
Enterprises EPC

12 Herrmann's Reference Model [29] Science Author Open n.S. Others
Reliability Requirements
for Business Processes UML Activity Diagram

13 Kluger's Reference Model [30] Science Author Limited Yes Function
Vehicle-based Transport
System Proprietary Process Model

14 Krömker's Reference Model [31] Science Author Open n.S. Institution

Creation of Offers for
Unicums and Small-sized
Series

IDEF0 with Process
Character

15 Kruse's Reference Model [32] Science Author Open No Function Distribution Logistic EPC

16
Reference Model of
Mertens/Griese [33, 34] Science Author Open No Institution Industrial Enterprise EPC

17 Neumann's Reference Model [35] Science Author Open No Function
Technical Facility
Management EPC

18 Pumpe's Reference Model [36] Science Author Open No Institution
Seaport Container
Terminal EPC

19 Remme's Reference Model [37] Science Author Open No Others Management Organization EPC

20 Rüffer's Reference Model [38] Science Author Open No Institution

Primary Insurer at the
Example of Life Insurance
Domain

Semantic Object Model
(SOM) using Interaction-
Schema (IAS) for Structure
and Transaction-Event-
Schema (VES) for
Dynamic

21 Schaich's Reference Model [39] Science Author Open n.S. Institution Production Machinery UML Use Case Diagram

22
Schlagheck's Reference
Model [40] Science Author Open No Function Controlling UML Activity Diagram

23
Schwegmann's Reference
Model [16] Science Athor Open No Function Warehouse Management EPC

24 Tzouvaras's Reference Model [41] Science Author Open No Institution
Service Processes at
Book Publishers UML Activity Diagram

25
Reference Model of
Warnecke et al. [9] Science Authors Closed n.S. Function Knowledge Management Proprietary Process Model

26 SAP R/3 Reference Model

ARIS for R/3 of IDS
Scheer AG [42] ([11-
13]) Practice SAP AG Limited Yes Others n.S. EPC

27
"Sparkassenorganisation
(SKO)"-Reference Model [43-45] Practice

Information Center
of "Sparkassen-
organisation
GmbH" Closed Yes Institution German "Sparkassen" EPC

28

Supply Chain Operations
Reference Model (SCOR-
Model) [46]([47-49]) Practice

Supply Chain
Council Inc. Limited Yes Function

Supply Chain
Management Graphical and Verbal

29
Insurance Architecture
(VAA) [50] Practice

Gesamtverband
der deutschen
Versicherungswirts
chaft e. V. (GDV,
German Insurance
Association) Limited Yes Institution Insurer

Verbal Description, UML
Use Case Diagram

30 Y-CIM Model [51] ([52]) Science Author Open No Institution Industrial Enterprise
EPC, Process Chain
Diagram (VKD)

Legend:
* - Number is estimated
n.S. - no statement

Identification

No. Name

Primary Literature
(Secondary
Literature)

General Characterization Construction
Modeling Language(s)Domain

Origin
Responsibility for

Modeling Access
Tool

Support

Further
Language(s)

Number of
Diagrams

Number
of Views

Process-
related

Size

1

Task Model, Function
Model, Data Model,
Object Model n.S. n.S. n.S. n.S. n.S. n.S. n.S. n.S. Multiple / No

2
Funktion Model,
Organizational Model n.S. n.S. n.S. n.S. n.S. n.S. n.S. n.S. n.S.

3 Function Tree, ERM Yes 100* 3 230* Case studies Case Studies / No Procedure Model n.S. 3 / No

4 MEMO n.S. n.S. n.S. n.S. n.S.

Prototype, Critical
Argumentation /
Partly n.S. n.S. n.S.

5 ERM, Function Tree Yes 100* 3 1500* n.S. n.S.

Procedure Model for
Development of an
Information Strategy Variants n.S.

6 Verbal Yes n.S. n.S. n.S. n.S.
Questioning [15] /
Yes n.S. n.S.

According to
[15] Multiple
Applied / No

7 n.S. n.S. n.S. n.S. n.S.
Case Studies /
Partly

PROMET-related
Procedure Model n.S. n.S.

8 Yes n.S. n.S. n.S. n.S. n.S.

Procedure Model for
Developing of
Information and
Communication
Architecture n.S.

Real Application
/ No

9 No 16 2 130
Analysis of Existing
Systems Prototype / Partly n.S. n.S. n.S.

10 Class Diagrams n.S. n.S. n.S. n.S. n.S. n.S. n.S. n.S. n.S.

11 ERM n.S. n.S. n.S. n.S. Case Examples

Empirical
Verification is
proposed n.S. n.S. n.S.

12 UML No n.S. n.S. n.S.
Schütte's Procedure
Model n.S. n.S. n.S. 0 / No

13 Data Model n.S. n.S. n.S. n.S.

Following the
Construction
Method for
Technical Products
(VDI 2222)

Prototypical
Application Procedure Model n.S. 1 / Partly

14 No 16 1 -

Actual Survey and
Weak-point
Analysis n.S.

Procedure Model for
Introducing n.S. 3 / Yes

15
Function Tree, ERM,
Organigram Yes 12 4 70 n.S. n.S. Procedure Model

Composition of
Reference Modules,
Customization of
Model Contents n.S.

16 Function Tree, ERM No 1 1 - n.S. n.S. n.S. n.S. n.S.

17 Value Chain, ERM No 50 3 210*
Analysis of Existing
Reference Models

Thought Experiment
/ Yes n.S. Process Extensions n.S.

18 Class Diagrams No 19 2 50* Empirical
Ad Hoc Evaluation /
Partly n.S. n.S. n.S.

19 No 9 1 50*
Analysis of Design
Decisions

Thought Experiment
/ Partly Procedure Model

Placeholder and
Specialization n.S.

20 No 8 3 - Deductive

Model Comparison
in Practice
(Proposal) n.S. n.S. n.S.

21 UML n.S. n.S. n.S. n.S.

Balzert's Object-
oriented Analysis
(OOA)

Exemplary
Application n.S. n.S. n.S.

22 UML Class Diagram Yes 20 2 - Procedure Model Prototype / Partly Procedure Model

Model
Specialization, Build-
time Operators n.S.

23 UML Class Diagram No 16 2 80* Procedure Model
Ad Hoc Evaluation /
Partly Procedure Model

Model
Specialization, Build-
time Operators n.S.

24
UML, Value Chain
Diagram Yes 32 2 - Procedure Model

Two Case Studies /
Partly n.S. Build-time Operators n.S.

25 Object Model n.S. n.S. n.S. n.S. n.S. n.S. Procedure Model n.S. n.S.

26 ERM, Function Tree n.S. n.S. n.S. n.S. n.S. n.S. [11-13] n.S. n.S.

27 Function Tree, ERM Yes n.S. n.S. n.S. n.S. n.S. Procedure Model
Modeling Level,
Specialization

According to
[44] 30 / No

28 n.S. n.S. n.S. n.S. n.S. n.S. n.S. Specialization Multiple

29
ERM, Function Tree,
UML Class Diagram n.S. n.S. n.S. n.S. n.S. n.S. n.S. n.S. n.S.

30 ERM, Function Tree Yes 450* 4 300* n.S. n.S. n.S. n.S.

According to
[52] Multiple /
No

Legend:
* - Number is estimated
n.S. - no statement

No.

Construction Application

Application
Method(s)

Reuse and
Customization

Use Case(s)/
Inter-

subjective
Verifiable

Evaluation / Inter-
subjective
Verifiable

Construction
Method

Size

Modeling
Framework

Modeling Lang.

Understanding the Term Reference Model
in Information Systems Research:

History, Literature Analysis and Explanation

Oliver Thomas

Institute for Information Systems (IWi)
at the German Research Center for Artificial Intelligence (DFKI),

Saarbruecken (Germany)
thomas@iwi.uni-sb.de

http://www.iwi.uni-sb.de

Abstract. The heart of every scientific discipline is its own unique, uniform
and acknowledged terminology. As an application-oriented mediator between
business administration and computer science, information systems research in
particular is in need of a theoretical foundation and an instrument capable of
translating basic theoretical knowledge into practical applications. Its depen-
dency on and proximity to actual practice, as well as the rapid development of
information technology often get in the way of the sound, systematic and con-
sistent formation of concepts. Reference modeling is especially in need of a
theoretical foundation. Due to the strong influence of implementation-oriented
thought within this field, a gap has resulted between research and practice
which has often led to undesirable developments. The high expectations or-
ganization and application system developers have on the reutilization of refer-
ence models are often disappointed. Apparently, the recommendations made by
reference model developers often do not meet the expectations of potential
model-users. One reason for this is the non-uniform grasp of the term reference
model. This article attempts to counteract this deficiency by way of a detailed
analysis of the way the term reference model is used and understood.

1 Initial Situation and Problem

Information systems are mediators between business frameworks and information
technology and can be characterized using in-depth system-theoretical attributes. For
example, the complexity of information systems can be seen as a significant system-
theoretical attribute. Put simply, this complexity can be attributed to the fact that in-
formation systems work on a business, as well as on a technical level. By constructing
models, the attempt is made to create manageable artifacts with which the complexity
of information systems becomes controllable. The information models created
thereby have a tradition of more than thirty years [2; 10; 16]. From today’s perspec-
tive, these models have established themselves in information systems research as a
vital medium for describing operational information systems [18; 20; 23; 28; 34; 40;
41]. The application possibilities inherent in information models range from software

design and the implementation and configuration of standard software to business
process reengineering.

Due to the possibility of their reutilization, in many cases the construction of in-
formation models is connected to the demand to abstract from enterprise-specific
characteristics. Therefore, one differentiates between enterprise-specific information
models and reference models. The term “enterprise-specific” characterizes only the
individual character of the corresponding information model; there is no restriction to
legally independent companies connected with it. For reasons of linguistic clarity it is
therefore better to speak of specific information models in order to allow for the fact
that the specificity of the models does not result exclusively from the enterprise-
context but rather, for example, also from a project-context. To emphasize this con-
text one can also speak, for example, of project-specific models.

In contrast to this, a reference model – in the sense of an initial conceptual ap-
proach – is a point of reference for the development of specific models because it
represents a category of applications [5, p. 90; 35, p. 66, pp. 69–74; 39, pp. 31–38].
Prominent examples of this in the scientific field are the reference model for indus-
trial enterprises (Y-CIM-Model) from SCHEER [32], as well as the SAP R/3-reference
model [11] resulting from commercial practice. On the one hand, the possibility of
orienting oneself on the technical content of such reference models promises the
model-users savings in time and costs, while on the other the quality of the model to
be constructed can be increased by the use of a reference model.

Despite these benefits often attributed to reference models in literature, no uniform
grasp of the term “reference model” exists. In research and practice different types of
models are referred to as reference models. For HARS for example, the term reference
model “belongs to a class of terms used often but rarely defined clearly” [17, p. 12].
Even a decade after this assertion the situation has barely changed. Although the term
reference model was defined more precisely at the end of the 1990ies during the con-
ference Reference Modeling – a summary of the conference series is available under
the URL http://www.wi.uni-muenster.de/is/Tagung/ – and the dissertation from
SCHÜTTE [35] – that is at least in German-speaking regions – the tendency in litera-
ture towards generally declaring information models as reference models still exists.
In this respect, the assertion from LEHNER that “in a sense every model can be under-
stood as a reference model” [22, p. 126] is not surprising. The question as to why rec-
ommended models “warrant” the attribute “reference” in literature often goes unan-
swered. Here, we have singled out one of the many current unfounded reference
model declarations from the German-language information systems community: Us-
ing a reference model AHLEMANN, HAAS, HOPPE [3] show how e-learning can be sys-
tematically integrated in the further education of companies by establishing it in the
operational planning system. Although they explain their grasp of the term reference
model according to SCHÜTTE [35, p. 69], why they refer to their model as a reference
model and not an information model is not explained.

The following analysis on the way the term reference model is understood in in-
formation systems research takes this situation into account. It is structured in the fol-
lowing manner: Section 2 first lists “early” considerations to the term reference model
from a historic perspective, as well as giving an etymological analysis of the term.

Following this, in Section 3, the current attribute-based characterizations of the term
reference model in the literature of today will be discussed critically. The insights re-
sulting from this will flow into a set-theoretic illustration, as well as an explanation of
the way the term is understood in Section 4. A critical discussion of the findings in
Section 5 shows the consequences resulting from the definition presented here for the
use of reference models. The article ends with a conclusion in Section 6.

2 Etymology and History of the Term Reference Model

From an etymological view, the term “reference” has a double significance. In addi-
tion to its meaning as a recommendation, the word “reference” is also used in the
sense of bearing a relation to something, quoting something or alluding to something.
The term “reference” was initially used in the business language of the 19th century
to denote a person or company able to give information concerning the trustworthi-
ness of a business partner. The definition of a person or place to whom or where one
could appeal for his or her (social) recommendation came later [1, p. 464].

In linguistics “reference” also refers to the relationship between linguistic symbols
and their contributor in the extra-linguistic reality. In economics, “reference” is used
to describe a state which can not be achieved in reality or a state of affairs of exem-
plary nature. Thus for example, the model of perfect competition, discarded to a large
extent due to its restrictive assumptions, is accepted as a reference. In information
modeling, one also speaks of a model being consulted as an ideal type of reference
object or as a recommendation for the development of other models.

The historic roots of the term reference model in information systems research can
only be traced with difficulty. Nevertheless, early clues to the basic idea of reference
modeling can be found in the literature which today essentially consists in the sys-
tematic structuring and reutilizing of operational tasks for their data processing sup-
port.

The significance of graphic models valid for a class of applications was discussed
early on in business administration literature. Already 1931 NORDSIECK characterized
in Grundprobleme und Grundprinzipien der Organisation des Betriebsaufbaus so-
called Aufgabengliederungspläne1 as follows: “Usually, a task structuring plan al-
ready has a relatively universal character because it is created according to logical
principles, i. e. it is not only valid for the company being studied but rather – with a
few changes – for companies with similar aims and the same branch of trade” [24,
p. 160].

Also, the ideal models described by KOSIOL in an analysis of the relationships be-
tween business administration and operations research come close to today’s term
reference model. He explains: “So-called real models which try to represent objects

1 Today the term “Aufgabengliederungspläne” which may be translated as “task structuring

plan” has gone out of use. The technical terms “function hierarchy diagram” resp. “function
tree” have won recognition as terms in the meaning of the corresponding modeling lan-
guage.

of empirical reality are opposed to ideal models which exhibit no reference to reality
or leave this open” [21, p. 755]. He adds, that “ideal models are the constructs of op-
erations research which represent a larger area of possible real-life situations and
serve as prefabricated solutions or standard recipes for certain categories of decision
problems in coping with practical problems” [21, p. 758].

Another early paraphrase for the fundamental idea of reference modeling can be
found in the environment of the System Dynamics approach going back to FORRES-
TER. This is a concept founded on the systems theory for the model-based description
and simulation of dynamic systems. In 1968 FORRESTER wrote retrospectively: “A
person applying the industrial dynamics approach to actual corporate problems seems
to do so by drawing heavily on his mental library of the systems which he has previ-
ously studied. If others are to be able to do the same, such libraries of examples must
be put in orderly written form. Such a series of structures would identify those rela-
tionships which are found repeatedly in industry. […] Such a treatment of systems
should concentrate on the minimum structure necessary to create a particular mode of
behavior.” [13] FORRESTER thus characterizes an attribute of reference models which
attempt to abstract from individual characteristics in order to make themselves reus-
able.

The question however still exists, as to which origins the term reference model can
be traced back to. There is a consensus in literature on the fact that the terminological
foundation for “reference model” – in terms of a reference information model – was
laid with the Köln Integration Model (KIM) [15; 16]. However, neither of these pub-
lications speaks of a “reference model”. Instead they speak of the development of a
“universal model for an integrated data processing system” [16, p. VII], a “basic
model” [16, p. X] or a “model template” [15, p. 44]. These terms characterize models
“that are generalized in a way, that they are not specific to an individual company, but
rather characteristic for all resp. the lion’s share of companies from a certain group or
branch of trade” [15, p. 43]. These models should serve in helping companies to cre-
ate their own individual information system [16, p. X].

Despite these early references to the significance of universal models and their
usefulness as templates for the derivation of enterprise-specific models, the technical
term “reference model” first established itself in literature towards the end of the
1980ies [14; 26; 29; 43]. This chronological correlation can be supported by looking
at different editions of the book Business Process Engineering from SCHEER [32]. In
the first edition, the data model developed therein is referred to as an integrated data-
base schema resp. an enterprise-wide data model [29]. Then, in the preface of the
second edition, SCHEER states that the consideration of the company data model was
complemented by practical experience gained in the between-time using the model as
a basis for enterprise-specific data models [32, p. VIII]. At another point in the same
edition he makes this statement more precise by remarking, that the model had al-
ready been used several times as a reference model in setting up enterprise-wide data

models [32, pp. 542 ff.].2 The acceptance of the model as a reference model in practice
even prompted SCHEER to give the book a different subtitle in the second edition Ref-
erence Models for Industrial Enterprises [32]. This publication was material to the
coinage of the term “reference model” – that is, in the realm of German-speaking in-
formation systems research.

3 Characterization of the Term Reference Model Based on
Attributes

The proposed reference model terms in information systems literature are generally
based upon attributes which characterize these reference models, in particular, the at-
tributes “universality” and “recommendation character” [39, pp. 31 ff.].

3.1 The Attribute Universality

The demand for universality as a constituent attribute of the term reference model can
be found in many works [5, p. 90; 17, p. 15; 19, p. 12; 35, p. 69; 42, p. 127]. For pur-
poses of simplification these publications also talk of the universality of reference in-
formation models. HARS for example, sees the universality of a reference model as a
prerequisite for it serving as a source for the creation of a specific model [17, p. 15].
JOST explicitly emphasizes that the character of universality is the most significant at-
tribute of a reference model [19, p. 12]. The fact however, that the universality of a
reference model can not be understood in the sense of the model’s claim to absolute-
ness, i. e. a claim to universal validity, often goes unrecognized. A reference model
can only be (universally) valid with regard to a certain category of applications, for
example a category of enterprises or a category of projects. Already in 1980 BRETZKE
differentiated in his analysis Der Problembezug von Entscheidungsmodellen between
two types of models, concrete and common decision models [8, pp. 10 ff.]. If one
transfers his remarks to enterprise-specific models and reference models, then a refer-
ence model “is characterized by the fact that it applies to a certain category of situa-
tions. It is not universal because it is always valid, but rather because it is always
valid under certain circumstances (contained within itself)” [8, p. 11]. To speak of the
universality of a reference model is therefore seen as being inexpedient in this article.
Thus, the allowance for a corresponding constituent attribute for the term reference
model was not considered here.

2 Compare this assessment to the statement from ÖSTERLE, BRENNER, HILBERS, who believe

that the data models from [29] are primarily to be consulted as reference models for the de-
velopment of enterprise-specific models [25, p. 71].

3.2 The Attribute Recommendation Character

In addition to universality, it is possible in other works to find the demand for a rec-
ommendation character as a constituent attribute for the term reference model [4,
pp. 25 f.; 5, pp. 86, 90; 7, p. 428; 27, pp. 16 f.; 35, p. 69]. Authors connect such a rec-
ommendation with the fact that reference models have a standard character for a cer-
tain class of applications. They serve as a default solution, from which enterprise-
specific concretizations can be derived (economically). Similar to the argumentation
in the previous section, the demand for a recommendation character for reference
models also proves to be critical. For example, it is unclear how the quality of a rec-
ommendation for a reference model can be verified – in this regard VOM BROCKE [39,
p. 32] also speaks of the lack of assessability for the content of a recommendation:
Which model can be granted or even denied recommendation character subject to
which attributes? Which demands can be made on the recommendation or those mak-
ing the recommendation? These questions make it obvious that this is a question of a
non-operational aspect. The user cannot decide upon the recommendation character
of a model objectively, but rather only subjectively within the scope of its application.
Therefore, this attribute must also be seen as non-constituent for the term reference
model in this article.

4 Implications for the Term Reference Model

4.1 Set-Theoretic Illustration of the Way the Term Reference Model is
Understood

Since both attributes “universality” and “recommendation character” have been ex-
cluded as constituent attributes for the term reference model, the question remains as
to how a model becomes a “reference”. To answer this question we must first look at
model-theoretic principles [36] in which a developer and a user perspective on mod-
els are taken into consideration. Using these perspectives one can discern whether a
model is declared to be a reference model (developer’s perspective) or whether it is
accepted as a reference model (user perspective). “Or” is not used here in its collo-
quial sense, but rather should be understood in a Boolean sense as an adjunction
(non-excluding “or”), so that the case of the developer-sided declaration and the user-
sided acceptance is also taken into consideration. Elementary set-theoretic considera-
tions were consulted in order to illustrate possible situations. These are illustrated in
Fig. 1 and will be explained in the following.

The basic set seen in Fig. 1 is the set of all information models .IM As subsets of
this set, the set of the information models declared to be reference models by the de-
velopers of the models DeclarationRM , as well as the set of the information models
used by model-users for the construction of specific models AcceptanceRM are plotted.
For the characterization of reference models three situations are conceivable:

1. Declaration AcceptanceRM RM∩ : The elements of this set are declared as reference
models without being accepted by a user. In this case, the property of being a ref-
erence model is based upon the assertion of the developers.

2. Declaration AcceptanceRM RM∩ : It is conceivable that users consult a model for the
construction of specific models, although the model’s developers did not initially
intend this. Corresponding information models are characterized by this set.

3. Declaration AcceptanceRM RM∩ : The intersection of both sets takes the information
models declared to be reference models by the developers, as well as those ac-
cepted by the users as such into account. A consensus between developer and user
exists in regard to the characterization of the elements of this set as reference mod-
els.3

Information models utilized
for the construction of
specific models by model-
users

Information models
declared to be reference

models by the developers
of the models

Set of all Information Models IM

 Consensus in the
perception between

developers and
users

RMDeclaration RMAcceptance

Fig. 1. Set-theoretic illustration of the term reference model

In this article, the developer-sided declaration as reference model (cp. set
DeclarationRM in Fig. 1) is seen neither as a necessary, nor as a sufficient criterion for

the characterization of a reference model. A developer’s assertion that he has con-
structed a universally valid and recommendable model remains meaningless for the
time being. In this context, VOM BROCKE also speaks of “reference character at plan
level” [39, p. 33, fn. 140]. This attribute can ultimately be proved only by way of the
model being applied at least once. SCHEER argues similarly. He concretizes the de-
mands on a reference model from a user’s point of view to the effect that at least one
application must be conceivable for the use of the model, unchanged, as a specific
model [33, p. 4]. In an economic sense, a reference model that goes unused undoubt-

3 This point of view precludes the case that a model seen neither from the developer‘s side

nor from the user-side as a reference can be declared a reference model [39, p. 32, fn. 139].
Moreover, it remains unclear in this case whose task it is to make the declaration resp. the
model as a reference model.

edly falls short of its basic intention. The use of an information model by a model-
user for the derivation of specific models, i. e. its acceptance as a reference (cp. set

AcceptanceRM in Fig. 1) can thus be seen as a necessary criterion for the characteriza-
tion of a model as a reference.

To clarify whether it can also be acknowledged as a sufficient criterion, two cases
can be distinguished from a set-theoretic point of view. Either the model was also
recommended by the developer as a reference, i. e. it is contained in the set

Declaration AcceptanceRM RM∩ or the developer did not intend this, i. e. it is contained
in the set Declaration AcceptanceRM RM∩ (cp. Fig. 1). The first case can be seen as
ideal and thus as uncritical due to the consensus between the developer and user. This
paper however, also recognizes the second case as constituent for the term reference
model. As a result, only the user can make the decision as to whether a model can be
recognized as a reference. User-sided acceptance can be seen as a sufficient criterion.
Consequently, it is possible for a model to become a reference model at its initial ap-
plication; if need be without the knowledge of its developer [39, p. 34].

It would be ideal for the constructor of a model to declare his model a reference
model only when its application is known to him in at least one case. This grasp of
the term is justified by the example from literature already discussed in Section 2.
SCHEER also initially developed a data model which he then recommended for the
derivation of enterprise-specific models [29]. It has however, turned out that in prac-
tice the model’s recommendation character was accepted. Thus for example, a field
report from BÜRLI et al. [9] was published on the derivation of a specific model based
upon the information model from SCHEER for the field of production planning and
control. This then prompted SCHEER to declare the model to be a reference model
[32].

4.2 Explanation of the Term Reference Model

The term reference model can be explained as a concretion of the term “information
model” on the basis of the constituent attribute of user-sided acceptance: A Reference
model – specifically: reference information model – is an information model used for
supporting the construction of other models.

This definition stands in the tradition of early definitions and emphasizes the bene-
fits of reference models “as a fundamental starting point for the development of new
information systems” [30, p. 94]. HARS also emphasizes the user-sided acceptance by
stating that “every reference model is a model which can be consulted for the devel-
opment of other models” [17, p. 15]. SCHEER later abstracts from information models
and sees a reference model “as a model which can serve as the starting point for the
development of solutions based on concrete problems” [33, p. 3]. A corresponding
tendency in emphasizing the use of reference models can also be observed in the
more recent literature of reference modeling. Thus BECKER, KNACKSTEDT refer to in-
formation models used as initial solutions for the development of project-specific
models [6, p. 415], as reference models.

Consequently, the author pleads for a use-oriented reference model term. Every
model resp. partial model which can be used in supporting the construction of another
model can be seen in this sense as a reference model. The reutilization of reference
models connected with this can be seen as a fundamental idea resulting from the pa-
perless, tool-supported data-processing consulting at the beginning of the 1990ies
[31] and must be emphasized as a fundamental characteristic of reference models.

5 Discussion on the Term Reference Model as Defined Here

5.1 Consequences for Reference Modeling Research

Studies in the field of reference modeling must often deal with the fundamental prob-
lem of finding and locating reference models. Because reference models are under-
stood as special information models, the search can initially be limited to information
models. When an information model is found one must then decide whether it is a
case of a reference model or not. In making this decision, the person searching for the
model is confronted with a problem in two respects. Firstly, one can only subjectively
decide whether a model is a reference model. However, even if one person accepts a
reference model as such, this does not mean that the next person will also do so. And
secondly, identifying criteria such as universality or recommendation character must
be dismissed as constituent characteristics of a reference model. This examination fol-
lows the use-oriented reference model term from Section 4, which is directed at the
model’s use. The models declared exclusively as being reference models are not ac-
cepted as such.

Were one to use this “restrictive” understanding of the term in reference modeling
research the number of actual reference models would be small, because by close in-
terpretation the existence of at least one application – moreover: its documentation –
would be essential. The focus of contextual studies in reference modeling should
therefore be extended to the models only declared as being reference models. This
corresponds in two ways with the pragmatic orientation expounded upon at the be-
ginning of this article. On the one hand, the topic of this article is not to judge
whether models declared to be reference models in literature should actually be ac-
cepted as such. And on the other, the deduction of future research guidelines can only
be possible by way of analyzing prevailing perceptions.

5.2 Consequences for the Management of Reference Models

It is irrelevant for a model’s user – in the sense of the term reference model used in
this paper – whether a model, whose content he wishes to reuse, has been recom-
mended for use by the model’s developer i. e. was declared to be a reference model or
not. He orients his decision on the use of a reference model only on whether he can
recognize a potential benefit from the model. In order to make this decision the refer-
ence model must be made available to the user. An important prerequisite for the

structuring of this availability is the systematic management of the current stock of
reference models [37; 38].

Despite the variety of existing reference models there are very few studies in litera-
ture with the verification and documentation of actual reference models as their sub-
ject. Based on this, there is also a lack of studies regarding the question of which ref-
erence models should be used in which situations. A very small number of ap-
proaches deal with the systematization of reference models, whereby it is in fact the
tabulation of reference models that is meant here and not so much the survey-like tex-
tual description of the actual stock of reference models found in literature. The most
comprehensive results were delivered by the analyses from FETTKE and LOOS [12] on
the catalog-based reutilization of reference models in which the authors transfer the
concept of a construction catalog used in engineering to reference modeling. These
so-called reference model catalogs represent without a doubt, a meaningful tool for
the systematic management of reference models.

However, it must be pointed out with respect to the cataloging only of reference
information models, that those involved in the development and administration of a
reference model catalog also have the problem mentioned in Section 5.1: They must
decide which information model can be accepted as a reference model and thus be
cataloged. Taking into consideration the exact interpretation of the term reference
model which is the basis of this article, only models for which at least one application
exists could then be cataloged. This implicates that the users of such a catalog, limited
only to reference models, would be principally refused access to enterprise-specific
models. This circumstance contradicts the pragmatic focus of the use-oriented refer-
ence model term in this study, because it remains unconsidered that information mod-
els generally – even when the developer has declared it a reference model or it has al-
ready been used – are used to support the construction of other models. This results,
for the design of a reference model catalog, in the need for an expansion in the direc-
tion of a systematic organization of information models, independent of their contex-
tual individuality.

5.3 Consequences for the Creation of Reference Modeling Languages

The use-oriented reference model term underlined in this publication emphasizes the
use of a reference model for the construction of enterprise-specific models. The user’s
task during construction, which can be supported by IT tools, consists in the adapta-
tion of the reference model. In a figurative sense, the derivation of specific models
from a reference model characterized by this term is equivalent to the creation of dif-
ferent variants of the reference model [35, pp. 207–209]. Thus, for example, the en-
terprise-specific models information model product-oriented Manufacturing Enter-
prise 1E or information model process-oriented Manufacturing Enterprise 2E could
be derived as variants of the reference model Manufacturing.

The management of variants derived from reference models is especially interest-
ing in two respects. Firstly, the storage of the variants in connection with the adapta-
tion-premises also administrated can speed up the future development of enterprise-

specific models for comparable applications. Secondly, this also allows for a similar-
ity analysis of the variants whose results can then be used for the development of new
reference models.

Reference modeling languages must therefore be created so that they support
model-variant management. However, contradictory opinions exist in literature as to
which construction technique should be used for reference model-variant manage-
ment. While for example, SCHÜTTE ties variant management ex ante to the construc-
tion technique of the configuration [35, pp. 207 ff.] and also refers to a variant as a
configured output in his terminology [35, p. 207, fn. 91], VOM BROCKE [39, p. 101]
argues against the coupling of variant management with individual construction tech-
niques and proposes further construction techniques with aggregation, specialization,
instantiation, and analogy construction [39, pp. 235 ff.]. These construction techniques
for the adaptation of models must be embedded in modeling languages. The effort
needed for the expansion of these languages is however, so high that it can, by all
means, more than make up for the benefits which can be achieved by adapting refer-
ence models within the framework of modeling projects. Reference modeling re-
search must therefore dedicate itself more heavily to the question of profitability in
the application of reference models in the future.

6 Final Conclusion

The topic of this article was the detailed analysis of the understanding of reference
models in the information systems discipline. The author did not intend to create a
comprehensive and universally valid definition of the term. In fact, the author’s aim
was to examine the term “reference model” from different perspectives and on the ba-
sis of this, create an understanding which he hopes will prove to be useful in the con-
text of information systems research. The author hopes to have contributed a valuable
share in answering the question “What is a reference model?” put in the call of the
Workshop on Business Process Reference Models (BPRM 2005).

The need clearly remains for more fundamental research in order to understand the
effects connected to the creation and use of reference models in research and practice.
How ever reference modeling research approaches this topic in the future, the compi-
lation of improved knowledge on the application systems and organizations remains a
central topic in this field of research. A terminological foundation for the manage-
ment of this knowledge represented by reference models has been made available by
the insights gained within the scope of this article.

Acknowledgement. This paper presents results from the research project “Reference
Model-Based Customizing with Vague Data”, abbreviated “Fuzzy-Customizing”,
funded by the Deutsche Forschungsgemeinschaft (German Research Foundation) as
part of the initiative BRID2.

References

1. Drosdowski, G. (ed.): Duden Etymologie : Herkunftswörterbuch der deutschen Sprache.
2nd ed. Mannheim : Dudenverl., 1989 (in German)

2. Abrial, J.-R.: Data Semantics. In: Klimbie, J. W.; Koffeman, K. L. (eds.): Data Base Man-
agement : Proceeding of the IFIP Working Conference Data Base Management, Cargèse,
Corsica, France, 1–5 April, 1974. Amsterdam : North-Holland Pub. Co, 1974, pp. 1–60

3. Ahlemann, F.; Haas, C.; Hoppe, U.: Organisationale Integration von E-Learning in Unter-
nehmen – ein Referenz-Informationsmodell. In: Uhr, W.; Esswein, W.; Schoop, E. (eds.):
Wirtschaftsinformatik 2003 : Medien – Märkte – Mobilität ; Band 1. Heidelberg : Physica,
2003, pp. 707–726 (in German)

4. Becker, J.; Delfmann, P.; Knackstedt, R.; Kuropka, D.: Konfigurative Referenzmodellie-
rung. In: Becker, J.; Knackstedt, R. (eds.): Wissensmanagement mit Referenzmodellen :
Konzepte für die Anwendungssystem- und Organisationsgestaltung. Heidelberg : Physica,
2002, pp. 25–144 (in German)

5. Becker, J.; Holten, R.; Knackstedt, R.; Schütte, R.: Referenz-Informationsmodellierung.
In: Bodendorf, F.; Grauer, M. (eds.): Verbundtagung Wirtschaftsinformatik 2000. Aachen :
Shaker, 2000, pp. 86–109 (in German)

6. Becker, J.; Knackstedt, R.: Konstruktion und Anwendung fachkonzeptioneller Referenz-
modelle im Data Warehousing. In: Uhr, W.; Esswein, W.; Schoop, E. (eds.): Wirtschafts-
informatik 2003 : Medien – Märkte – Mobilität ; Band 2. Heidelberg : Physica, 2003,
pp. 415– 434 (in German)

7. Becker, J.; Schütte, R.: Referenz-Informationsmodelle für den Handel: Begriff, Nutzen
und Empfehlungen für die Gestaltung und unternehmensspezifische Adaption von Refe-
renzmodellen. In: Krallmann, H. (ed.): Wirtschaftsinformatik ’97 : Internationale Ge-
schäftstätigkeit auf der Basis flexibler Organisationsstrukturen und leistungsfähiger In-
formationssysteme. Heidelberg : Physica, 1997, pp. 427– 448 (in German)

8. Bretzke, W.-R.: Der Problembezug von Entscheidungsmodellen. Tübingen : Mohr, 1980
(in German)

9. Bürli, A.; Jaccottet, B.; Knolmayer, G. F.; Myrach, T.; Küng, P.: Vorgehen beim Aufbau
von CIM-Datenmodellen. In: io Management Zeitschrift 61 (1992), no. 12, pp. 82–86 (in
German)

10. Chen, P. P.-S.: The entity-relationship model – toward a unified view of data. In: ACM
Transactions on Database Systems 1 (1976), no. 1, pp. 9–36

11. Curran, T. A.; Keller, G.; Ladd, A.: SAP R/3 business blueprint : Understanding the busi-
ness process reference model. Upper Saddle River, NJ : Prentice Hall PTR, 1998

12. Fettke, P.; Loos, P.: Classification of Reference Models – A Methodology and its Applica-
tion. In: Information Systems and e-Business Management 1 (2003), no. 1, pp. 35–53

13. Forrester, J. W.: Industrial Dynamics – After the First Decade. In: Management Science 14
(1968), no. 7, pp. 398– 415

14. Gersting, J.; Kinsley, K.; McDonald, N.; North, J.; Sastry, M.; Stull, E.: Reference model
for DBMS user facility. In: ACM SIGMOD Record 17 (1988), no. 2, pp. 23–52

15. Grochla, E.: Das Konzept des Kölner Integrationsmodells. In: Grochla, E. (ed.): Integrier-
te Gesamtmodelle der Datenverarbeitung : Entwicklung und Anwendung des Kölner In-
tegrationsmodells (KIM). München : Hanser, 1974, pp. 35– 46 (in German)

16. Grochla, E.; Garbe, H.; Gillner, R.; Poths, W.: Grundmodell zur Gestaltung eines integ-
rierten Datenverarbeitungssystems : Kölner Integrationsmodell (KIM). In: Grochla, E.;
Szyperski, N. (eds.): Arbeitsberichte des Betriebswirtschaftlichen Instituts für Organisati-
on und Automation (BIFOA) an der Universität zu Köln, no. 71/6, Köln : WISON Verl.,
1971 (in German)

17. Hars, A.: Referenzdatenmodelle : Grundlagen effizienter Datenmodellierung. Wiesbaden :
Gabler, 1994 (in German)

18. Hay, D. C.: Requirements analysis : From business views to architecture. Upper Saddle
River, NJ : Prentice Hall PTR, 2003

19. Jost, W.: EDV-gestützte CIM-Rahmenplanung. Wiesbaden : Gabler, 1993 (in German)
20. Kilov, H.: Business models : A guide for business and IT. Upper Saddle River : Prentice

Hall, 2002
21. Kosiol, E.: Betriebswirtschaftslehre und Unternehmensforschung : Eine Untersuchung ih-

rer Standorte und Beziehungen auf wissenschaftstheoretischer Grundlage. In: Zeitschrift
für Betriebswirtschaft 34 (1964), no. 12, pp. 743–762 (in German)

22. Lehner, F.: Modelle und Modellierung. In: Lehner, F.; Hildebrand, K.; Maier, R. (eds.):
Wirtschaftsinformatik : Theoretische Grundlagen. München : Hanser, 1995, pp. 73–164 (in
German)

23. Mylopoulos, J.: Information Modeling in the Time of the Revolution. In: Information Sys-
tems 23 (1998), no. 3/4, pp. 127–155

24. Nordsieck, F.: Grundprobleme und Grundprinzipien der Organisation des Betriebsaufbaus.
In: Die Betriebswirtschaft 24 (1931), no. 6, pp. 158–162 (in German)

25. Österle, H.; Brenner, W.; Hilbers, K.: Unternehmensführung und Informationssystem :
Der Ansatz des St. Galler Informationssystem-Managements. 2nd ed. Stuttgart : Teubner,
1992 (in German)

26. Peckham, J.; Maryanski, F.: Semantic data models. In: ACM Computing Surveys 20
(1988), no. 3, pp. 153–189

27. Rosemann, M.; Schütte, R.: Grundsätze ordnungsmäßiger Referenzmodellierung. In: Be-
cker, J.; Rosemann, M.; Schütte, R. (eds.): Entwicklungsstand und Entwicklungsperspekti-
ven der Referenzmodellierung : Proceedings zur Veranstaltung vom 10. März 1997. Müns-
ter : Institut für Wirtschaftsinformatik, Westfälische Wilhelms-Universität, 1997, pp. 16–
33 (in German)

28. Rossi, M.; Siau, K.: Information Modeling in the new Millennium. Hershey : Idea Group
Publishing, 2001

29. Scheer, A.-W.: Enterprise-wide data modelling : Information systems in industry. 1st ed.
Berlin : Springer, 1989

30. Scheer, A.-W.: Unternehmensdatenmodell. In: Information Management 5 (1990), no. 1,
pp. 92–94 (in German)

31. Scheer, A.-W.: Papierlose Beratung – Werkzeugunterstützung bei der DV-Beratung. In:
Scheer, A.-W. (ed.): Veröffentlichungen des Instituts für Wirtschaftsinformatik, no. 81,
Saarbrücken : Universität des Saarlandes, 1991 (in German)

32. Scheer, A.-W.: Business Process Engineering : Reference Models for Industrial Enter-
prises. 2nd ed. Berlin : Springer, 1994

33. Scheer, A.-W.: ARIS – House of Business Engineering: Konzept zur Beschreibung und
Ausführung von Referenzmodellen. In: Becker, J.; Rosemann, M.; Schütte, R. (eds.): Ent-
wicklungsstand und Entwicklungsperspektiven der Referenzmodellierung : Proceedings
zur Veranstaltung vom 10. März 1997. Münster : Institut für Wirtschaftsinformatik, West-
fälische Wilhelms-Universität, 1997, pp. 3–15 (in German)

34. Scheer, A.-W.: ARIS – business process modeling. 2nd ed. Berlin : Springer, 1999
35. Schütte, R.: Grundsätze ordnungsmäßiger Referenzmodellierung : Konstruktion konfigu-

rations- und anpassungsorientierter Modelle. Wiesbaden : Gabler, 1998 (in German)
36. Stachowiak, H.: Allgemeine Modelltheorie. Wien : Springer, 1973 (in German)
37. Thomas, O.: Reference Model Management. In: 6th International Conference The Modern

Information Technology in the Innovation Processes of the Industrial Enterprises MITIP
2004 : September 9–10, 2004 Prague, Czech Republic ; Proceedings. Prague : Czech
Technical University, 2004, pp. 33–36

38. Thomas, O.; Adam, O.; Seel, C.: SAP Business Process Model Management. In: Business
Process Innovation : Proceedings ; SAP Innovation Congress Americas ’04, February 28-
March 1, 2004. Orlando : SAP AG, 2004

39. vom Brocke, J.: Referenzmodellierung : Gestaltung und Verteilung von Konstruktionspro-
zessen. Berlin : Logos, 2003 (in German)

40. Wand, Y.; Weber, R.: Research Commentary: Information Systems and Conceptual Mod-
eling – A Research Agenda. In: Information Systems Research 13 (2002), no. 4, pp. 363–
376

41. Weber, R.: Ontological foundations of information systems. Melbourne : Coopers & Ly-
brand and the Accounting Association of Australia and New Zealand, 1997

42. Wolf, S.: Wissenschaftstheoretische und fachmethodische Grundlagen der Konstruktion
von generischen Referenzmodellen betrieblicher Systeme. Aachen : Shaker, 2001 (in Ger-
man)

43. Wollnik, M.: Ein Referenzmodell des Informations-Managements. In: IM Information
Management 3 (1988), no. 3, pp. 34 – 43 (in German)

Towards a Reference Model for Work

Distribution in Workflow Management Systems

M. Pesic and W.M.P. van der Aalst

Department of Technology Management, Eindhoven University of Technology,
P.O.Box 513, NL-5600 MB, Eindhoven, The Netherlands.

m.pesic@tm.tue.nl, w.m.p.v.d.aalst@tm.tue.nl

Abstract. Reference models such as the well-known SAP reference
models tend to focus on the control-flow perspective. Although the lan-
guages typically used to capture reference models (e.g., EPCs) allow for
the modeling of the resource or data perspectives, reference models tend
to oversimplify these other perspectives. This paper focusses on the re-
source perspective in the context of workflow management systems. The
aim is to develop a reference model for work distribution, i.e., how should
the system distribute work based on the structure of the organization,
capabilities/qualifications of people, and characteristics of the process.
This paper reports on our first results based on a detailed analysis of
contemporary workflow management systems (Staffware, FileNet, and
FLOWer), supported by Colored Petri Nets (CPNs) to model work dis-
tribution mechanisms and resource patterns to identify key functionali-
ties.

Key words: Work distribution, reference models, workflow management, business pro-

cess management, resource patterns, colored Petri nets.

1 Introduction

Reference models are generic conceptual models that formalize recommended
practices for a certain domain. Often labelled with the term “best practice”
reference models claim to capture reusable state-of-the-art practices. Reference
models typically focus on a specific application domain. For example, The Dutch
NVVB (http://www.nvvb.nl/) offers a set of reference models for local govern-
ments modeled using the Petri-net-based tool Protos [31]. Other reference mod-
els are more general, moreover, the term reference model is also used for models
describing the structure and functionality of business applications. One could
argue that the SAP reference model actually describes the R/3 system rather
than “best practices” in some domain. We will interpret reference models in the
more system-oriented sense. However, instead of building a system-specific ref-
erence model, we would like to generalize over a range of systems, i.e., existing
and future workflow management systems.

Workflow management systems are process-aware information systems [1,
12], which are used in companies as a means for the computerized structuring

and driving of complex business processes. Workflow management systems im-
plement business process models and use them for driving the flow of work by
allocating the right employees to the right tasks at the right times. The sys-
tem manages the work of employees. It will determine which tasks an employee
has to execute and when, which documents will be used, which information will
be available during work, etc. Typically, a workflow management system offers
several mechanisms to distribute work. Nevertheless, we believe that existing
systems are too limited in this respect. The goal of this paper is not to pro-
pose advanced work distribution mechanisms. Instead we focus on the analysis
of functionality in existing systems. The goal is not to evaluate these systems,
but to understand how they offer specific functionality. Since work distribution
defines the quality of work, it is important to consider research from the field
of social sciences, e.g., social-technical design [7, 10, 13, 43]. We believe that only
by combining both technical and social approaches, one can truly grasp certain
phenomena. A deeper understanding of particular aspects of work distribution
is essential for developing a new breed of more user-centric systems.

The work reported in this paper can be seen as an extension of the workflow
patterns initiative [2] (cf. www.workflowpatterns.com). Within the context of
this initiative 43 resource patterns [37, 39] have been defined. Using a patterns
approach, work distribution is evaluated from the perspective of the end-user as
a dynamic property of workflow management systems. The work reported in this
paper adds to a better understanding of these mechanisms by providing explicit
process models for these patterns, i.e., the descriptive models are augmented
with executable models. Note that most work reported in literature (cf. Sec-
tion 5) uses static models to describe work distribution. Consider for example
the meta modeling approaches presented in [3, 27–29, 36]. These approaches use
static models (e.g., UML class diagrams) to discuss work distribution concepts.
This paper takes a truly dynamic model – a Colored Petri Net model – as a
starting point, thus clearly differentiating our contribution from existing work
reported in literature.

Colored Petri Nets (CPNs) [18, 23] are a natural extension of the classical
Petri net [33]. There are several reasons for selecting CPNs as the language for
modeling work distribution in the context of workflow management. First of all,
CPNs have formal semantics and allow for different types of analysis, e.g., state-
space analysis and invariants [19]. Second, CPNs are executable and allow for
rapid prototyping, gaming, and simulation. Third, CPNs are graphical and their
notation is similar to existing workflow languages. Finally, the CPN language
is supported by CPN Tools1 – a graphical environment to model, enact and
analyze CPNs.

In this paper, we provide a basic CPN model that can be seen as the “greatest
common denominator” of existing workflow management systems. The model
will incorporate concepts of task, case, user, work item, role and group. This
model should be seen as a starting point towards a more comprehensive reference
model for work distribution. The basic CPN model is extended and specialized

1 CPN Tools can be downloaded from wiki.daimi.au.dk/cpntools/.

for three specific systems: Staffware [42], FileNet [15], and FLOWer [30]. The
latter three models are used to investigate differences and similarities as aid in
a deeper understanding of work distribution mechanisms. In addition, advanced
resource patterns that are not supported by these three systems are modeled by
extending the basic CPN model.

The remainder of this paper is organized as follows. Section 2 discusses the
various types of reference models and how our work can be positioned in a wider
range of reference models. Section 3 presents the basic CPN model which should
be considered as the “greatest common denominator” of existing workflow man-
agement systems. Section 4 extends this model in two directions:(1) Section 4.1
discusses the model in the context of three different systems (i.e., Staffware,
FileNet, and FLOWer), and (2) Section 4.2 reflects on the basic model from the
perspective of the so-called “resource patterns”. An overview of related work is
given in Section 5. Section 6 concludes the paper.

2 Reference Models

As indicated in the introduction, we can distinguish at least two types of refer-
ence models: (1) “best practice” reference models that aim at capturing domain-
specific practices, and (2) “system oriented” reference models that aim at cap-
turing the structure and functionality of a software system [9]. Although the
focus of this paper is on the latter class of reference models, we first discuss
characteristics of reference models in a broader context.

The main objective of reference models is to streamline the design of par-
ticular models by providing a generic solution [35]. The application of reference
models is motivated by the “Design by Reuse” paradigm. Reference models ac-
celerate the modeling process by providing a repository of potentially relevant
models. These models are ideally “plug and play” but often require some cus-
timization/configuration [6]. Reference models can be differentiated along the
following main criteria [35]: scope of the model (e.g., functional areas covered),
granularity of the model (e.g., number of levels of decomposition detail), views
(e.g., process, data, objects, organization) that are depicted in the model, degree
of integration between the views, purposes supported, user groups addressed,
internal or external (commercial) use, availability of the model (e.g., paper,
tool-based, Web-based), availability of further textual explanation of the model,
explicit inclusion of alternative business scenarios, existence of guidelines on how
to use these models, and availability of relevant quantitative benchmarking data.
A further and more comprehensive differentiation based upon the domain that
underlies the reference model can be found in [5, 9, 21, 34]. In this paper, we
look at a reference model focusing on the resource perspective (i.e., the scope is
work distribution and the view is the interaction between the process and the
organization) at a finer level of granularity.

One of the most comprehensive models is the SAP reference model [9, 21].
Its data model includes more than 4000 entity types and the reference process
models cover more than 1000 business processes and inter-organizational busi-

ness scenarios [35]. Most of the other dominant ERP vendors have similar or
alternative approaches towards reference models. Foundational conceptual work
for the SAP reference model had been conducted in the years 1990-1992 [20].
The outcome of this project was the process modeling language Event-driven
Process Chains (EPCs) [20, 22], which has been used for the design of the ref-
erence process models in SAP. EPCs also became the core modeling language
in the Architecture of Integrated Information Systems (ARIS) [40, 41]. It is now
one of the most popular reference modeling languages and has also been used for
the design of many SAP-independent reference models (e.g., the ARIS-based ref-
erence model for Siebel CRM or industry models for banking, retail, insurance,
telecommunication, etc.).

Reference models such as the SAP reference model provide for modelling var-
ious perspectives (e.g., the process perspective, the data perspective, etc.). How-
ever, existing languages for representing reference models (e.g., EPCs and UML
activity diagrams) tend to oversimplify the resource/organizational perspective.
When it comes to work distribution there are subtle but very important differ-
ences between mechanisms. A badly chosen work distribution mechanism may
be very disruptive, and have dramatic effects on the performance of a business
process. In the remainder, we will investigate the possibility of a comprehensive
CPN-based reference model to overcome these problems.

3 Towards a Reference Model for Work Distribution

Different workflow management systems tend to use not only different work
distribution concepts, but also completely different terminologies. This makes
it difficult to compare these systems. Therefore, we will not start by develop-
ing CPN models for different systems and see how these can be unified, but,
instead, start with modeling the “greatest common denominator” of existing
systems. This model can assist in comparing systems and unifying concepts and
terminology. We will use the term Basic Model to refer to this “greatest common
denominator” and represent it in terms of a CPN model.

In the introduction we already motivated the use of CPNs as a modeling
language [18, 23]. A CPN consists of places and transitions connected by arcs.
The network structure is static but places can hold tokens thus representing the
state of the model. The number of tokens per place can vary over time. Moreover,
unlike the classical Petri net, tokens can have both a value and a timestamp.
The timestamps indicate the availability of tokens and can be used to model
delays, processing times, timeouts, etc. The value of a token indicates the prop-
erties of the object represented by this token. Places (represented by ovals) are
typed, i.e., the tokens in a place have values of a particular type (or color in
CPN jargon). These types are a subset of the data types in Standard ML such
as the primitive types integer and string and compositional types such as tuple,
list and record. Each place can hold tokens with values of a certain type. Transi-
tions (represented by rectangles) may consume and produce tokens. Since tokens
have values, arc inscriptions are needed to specify the input-output relations.

Besides the extension with token colors and timestamps, CPN models allow for
hierarchy. Complex models may be decomposed into subpages, also referred to
as subprocesses or modules, to obtain a layered hierarchical description. A more
detailed discussion of the CPN concepts is beyond the scope of this paper. In
the remainder, we assume that the reader is familiar with the CPN language
and refer to [18, 23] for more details.

The Basic Model represents a workflow management system that enables the
following concepts: The business process is defined as a set of tasks. Before the
process can be executed, it has to be instantiated. One (executable) instance of a
process is referred to as a case. Each case traverses the process. If a task is enabled
for a specific case, a work item, i.e., a concrete piece of work, is created. There
is a set of users that can execute work items. The users are embedded in the
organizational structure on the basis of their roles, and the groups they belong
to. A group is an organizational unit (e.g., ‘sales’, ‘purchasing’, ‘production’,
etc.), while a role represents a capability of the user (e.g., ‘manager’, ‘software
developer’, ‘accountant’, etc.). These concepts are mapped onto CPN types as
shown in Table 1. As indicated, CPN uses Standard ML types (e.g., string and
int) and type constructors such as product to create pairs and other complex
constructs (e.g., (1,”taskA”) represents a value of type WI).

During the distribution, work items change state, which determines the next
actions the users and the distribution mechanism can perform. The Basic Model
uses a simple model of the life cycle of work items as shown in Figure 1. After
the new work item has arrived, it is assumed that it is also enabled in order to
be taken into distribution (i.e., state initiated). The Basic Model assumes that a
work item becomes enabled at the moment of creation (arrival). Next, the work
item is offered to the user(s). Once a user selects the work item, it is assigned to
him/her, and he/she can start executing it. After the execution, the work item is
considered completed, and the user can continue working on the next work item.
Note that this description covers only the general, rather simplified, behavior of
workflow management systems (e.g., errors and aborts are not considered).

Before starting the model, it is necessary to provide the description of a
concrete situation that is to be executed. This is done by defining the value of
input elements as shown in Table 2.

color Task = string;
color Case = int;
color User = string;
color WI = product Case * Task;
color Role = string;
color Group = string;

Table 1. Basic Workflow Concepts

new

assigned

enabled

initiated

offered

selected

started

executed

completed

waiting for the
preconditions

ready to be
distributed

the distribution is
allocating users

in the queues,
waiting to be selected

withdrawn from
the other queuescan not be selected

again by other users

the user is executing
the work item

removed from the
distribution

Fig. 1. Basic Model - Life Cycle of a Work Item

Table 2. Input For The Basic Model

name color description

new work items color WI = product
Case * Task;

work items that have arrived and are ready
to be distributed to users;

system users color Users = list
User;

a set of available users;

task maps color TMap = prod-
uct Task * Role *
Group;

decision about which work items can be ex-
ecuted by which users is made based on the
authorizations given in the process defini-
tion, for every task;

user maps color UMap = prod-
uct User * Roles *
Groups;

the organizational structure is used to map
users to the authorization of tasks;

As a model of an abstract workflow management system, the Basic Model is
made on the basis of predefined assumptions: (1) we abstract from the process
perspective (i.e., splits, joins, creation of work items), (2) we only consider the
“normal” behavior (i.e., work items are completed successfully; errors and aborts
are not included), and (3) we abstract from the user interface.

The model structure is organized into two sub-systems as shown in Figure 2.
The CPN language allows for the decomposition of complex nets into subpages.
These subpages are also referred to as sub-systems, sub-processes or modules.
Using such modules we obtain a layered hierarchical description.

The two modules shown in Figure 2 communicate by exchanging messages
via six places. The messages contain information about a user and a work item.
Each of the six message places is of the type color UWI = product User * WI,
i.e., each token represents a “user work item” – a combination of a work item
and a user (cf. Table 3).

Work Distribution. Figure 3(a) shows the Work Distribution module. This mod-
ule manages the distribution of work items. It allocates users to which the
work items should be offered, based on authorization (TMap) and organiza-
tion (UMap) data. It should also manage the process of work execution, and
make sure that work items are executed correctly. The variables used in this
module are shown in Table 4.

Table 3. Messages Between Modules (All of type color UWI = product User * WI)

Place Message

to be offered The work item is offered to the user.

withdrawn offer Withdraw the offered work item from the user.

selected The user requests to select the work item.

approved Allow the user to select the work item.

rejected Do not allow the user to select the work item.

completed The user has completed executing the work item

The allocation function offer contains allocation rules of the specific distri-
bution mechanism. Work items that are offered to users are stored in the place
offered work items. After receiving a request from the user to select the work
item, the decision is made whether to allow the user to select the item (and thus
to execute it), or to reject this request. This decision is based on the assumption
that at one moment, only one user can work on the work item. If the work item
has already been selected (i.e., it is not in the place offered work items), then the
request is rejected. Otherwise, the approval is sent to the user and the work item
is moved to the place assigned work items, and, therefore, it cannot be selected
again.

Work Lists. Figure 3(b) shows the Work Lists module. This module receives
messages from the Work Distribution module about which work items are to be
offered to which users. The Work Lists module further manages events associated
with the activities of users. It is decomposed into three units, which correspond
to three basic actions users can make: log on and off (cf. Figure 3(c)) in the
system, select work (cf. Figure 3(d)), start work (cf. Figure 3(e)), and stop work
(cf. Figure 3(f)). Once the work item has been offered to users, they can select it.
When a user selects the work item, the request is sent to the Work Distribution
module. If the request is rejected, the action is aborted. If the Work Distribution
Module approves the request, the user can start working on the work item. Once
the user has started working, the work item is considered to be in progress. Next,
the user can stop working, and the work item is completed. In order to perform
any of these actions, it is necessary that the user is logged on in the system.

4 Evaluation of the Basic Model

The Basic Model presented in the previous section is used as a kind of refer-
ence for different extensions and specializations of work distribution. We have
extended and specialized the Basic Model for three concrete systems (Staffware,
FileNet and FLOWer) [32]. In this section, we evaluate the basic model by
discussing differences between and commonalities among Staffware, FileNet,
FLOWer and the Basic Model. Moreover, in Section 4.2, we discuss the rela-
tion between the resource patterns reported in [37, 39] and the Basic Model.

to be offered

UWI
withdrawn offer

UWI
selected

UWI

approved

UWI

rejected

UWI
completed

UWI

work distribution

workdistribution

work lists

worklists

Fig. 2. Basic Model - Work Distribution

Table 4. Basic Model - Variables in Work
Distribution Module

var tmaps: TMaps;
var umaps: UMaps;
var wi: WI;
var wis:WIs; (color WIs = list WI;)
var uwi: UWI;

rejected

UWI
Out

approved

UWI
Out

completed

UWI
In

user map

UMaps

iUMaps

selected

UWI
In

new work items

WI

iWI

to be offered

UWI
Out

task map

TMaps

iTMaps

withdrawn offer

UWI
Out

closed work items WI

offered work items

WIs

[]

assigned work items

WI

offers

selects

[elt(wi,wis)]

reject

[not(elt(wi,wis))]

complets

(u,wi)

uwi

(u,wi)

wi

umaps

wi

(u,wi)

tmaps

(u,wi)

offer(wi,tmaps,umaps)

umaps

tmaps

offer(wi,tmaps,umaps)

wis

wis

wi

wis

del(wi,wis)

wi::wis

wi

(* function "offer" takes new work items,
and offers them to users,
based on task maps and user maps. *)

(* input *)

(* input *)

(* input *)

(* work item cannot
be selectd
more than once *)

(* allow user
to select
the work item *)

(* prevent users
to select
the work item again,
after someone
has selected it*)

(a) Work Distribution

logged off

User

iUser

logged on

User

[]

I/O

log off log on

uu

uu

(* users that are
working/avalaible
at the moment *)

(* users that are
currently not
working/available *)

(c) Log On and Off

active work items

UWI

selected

UWI
Out

withdrawn offer

UWI
In

logged on

User

[]

I/O

requested

UWI
Out

to be offered

UWI
In

insert delete

select

uwiuwi

(u,wi)

(u,wi)

uwi

u

(u,wi)

uwi

(* offer work items
 to users *)

(* remove
 the offered
 work item *)

(* send request
 for the work item *)

(d) Select Work

rejected

UWI
In

completed

UWI
Out

approved

UWI
In

selected

UWI
Out

to be offered

UWI
In

withdrawn offer

UWI
In

logged on

User

in progress

UWI

requested

UWI

abort

select work

selectwork

logon and off

logonandoff

stop work

stopwork

start work

startwork

uwi

uwi

(* request has been sent,
wait for the response *)

(* the user is executing
 the work item *)

(* request approvement
 for executing the work item *)

(* the user has completed the work item *)

(* request approved *)

(* request rejected *)

(* only the user wich is
logged on can work*)

(b) Work Lists

in progress

UWI
Out

logged on

User

[]

I/O

requested

UWI
In

approved

UWI
In

start

(u,wi)

u

(u,wi)

uwi

(* the request
is approved *)

(* the work item
is assigned to
the user *)

(* the user is
logged on *)(* the user is currently

 executing
 the work item *)

(e) Start Work

logged on
User

[]

I/O

in progress

UWI
In

completed

UWI
Out

complete
u

(u,wi)

(u,wi)
(* when transition "complete"
fires, execution of a work
item is completed *)

(f) Stop Work

Fig. 3. Basic Model

4.1 Three Workflow Management Systems: Staffware, FileNet and

FLOWer

Staffware and FileNet are two “traditional” workflow management systems.
FLOWer can be characterized as a case handling system [4] allowing for more
flexibility. We have developed three dedicated CPN models for these three sys-
tems. We are not able to show these models here and need to refer to a technical
report of this [32]. However, we are able to report on our experiences.

To model the functionality of Staffware, the concept of work queues is in-
troduced in the CPN model. In Staffware there are personal queues and group
queues. If the same work item is offered to multiple work queues, it is executed
multiple times. Staffware also allows for allocation at run-time based on the at-
tributes of a case. Moreover, Staffware also allows for forward and suspend, i.e.,
a user can put a work item on hold (suspend) or forward it to the another user.

FileNet allows for two ways of grouping people in organizational entities:
work queues and workflow groups. Similar to Staffware, FileNet allows for per-
sonal queues and group queues. Workflow groups offer a completely different
functionality: multiple people can work on the same work item and the group
structure may change at run-time. Similar to Staffware, FileNet allows for for-
ward and suspend.

FLOWer is quite different from Staffware and FileNet because it is data-
driven and allows for all kinds of case-handling functionality [4]. This implies
several extensions of the Basic Model. FLOWer allows users to skip or redo
activities in addition to simply executing them. Unlike most systems, FLOWer
separates authorization (“can do”) from distribution (“should do”).

Since we cannot show the full CPN models, we limit ourselves to some general
conclusions. First of all, the Basic Model is a good basis for building system-
specific models. The extensions are typically straightforward and consistent with
the core structure of the Basic Model. Second, systems have surprisingly strange
limitations, e.g., Staffware supports the role concept, but roles need to be asso-
ciated to a single user (i.e., no two users can have the same role). Third, systems
offer very different functionalities when it comes to work distribution. Finally,
in each of the systems the basic concepts are presented and named differently,
although a close observation often shows that these system-specific concepts are
actually identical.

4.2 Resource Patterns

Instead of extending the Basic Model for more systems, we also looked at a
more systematic way of work distribution. As indicated, similar concepts are
often named and presented differently. Therefore, it is interesting to define these
concepts in a system-independent manner. Therefore, we have used 43 docu-
mented resource patterns [37, 39]. These patterns are grouped into a number of
categories: creation patterns, push patterns, pull patterns, detour patterns, auto-
start patterns, visibility patterns, and multiple resource patterns. Each of these
patterns can be modeled in terms of a CPN model.

Table 5. Support for Resource Patterns in 3 Workflow Systems and Basic Model
(+ = direct support, – = no direct support, +/– = partial support, o = out-of-scope)

Nr Pattern SW FN FW BM

1 Direct Allocation + + + +/–

2 Role-based Allocation + +/– + +

3 Deferred Allocation + + – –

4 Authorization – – + –

5 Separation of Duties – – + –

6 Case Handling – – + –

7 Retain Familiar – – + –

8 Capability-based Allocation – – + –

9 History-based Allocation – – – –

10 Organizational Allocation +/– +/– +/– +/–

11 Automatic Execution + + + o

12 Distribution by Offer – Single Resource – – – –

13 Distribution by Offer – Multiple Resources + + + +

14 Distribution by Allocation – Single Resource + + + –

15 Random Allocation – – – +

16 Round Robin Allocation – – – –

17 Shortest Queue – – – –

18 Early Distribution – – + –

19 Distribution on Enablement + + + +

20 Late Distribution – – – –

21 Resource-Initiated Allocation – – + +

22 Resource-Initiated Execution – Allocated Work Item + + + +

23 Resource-Initiated Execution – Offered Work Item + + – –

24 System-Determined Work List Management + + + o

25 Resource-Determined Work List Management + + + o

26 Selection Autonomy + + + +

27 Delegation + + – –

28 Escalation + + – –

29 Deallocation – – – –

30 Stateful Reallocation +/– + – –

31 Stateless Reallocation – – – –

32 Suspension/Resumption +/– +/– – –

33 Skip – – + o

34 Redo – – + o

35 Pre-Do – – + o

36 Commencement on Creation – – – –

37 Commencement on Allocation – – – –

38 Piled Execution – – – –

39 Chained Execution – – + –

40 Configurable Unallocated Work Item Visibility – – – o

41 Configurable Allocated Work Item Visibility – – + o

42 Simultaneous Execution + + +/– +

43 Additional Resources – – – –

approved

UWI
Out

completed

UWI
In

User map

UMaps

iUMaps

selected

UWI
In

new work items

WI

iWI

to be offered

UWI
Out

Task map

TMaps

iTMaps

closed work items
WI

offered work items

WIs

[]

assigned work items

WI

to allocate
UWI

available

SQCounters

[]

SQ available

withdrawn offer

UWI
Out

rejected

UWI
Out

offers

[not(shortest_queue(offer(wi,tmaps,umaps),sqcs)=NoUWI)]

selects

[elt(wi,wis)]

complets

allocate

reject

[not(elt(wi,wis))]

(u,wi)

(u,wi)

wi

umaps

wi

(u,wi)

tmaps

umaps

tmaps

wis

wi

del(wi,wis)

wi::wis

wi

shortest_queue(offer(wi,tmaps,umaps),sqcs)
(u,wi) (u,wi)

sqcs

sqcs

allocate(u,sqcs,1)

sqcs

allocate(u,sqcs,(~1))
offer(wi,tmaps,umaps)

(u,wi)

(u,wi)wis

wis

(* shortest_queue selects one
 from all the offers on the basis of couters *)

(* when the work item is completed,
remove it from the users’ queue *)

Text

Fig. 4. Push Patterns - Shortest Queue

Table 5 shows an overview of the patterns. It also shows whether a pattern
is directly supported by the three systems (SW = Staffware, FN = FileNet, FW
= FLOWer) and the Basic Model (BM). We cannot elaborate on each of the
patterns, but we will discuss one to illustrate our work. None of the systems
supports Pattern 17: R-SHQ (Shortest Queue). Pattern 17 is one of the push
patterns, i.e., a pattern to push work to a specific user. For this pattern, a new
work item is pushed to the user with the shortest queue of all users that qualify.
This implies that each user has a counter to count the number of pending work
items. Based on this counter, the work is distributed. As figure 4 shows, the
required changes to the Basic Model are minimal. A counter is introduced for
each user (token in place available) and function shortest queue is used to select
one user from the set of possible users based on these counters. Similarly, most
of the other patterns can be realized quite easily.

Table 5 shows that the Basic Model supports less patterns than any of the
three systems. This makes sense since each of the system-specific models can
be seen as an extension of the Basic Model. It is interesting to see that existing
systems typically support less than half of the patterns directly. This reveals typ-
ical limitations of contemporary products. Some of the patterns are considered
out-of-scope for the reference model we are aiming at (marked with “o”). These
are typically patterns directly depending on control-flow functionality, while we
prefer to focus exclusively on work distribution. Each of the patterns not marked
with “o” can easily be added to the Basic Model separately. However, the pat-
terns tend to interact. For example, what does “Shortest Queue” (Pattern 17)
mean if multiple resources work on the same item (Pattern 43)? Therefore, we
are still looking for a suitable CPN model that captures many patterns while
still being intuitive and relatively simple, i.e., a more comprehensive reference

model for work distribution. For this quest we want to use the results presented
in this paper.

5 Related Work

Since the early nineties workflow technology has matured and several textbooks
have been published, e.g., [1, 12, 17, 26, 28]. During this period many languages
for modeling workflows have been proposed. These languages range from generic
Petri-net-based languages to tailor-made domain-specific languages.

Despite the central role that resources play in workflow management systems,
there is a surprisingly small body of research into resource and organizational
modeling in a workflow context [24]. In their early work, Bussler and Jablon-
ski [8] identified a number of shortcomings of workflow management systems
when modeling organizational and policy issues. In subsequent work [17], they
presented one of the first broad attempts to model the various perspectives of
workflow management systems in an integrated manner including detailed con-
sideration of the organizational/resource view.

One line of research into resource modeling and enactment in a workflow con-
text has focused on the characterization of resource managers that can manage
organizational resources and enforce resource policies. In [11], the design of a
resource manager is presented for a workflow management system. It includes a
high level resource model together with proposals for resource definition, query
and policy languages. Similarly, in [25] an abstract resource model is presented
in the context of a workflow management system although the focus is more on
the efficient management of resources in a workflow context than the specific
ways in which work is allocated to them. In [16], a proposal is presented for
handling resource policies in a workflow context. Three types of policy – qualifi-
cation, requirement and substitution – are described together with a means for
efficiently implementing them when allocating resources to activities.

Another area of investigation has been into ensuring that only suitable and
authorized users are selected to execute a given work item. The RBAC (Role-
Based Access Control) model [14] presents an approach for doing this. Whilst
effective, RBAC models tend to focus on security considerations and neglect
work distribution aspects.

Several researchers have developed meta-models, i.e., object models describ-
ing the relation between workflow concepts, which include work allocation as-
pects, cf. [3, 27–29, 36]. However, these meta-models tend to focus on the struc-
tural description of resource properties and typically do not describe the dynam-
ical aspects of work distribution.

The work reported in this paper can be seen as an extension of the workflow
patterns initiative (cf. www.workflowpatterns.com). Besides a variety of control-
flow [2] and data [38] patterns, 43 resource patterns [37, 39] have been defined.
This paper complements the work of resource patterns [37, 39] by providing
executable models for work distribution mechanisms.

6 Conclusions

This paper is a first step towards a comprehensive reference model for work
distribution in process-aware information systems (i.e., workflow management
systems and beyond). To assist in understanding work distribution better, we
used the CPN language and CPN Tools to model and analyze different mecha-
nisms. To serve as a reference, we provided a basic model that can be seen as
the “greatest common denominator” of existing workflow management systems.
This model was extended and specialized for three specific systems (Staffware,
FileNet, and FLOWer). The basic model already captures many of the so-called
resource patterns defined earlier. However, we also modeled more advanced pat-
terns by extending the basic model. In contrast to existing research mainly using
static models (e.g., UML class diagrams), we focused on the dynamics of work
distribution.

Our experiences revealed that it is relatively easy to model and analyze the
systems and patterns using CPN Tools. This suggests that CPN language and
the basic CPN model are a good basis for future research. We plan to extend the
Basic Model into a more comprehensive reference model for work distribution.
First, we want the model to be able to capture the typical functionality offered
by existing systems. One can think of this as the “Least Common Multiple” of
existing functionality. The corresponding CPN model will be much more com-
plicated than the Basic Model used now. However, it can serve as a reference
for organizations that want to implement more advanced functionality. The goal
is to design and implement distribution mechanisms that overcome the limita-
tions of existing systems. An important ingredient will be to use insights from
socio-technical design [7, 10, 13, 43] as mentioned in the introduction.

References

1. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods,
and Systems. MIT press, Cambridge, MA, 2002.

2. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

3. W.M.P. van der Aalst and A. Kumar. Team-Enabled Workflow Management Sys-
tems. Data and Knowledge Engineering, 38(3):335–363, 2001.

4. W.M.P. van der Aalst, M. Weske, and D. Grünbauer. Case Handling: A New
Paradigm for Business Process Support. Data and Knowledge Engineering,
53(2):129–162, 2005.

5. J. Becker, M. Kugeler, and M. Rosemann, editors. Process Management: A Guide
for the Design of Business Processes. Springer-Verlag, Berlin, 2003.

6. P. Bernus. Generalised Enterprise Reference Architecture and Methodology, Ver-
sion 1.6.3. IFIPIFAC Task Force on Architectures for Enterprise Integration, March
1999.

7. J. Bowers, G. Button, and W. Sharrock. Workflow From Within and Without:
Technology and Cooperative Work on the Print Industry Shopfloor. In The Fourth
European Conference on Computer-Supported Cooperative Work (ECSCW 95),
pages 51–66, Stockholm, September 1995. Kluwer Academic Publishers, Dordrecht,
The Netherlands.

8. C. Bussler and S. Jablonski. Policy Resolution for Workflow Management Systems.
In Proceedings of the 28th Hawaii International Conference on System Sciences,
page 831. IEEE Computer Society, 1995.

9. T. Curran and G. Keller. SAP R/3 Business Blueprint: Understanding the Busi-
ness Process Reference Model. Upper Saddle River, 1997.

10. L. U. de Sitter, J. F. den Hertog, and B. Dankbaar. From complex organiations
with simple jobs to simple organizations wiht complex jobs. Human Relations,
510(5):497–534, 1997.

11. W. Du and M.C. Shan. Enterprise Workflow Resource Management. In Ninth In-
ternational Workshop on Research Issues on Data Engineering: Information Tech-
nology for Virtual Enterprises (RIDE-VE’99), pages 108–115, Sydney, Australia,
1999. IEEE Computer Society Press.

12. M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Process-Aware Infor-
mation Systems. Wiley & Sons, 2005.

13. F.M. van Eijnatten and A.H. van der Zwaan. The Dutch IOR approach to organi-
sation design. An alternative to business process re-engineering? Human Relations,
51(3):289–318, 1998.

14. D.F. Ferraiolo, R. Sandhu, S. Gavrila, D.R. Kuhn, and R. Chandramouli. Proposed
NIST Standard for Role-Based Access Control. ACM Transactions on Information
and System Security, 4(3):224–274, 2001.

15. FileNET. FileNet Business Process Manager 3.0. FileNET Corporation, Costa
Mesa, CA, USA, June 2004.

16. Y.N. Huang and M.C. Shan. Policies in a Resource Manager of Work-
flow Systems: Modeling, Enforcement and Management. Technical Report
HP Tech. Report, HPL-98-156, Palo Alto, CA, USA, 1999. Accessed at
http://www.hpl.hp.com/techreports/98/HPL-98-156.pdf on 20 March 2005.

17. S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architec-
ture, and Implementation. International Thomson Computer Press, London, UK,
1996.

18. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Volume 1. EATCS monographs on Theoretical Computer Science. Springer-
Verlag, Berlin, 1997.

19. K. Jensen and G. Rozenberg, editors. High-level Petri Nets: Theory and Applica-
tion. Springer-Verlag, Berlin, 1991.

20. G. Keller, M. Nüttgens, and A.W. Scheer. Semantische Processmodellierung auf
der Grundlage Ereignisgesteuerter Processketten (EPK). Veröffentlichungen des
Instituts für Wirtschaftsinformatik, Heft 89 (in German), University of Saarland,
Saarbrücken, 1992.

21. G. Keller and T. Teufel. SAP R/3 Process Oriented Implementation. Addison-
Wesley, Reading MA, 1998.

22. E. Kindler. On the Semantics of EPCs: A Framework for Resolving the Vicious
Circle. In J. Desel, B. Pernici, and M. Weske, editors, International Conference
on Business Process Management (BPM 2004), volume 3080 of Lecture Notes in
Computer Science, pages 82–97. Springer-Verlag, Berlin, 2004.

23. L.M. Kristensen, S. Christensen, and K. Jensen. The Practitioner’s Guide to
Coloured Petri Nets. International Journal on Software Tools for Technology
Transfer, 2(2):98–132, 1998.

24. A. Kumar, W.M.P. van der Aalst, and H.M.W. Verbeek. Dynamic Work Distribu-
tion in Workflow Management Systems: How to Balance Quality and Performance?
Journal of Management Information Systems, 18(3):157–193, 2002.

25. B.S. Lerner, A.G. Ninan, L.J. Osterweil, and R.M. Podorozhny. Model-
ing and Managing Resource Utilization in Process, Workflow, and Activ-
ity Coordination. Technical Report UM-CS-2000-058, Department of Com-
puter Science, University of Massachusetts, August 2000. Accessed at
http://laser.cs.umass.edu/publications/?category=PROC on 20 March 2005.

26. F. Leymann and D. Roller. Production Workflow: Concepts and Techniques.
Prentice-Hall PTR, Upper Saddle River, New Jersey, USA, 1999.

27. M. Zur Muehlen. Evaluation of Workflow management Systems Using Meta Mod-
els. In Proceedings of the 32nd Hawaii International Conference on System Sciences
- HICSS’99, pages 1–11, 1999.

28. M. Zur Muehlen. Workflow-based Process Controlling: Foundation, Design and
Application of workflow-driven Process Information Systems. Logos, Berlin, 2004.

29. M. zur Muhlen. Organizational Management in Workflow Applications Issues
and Perspectives. Information Technology and Management, 5(3–4):271–291, July-
October 2004.

30. Pallas Athena. Flower User Manual. Pallas Athena BV, Apeldoorn, The Nether-
lands, 2002.

31. Pallas Athena. Protos User Manual. Pallas Athena BV, Plasmolen, The Nether-
lands, 2004.

32. M. Pesic and W.M.P. van der Aalst. Modeling Work Distribution Mechanisms
using Colored Petri Nets. BETA Working Paper Series, Eindhoven University of
Technology, Eindhoven, 2005.

33. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models,
volume 1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.

34. M. Rosemann. Application Reference Models and Building Blocks for Management
and Control (ERP Systems). In P. Bernus, L. Nemes, and G. Schmidt, editors,
Handbook on Enterprise Architecture, pages 596–616. Springer-Verlag, Berlin, 2003.

35. M. Rosemann and W.M.P. van der Aalst. A Configurable Reference Modelling
Language. Information Systems, pages (accepted for publication, can be obtained
via BPMcenter.org), 2005.

36. M. Rosemann and M. Zur Muehlen. Evaluation of Workflow Management Systems
- a Meta Model Approach. Australian Journal of Information Systems, 6(1):103–
116, 1998.

37. N. Russell, W.M.P.van der Aalst, A.H.M. ter Hofstede, and D. Edmond. Workflow
Resource Patterns: Identification, Representation and Tool Support. In O. Pastor
and J. Falcao e Cunha, editors, Proceedings of the 17th Conference on Advanced
Information Systems Engineering (CAiSE’05) , volume 3520 of Lecture Notes in
Computer Science, pages 216–232. Springer-Verlag, Berlin, 2005.

38. N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Workflow
Data Patterns. QUT Technical report, FIT-TR-2004-01, Queensland University of
Technology, Brisbane, 2004.

39. N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Workflow
Resource Patterns. BETA Working Paper Series, WP 127, Eindhoven University
of Technology, Eindhoven, 2004.

40. A.W. Scheer. Business Process Engineering, Reference Models for Industrial En-
terprises. Springer-Verlag, Berlin, 1994.

41. A.W. Scheer. ARIS: Business Process Modelling. Springer-Verlag, Berlin, 2000.
42. Staffware. Using the Staffware Process Client. Staffware, plc, Berkshire, United

Kingdom, May 2002.
43. F. M. van Eijnatten. The Paradigm that Changed the Work Place. Van Gorcum,

Assen, The Netherlands, 1993.

An Open and Formalism Independent
Meta-Model for Business Processes

Björn Axenath, Ekkart Kindler, Vladimir Rubin

Software Engineering Group, University of Paderborn,
Warburger Str. 100, D-33098 Paderborn, Germany
[axenath|kindler|vroubine]@uni-paderborn.de

Abstract. Business process reference models help adapting processes
of an enterprise to the processes supported by standard software or help
customising processes in standard software to fit the needs of some enter-
prise. The problem, however, is that, in many cases, the processes of the
enterprise and the reference processes are modelled in different notations
and formalisms, which makes the adaptation and customisation a difficult
task. In this paper, we formalise the concepts of business process models
and their relation as a meta-model in UML notation. Though this meta-
model resembles existing architectures, it enjoys some important addi-
tional properties: It is independent of particular modelling formalisms,
it is open so that new concepts for some aspect can be easily added, and
it is operational in the sense that a workflow management system can be
implemented based on the meta-model without even knowing the par-
ticular modelling formalisms. This way, the meta-model proposed here
identifies the essential concepts of different modelling formalisms and,
therefore, helps relating reference process models and process models
even though they are modelled in different formalisms.

1 Introduction

Business process reference models help adapting processes of an enterprise to the
processes supported by standard software, or they help customising processes of
standard software to fit the needs of some enterprise. The problem, however, is
that, in many cases, the processes of the enterprise and the reference processes
are modelled in different notations and formalisms, which makes the adaptation
and the customisation a difficult task. In order to deal with this problem, it
is important to identify the common aspects and underlying concepts of busi-
ness process models and business process reference models independently of a
particular modelling formalisms. To this end, we formalize the concepts for mod-
elling business processes as a meta-model. We use UML notation for formalizing
this meta-model, since this allows us not only to present the meta-model, but,
ultimately, to implement these concepts.

There is much work on ontologies for business process models, and there are
various kinds of taxonomies, glossaries, and meta-models in the area of business
process modelling (see Sect. 5). All these approaches help better understanding

the concepts of business process modelling. But, they exhibit one of the following
two problems: Either they are focused on one particular formalism or notation
for modelling business processes and are restricted to some particular aspects of
business processes; or they are so general that mapping concrete formalisms to
them is difficult and remains vague. Our meta-model reconciles the generality of
its concepts and the independence from particular formalisms with a concise way
of mapping concrete formalisms to these concepts. Technically, this is achieved
by interfaces for integrating formalisms to this meta-model. This way, we distill
and better understand the concepts involved in business process modelling – in-
dependently of a particular formalism. This understanding can help relating and
comparing process models in different notations, it can help defining an inter-
change format for business process models, and it will eventually help switching
from one formalism to another with respect to one aspect without changing the
formalisms and models of other aspects of the process. Actually, our long-term
goal is a formalism independent workflow engine.

In this paper, we will present and formalize the basic ideas of our meta-model
for business process modelling. The principles governing the design of this meta-
model were the following: 1. It should cover all basic aspects of business process
models and should not be biased towards or focused on one of these aspects.
2. It should be open so that other aspects can be easily added and integrated to
it. 3. In particular, there should be clear interfaces for the different aspects and
a mechanism for their integration. 4. It should be independent of a particular
notation for business process models, which allow us to map existing business
process modelling notations to this meta-model. 5. It should be compatible with
existing architectures of workflow management systems (e. g. [7]).

In this paper, the meta-model will be defined on different levels of abstraction
and by different techniques [14]. First of all, we briefly explain and define all rel-
evant concepts and introduce a controlled vocabulary for the domain of business
process models. In a second step, we provide meta-models for these concepts in
the Meta Object Facility (MOF [13]) in UML notation. The main idea is that
the different aspects of a business process can be modelled independently of each
other and can be easily combined without knowing the underlying formalisms.
To this end, the meta-models for the different aspects define interfaces that can
be implemented by different concrete formalisms. Note that, for lack of space, we
will not deal with the details of the information aspect of business processes here.
The details are presented and discussed in a technical report [1] on AMFIBIA:
A Meta-model For the Integration of BusIness process modelling Aspects.

2 Concepts and Terminology

In this section, we introduce the basic concepts and terminology used in business
process modelling and define a controlled vocabulary for the domain of business
processes. In the literature, there are many proposals using different terms, which
are not consistent with each other and no terminology is fully accepted. Our
definitions and terminology has been strongly influenced by [7, 17, 12].

Transaction

Authentication
Authorization

Assignment
Organisation

Information

Control Integral

Fig. 1. Aspects of business processes

2.1 Overview

A business process consists of a set of activities that are executed in some enter-
prise or administration according to some rules in order to achieve certain goals.
A business process model is a more or less formal and more or less detailed de-
scription of the persons and artefacts involved in the execution of a particular
business process and of the rules governing their execution. An instance, i. e. a
particular execution of a business process model, is often also called a business
process. In order to avoid confusing instances and models, we call an instance of
a business process model a case.

It is now well-accepted that there are different aspects of business processes
that can be modelled and investigated independently of each other: The control
aspect basically describes the order in which the different activities are executed.
The organizational aspect describes the organization structure and, in particular,
the resources and agents, and in which way they are involved in the activities of
the business process. The informational aspect describes the information that is
involved in a business process, how it is represented, and how it is propagated
among different activities. The details of theses aspects and the concepts mod-
elled in a particular aspect will be discussed below. Actually, there are many
more aspects, some of which are shown in Fig. 1 (see [1] for details).

In many papers, the control aspect is considered to be the most salient aspect
of business processes, and in many modelling formalisms and notations, this
aspect is used for integrating all other aspects. In our proposal, we do not use
the control aspect for the integration of the other aspects. Rather, we single out
the concepts that are common to all aspects. We call these concepts the integral
part of business processes, which comprises basically the activities of the process.
An activity itself is an instance of some particular task ; only when a particular
case is executed the tasks will be instantiated to an activity.

A task comprises pieces of work that conceptually belong to each other. A
task can either be atomic or compound. An atomic task is not split into further
parts on a given level of abstraction. Dependent on the purpose of the model, an

atomic task can be associated with a procedure or an application that supports
the execution of this task; this, however, is subject to a special aspect already:
the application aspect. A compound task refers to a subprocess, which defines the
details of this task; this can be defined by another business process. Actually,
the distinction of atomic and compound tasks belongs to the structuring aspect
already; but, we do not introduce this aspect here.

2.2 Control Aspect

The control aspect defines the order in which the tasks of a business process are
instantiated and in which the corresponding activities are executed. Note that
the order of the execution does not need to be sequential; it can be a partial
order representing the causal dependencies among the activities.

For defining this order, the formalism refers to the tasks defined in the in-
tegral part of the business process. There are many different ways, formalisms,
and notations for defining the order in which the tasks, resp. the corresponding
activities must be executed. In order to be universal, we do not fix a particular
formalism for defining the control of a business process. We assume only that
there is a concept of a state. In a given state, it must be clear which tasks are
enabled (i. e. which tasks can be instantiated to activities), how the instantia-
tion of a task to an activity changes the state, and how the termination of this
activity changes the state. We will discuss this in more detail later in Sect. 4.2.

2.3 Informational Aspect

The informational aspect of a business process model defines the information
involved in a business process as well as the propagation of information among
different activities. All information involved in a business process can be consid-
ered to be documents, where a document is an artefact representing some piece
of information. The information aspect of a business process basically defines
the structure of the involved documents and their relation. Moreover, it defines
how documents are propagated between tasks.

Similar to processes and cases and to tasks and activities, we must distinguish
between document models and document instances (documents for short), where
a document model defines the structure of a document instance. The information
model comprises all document models as well as the relation among the different
documents. As for tasks, a document can be atomic or compound. An atomic
document is an unstructured text or piece of data (resp. the structure is not
represented in the model), whereas a compound document is structured and
consists of two or more sub-documents.

2.4 Organizational Aspect

The organizational aspect of a business process model defines the structure of
the organisation in which the business process is executed, i.e. its organisational

units and the relations among them; and it defines the resources and agents
within these organizational units, where we use the term agents in order to refer
to human resources. Moreover, the organizational aspect of a business process
model defines, which resources and agents could possibly execute a particular
task resp. activity; these are called the possible assignments for that task. In a
business process model each task will be equipped with a resource descriptor,
which defines the possible assignments once the task becomes enabled.

The structure of the organization is modelled in the organization model. Note
that the organisation model captures only the static part of the organization such
as departments and groups. It does not deal with the dynamic parts of concrete
agents and resources. Therefore, the possible assignments of agents and resources
to some task are defined by a resource descriptor, possibly via their positions,
roles or via relations (such as substitute) among resources.

When it comes to the execution of a business process model in a workflow
management system, the concrete resources and agents, their positions and roles
will be maintained by some administrator, such that the workflow management
system can assign tasks to the concrete agents.

2.5 Static and Dynamic Concepts

In the presentation of the concepts of business processes, we have dealt with two
kinds of concepts. The first kind, were the concepts occurring in the business
process model itself, e.g. its tasks, the document models, and the roles etc. The
second kind are the instances of the first ones such as cases, activities, document
(instances), and resources. Only the concepts of the first category do occur in the
models, the concepts of the second category are necessary only for the definition
of the meaning of a model in terms of its instances, which, basically, defines the
dynamic behaviour of a model. In the following discussions and, in particular, in
the meta-model, we will carefully distinguish between these categories. We call
the first kind of concepts static concepts or modelling concepts, and we call the
second kind dynamic concepts or instance concepts.

3 Meta-Modelling Techniques

Up to now, we have presented the basic idea and concepts of our business process
modelling meta-model. In Sect. 4, we will present all the details necessary for a
future implementation of this meta-model. It is defined with the help of MOF
and UML techniques. These techniques are explained in this section with the
help of some examples from the control aspect of a business process.

3.1 Models and Meta-Models

In this section we discuss the concepts of models, meta-models and instances.
A model is an abstraction of the real world. In Fig. 2, we present a concrete
workflow net as an example of a model for the control aspect of a business

Fig. 2. Example of a model

PetriNet

Object
*

Node Arc

Place Transition

-source

-target

Fig. 3. PNML Core Model

M2

M1

M0 Data (Information)

M3 MOF Model (Meta-Metamodel)

Meta-Model

Model

Fig. 4. MOF-compliant ontology

process. The example is a “Conference Trip”, different aspects of which will be
added in Sec. 4.

We need different formalisms for defining our models. We use Petri Nets for
the control aspect, organization charts for the organizational aspect, and ER-
diagrams for the informational aspect. In order to use the different formalisms,
we need to define the concepts and notations of these particular formalisms.
This can be done by providing a meta-model for the formalism; i.e. the meta-
model defines the language or notation for expressing the model. For example, for
computer programs the grammar defining their syntax is their meta-model; for
XML documents an XML-Schema or a DTD is a meta-model. For our workflow
net example, the Petri Net Markup Language (PNML) Core Model [11] is the
meta-model (see Fig. 3). A place of the workflow net is an instance of the class
Place of the PNML Core Model. The meta-model defines not only classes, but
also relations between them. Therefore, UML class diagrams are an appropriate
technique for defining such kinds of meta-models.

The meta-modelling technique can not only be used for defining the con-
structs and rules for building models, it can be used also for defining the concepts
of a domain of interest and their relation. A combination of such a meta-model
and a controlled vocabulary defines the ontology of the domain.

Fig. 5. Example of an instance

Of course, the notation for defining the meta-models must also be defined
in some way. To this end, we use the techniques of UML and the Meta Object
Facility (MOF) [13]. MOF is a framework for defining models and meta-models.
Basically it consists of four layers (see Fig. 4): the MOF model (M3), a meta-
model (M2), a model (M1), and an information layer (M0).

In our example, the meta-model layer contains the PNML Core Model, the
model layer contains the workflow net, and the information layer contains the
instances of the workflow net. Figure 5 shows one example of an instance of a
workflow net, which is an occurrence net. This occurrence net documents one
possible real execution of the process. It shows the current state of the process
and its history. In our example, we can see that, in this process instance, the bill
was rejected once, but later the bill was approved – but not yet fully completed.

Altogether, our meta-models is defined on the M2 layer and the business
process models will be on the M1 layer of MOF.

3.2 Mapping the Formalisms

The concepts of business process modelling as discussed in Sect. 2 are indepen-
dent of concrete modelling formalisms such as Petri nets, organization charts or
ER-diagrams. In order to use our meta-model with concrete formalisms, we need
a mechanism for integrating these formalisms to the meta-model. To this end,
we assume that there is a meta-model for the formalism. This meta-model must
be mapped to our meta-model. Technically, the classes of our meta-model are
interfaces, and the classes of the meta-model of the formalism implement these
interfaces. Figure 6 gives an overview of this mechanism. The interfaces of each
aspect define the formalism independent meta-model, and the meta-model of a
formalism implementing such an interface define a formalism dependent meta-
model. In Sect. 4.2, we will show how the PNML Core Model implements the
formalism independent meta-model of the control aspect.

4 Business Process Integration Meta-Model

In this section, we introduce the meta-models for two basic aspects of business
processes and we show how concrete formalisms implement our formalism inde-
pendent meta-models. The informational aspect is explained in [1].

Informational
Aspect

Organizational
Aspect

Control
Aspect

Integral

Formalism
Independent
Meta-Model

Formalism
Independent
Meta-Model

Formalism
Independent
Meta-Model

Formalism
Dependent
Meta-Model

Formalism
Dependent
Meta-Model

Formalism
Dependent
Meta-Model

Fig. 6. Mapping of the formalism dependent meta-models

4.1 A Conference Trip Example

Before going to the meta-model level, we discuss two aspects of a concrete busi-
ness process. As an example we have chosen a conference trip process, where the
models of the aspects are independent of each other and use different formalisms.

The Control Aspect of the Example In Fig. 2, we have seen an example of
a model for the control aspect of a business process already. The formalism is
a special version of Petri nets called workflow nets [17]. It defines the different
tasks of a conference trip and the order in which they are executed. The tasks are
the transitions (represented as rectangles) of the Petri net. A Petri net defines
this behaviour in terms of a marking, which is a number of tokens on its places
(represented as black dots in the circles). Initially, there is only one token on the
initial place in. At this stage, only transition “apply for trip” is enabled. After
starting and finishing the corresponding task, the transitions “support trip”,
which corresponds to the task of a superior countersigning the trip application,
and the transition “book trip” are enabled. This means that these two tasks
could be executed concurrently. Note that the actual trip may be made only if
the trip application has been approved before. After the trip, the employee may
apply for reimbursement of the travel expenses. Note that, at this stage, there
might be an iteration: If the bills for the trip are rejected, the billing activity
will be repeated. The process is finished, when a token arrives at place out.

The Organizational Aspect of the Example The “Conference Trip” pro-
cess can possibly take place in some company, which has the structure shown
in Fig. 7. The structure of the company is presented in a matrix form. The or-
ganization “SWCompany” is an organizational unit, which contains four other
organizational units. Each organizational unit contains organizational positions.
Each organizational position implies a role. For example, the CRM unit contains
a position such as “Salesman”. An agent occupies an organizational position and

SWCompany

CRM Finances Development
Project

Management

John Saleman
Manager

Bill Saleman
Salesman

John Finman
Manager

Bill Finman
Accountant

John Devman
Manager

Bill Devman
Developer

Bill Proman
Manager

Hierarchical Dimension

Functional Dimension

Project1

Fig. 7. Example of matrix organizational structure

thus is assigned a role. For example, “Bill Saleman” is a salesman. Altogether,
such an organizational tree represents the hierarchical dimension of the matrix
structure of the organization.

The other dimension is the functional one. It is based on the projects in
which the members of different organizational units are involved. For example,
the salesman from the CRM unit, the developer from the Development unit and
the manager from the Project Management unit participate in the same project
“Project1”. Thus, the vertical structure of “SWCompany” shows the hierarchical
dimension and the horizontal – the functional one.

For the given organizational structure, we can give the responsibilities schema
in the context of the “Conference Trip” process, which basically has to answer
the question “Who can execute the task?”. An example for such a schema is
presented in the technical report [1].

4.2 The Meta-Model

In this section, we present the meta-model for business process models, with
a clear separation of the integral part and the meta-models for the different
aspects. Technically, the meta-models for the different aspects are interfaces
that must be implemented by a particular formalism in order to implement it as
a model for this particular aspect.

In the following, we first give a meta-model for the integral parts of business
process models. Then, we give the meta-models for the concepts of the different
aspects. For each aspect, we show how this aspect can be implemented by a
particular formalism.

Integral Part Figure 8 shows the meta-model of the integral part of business
process models, which are independent of a particular aspect. The left-hand side
shows the static concepts and the right-hand side shows the dynamic concepts.

A business process model (BPM) consists of a set of tasks. A task can either
be a basic (or an atomic) task, or it can be a compound task ; a compound task

Basic
<<Interface>>

Compound
<<Interface>>

Case
<<Interface>>

Activity
<<Interface>>

**

BPM
<<Interface>>1

*

+subprocess

1

*

*1 *1

<<instanceOf>>

Task
<<Interface>>

*1 *1

<<instanceOf>>
**

static dynamic

Fig. 8. The integral part

static dynamic

Activity
<<Interface>>

Case
<<Interface>>

*

+finished

* *

+active

*

State
<<Interface>>

1

1

+case

1

+current

1

Task

initialize(State) : State
finalize(State) : State

<<Interface>>

** *

+activated

*

BPM
<<Interface>>

*

1

+initial *

1

* +final*

Fig. 9. The control aspect

refers to another business process, a subprocess, which defines this particular
task. A case is an instance of a particular business process. While running,
different tasks will be instantiated in a case, which are called the activities.

Control Aspect In this section, we present the meta-model for the control
aspect of business process models. To this end, we refer to the concepts of the
integral part (see Fig. 8) and extend them by additional features. These are
shown in Fig. 9.

For the control aspect, a process model is equipped with initial and final
tasks. The initial tasks define those tasks that initiate a new case. The final
tasks identify those tasks that terminate the execution of the resp. case1

In order to define the control model of a process, there is the concept of
a state, which actually sits in the middle between the static and the dynamic
concepts of business processes. Each case has a current state, which in turn
defines the tasks that could possibly be started in the current state; these are
called the activated tasks. Each task defines, how the initialisation of this task
changes the state and how the finalisation of the corresponding activity changes
the state of the case. Moreover, a case consists of a set of activities that are active
at a particular moment, and it consists of activities that are finished already.

Thus far, the meta-model for the control aspect is independent of a particular
formalism for modelling the behaviour. It requires only that there is a concept
of a state and state changes. This can be implemented by different formalisms.
Here, we show how Petri nets can be used for implementing the control aspect.
Figure 10 shows the meta-model of Petri nets (PNML) implementing the con-
cepts of the control aspect of business processes. It consists of transitions and
places. A marking consists of a multiset of places. The transitions implement
the tasks, the markings implement states, and the firing rule of Petri nets im-
plements the state changes. The method initialize removes one token from each
1 For experts in UML modelling, we mention that, actually, there are separate inter-

faces for a BPM, a Task and a Case for every aspect, which is a technique known
from aspect oriented modelling. But, we do not go into the details here.

static dynamic

State
<<Interface>>

Task
<<Interface>>

BPM
<<Interface>>

Transition

initialize(State) : State
finalize(State) : State

Marking** *

+enabled

*PN **

Place ****

Fig. 10. A Petri net implementation

of its input places, and the method finalize adds a token to each of its output
places. The enabledness of a transition in a particular marking implements the
set of activated tasks.

Here, we used Petri nets for implementing a formalism for the control aspect
of business process models. But, it is easy to see that any other formalism that
has a semantics based on states and state changes (transitions) can be used for
implementing the control aspect; which virtually applies to all formalisms used
in control models of business processes, though some may be more complicated.

Organizational Aspect In this section, we present a typical meta-model for
the organizational aspect of business process models. Here, we refer to the inte-
gral part and show its relations to the organizational aspect (see Fig. 11).

In order to define which resources can execute a task, we introduce the
ResourceDescriptor. The ResourceDescriptor defines the set of possible assign-
ments, in some context of the case. The context of a case, basically, shows the
assignments that were done to some earlier activities. The assignment contains
a set of resources which could execute the activity. This set of classes provides
basically the ontology of the organizational aspect, which must be implemented
by a concrete formalism.

Figure 12 shows the concepts that are supported by virtually all formalism for
the organizational modelling. This meta-model can be divided into three parts:

static dynamic

Context
<<Interface>>

BPM
<<Interface>>

ResourceDescriptor

getResourceSet(Context)

<<Interface>>

Resource
<<Interface>>

Case
<<Interface>><<instanceOf>>

1

1

1

1

Task
<<Interface>>

**

**

Assignment
<<Interface>>** **

Activity
<<Interface>>

**
<<instanceOf>>

11

Fig. 11. The Organizational aspect meta-model

TemporaryOrgUnit PermanentOrgUnit

ResourceClass Resource

Capability

<=
has capability

Relation

AgentOrgUnit

0..1

0..*

0..1

0..*

Priviledge

Role
0..*0..* 0..*0..*

is assigned to

RelationType <= isOf

OrgPosition
0..*0..* 0..*0..*

<= occupies

1..1
0..1

1..1
0..1

is managedby =>

0..*1..* 0..*1..*
<= is part

0..*

0..*

0..*

0..*

is
assigned

to
v

0..*

0..*

0..*

0..*

^
implies

targetsource

dynamicstatic

Fig. 12. The organizational structures meta-model of business processes

organizational structure, functional structure, and resources. The organizational
and the functional structure classes serve as a classification of resources. The
organizational structure consists of the OrgUnit (Organizational Unit) and its
subclasses and the OrgPosition (Organizational Position). The Organizational
Unit is a group of people working together and organized for some purpose.
Organizational Unit can be either Temporal or Permanent. The Organizational
Unit is formed from Organizational Positions. Thus, the Organizational Position
can be considered as an atomic Organizational Unit. The functional structure
consists of the Role, the Privilege and the Capability. As it is shown in the meta-
model diagram, an Organizational Position can imply some Roles. The Role is
actually a group of resources exhibiting a set of specific skills and/or qualifi-
cations. The Role is composed of Privileges and Capabilities. The Privilege is
usually assigned to the appropriate Position. The Capability is a direct property
of a Resource. The Resource is a person, machine or application, which can be as-
signed a task. The Resource is requested to perform an activity at runtime. The
Agent is a human Resource. There can be different Relations between Resources
within a particular process instance, for example, a substitution relation. Hence,
there must exist also Relation Types, which define different kinds of Relations in
an Organizational.

The meta-model consists of static and dynamic parts. Resources, Agents and
Relations belong to the dynamic part and the others to the static.

Next, we show how the meta-model from Fig. 12 can be mapped to the or-
ganizational aspect (see Fig. 13). The ResourceDescriptor basically consists of
three parts: a Role, an Organizational Unit and some additional constraints.
The SpecificRD (Specific ResourceDescriptor) implements the ResourceDescrip-
tor and, thus, also provides a set of possible assignments, which are now cal-
culated from the the Role, the OrgUnit and the Restriction. The Role and the
OrgUnit interfaces are the interfaces from the organizational structures meta-
model; they specify the functional and the organizational classification of the

static dynamic

ResourceDescriptor

getResourceSet(Context)

<<Interface>>

Role
<<Interface>>

OrgUnit
<<Interface>>

SpecificRD

number Context
<<Interface>>

Restriction
<<Interface>>

**

Fig. 13. The organizational aspect with structure

resource who could execute a task. The Restriction interface specifies the prop-
erties of the desired resource based on the context of the case, i.e. based on the
assignments that were already done in the case.

It is easy to see that any formalism for organizational models can directly
implement the ResourceDescriptor interface. In the mapping above, we imple-
mented the ResourceDescriptor in a more structured way by using interfaces
for Roles, Organizational Units and Restrictions. Since almost every formalism
defines these concepts, it is not necessary to implement the ResourceDescrip-
tor directly, the formalism can be mapped to these interfaces; then SpecificRD
implements a ResourceDescriptor. We recommend this style of implementing a
ResourceDescriptors because it identifies the organizational aspect details clearer
and prescribes the correct usage of the organizational structures classes.

4.3 Integration

In the previous sections, we presented the meta-models for the integral part of
business process models and the meta-models resp. interfaces for two different
aspects of business process models. We have shown how a particular meta-model
for some formalisms can be mapped to the interfaces of a particular aspect. In
order to validate the concept, we show that a business process can be fully
defined in terms of the concepts of the formalism independent meta-model.

Actually, we could implement a formalism independent workflow engine based
on these interfaces. Though we did not implement such a formalism independent
workflow engine yet, we have shown in a ‘Gedankenexperiment’ that a workflow
engine based only on the interfaces of the different aspects will work [1].

5 Related Work

In this section, we give a brief overview of related work. For lack of space, we
first discuss the work from the area of reference meta-models, where we restrict
ourselves to the meta-models presented in a more or less formal way. Second, we

refer to the research in the area of reference models, where we present the most
general work only.

Wil van der Aalst and Kees van Hee [17] present a reference framework
for defining business processes with a focus on workflow management systems.
Leymann and Roller [12] discuss the basics of the workflow technology and its as-
pects, the models and meta-models of business processes, and the workflow man-
agement systems. Their book presents the definitions of the meta-model using
precise syntax and semantics. The Workflow Reference Model of the WfMC [7]
provides a common vocabulary for describing a business process and its aspects.
A discussion paper of the WfMC about the common object model [8] is a proposal
for using the object-oriented technology in this area. In the XML Process Defi-
nition Language Specification of the WfMC [21], the meta-model of the process
definition, containing the main entities, their relationships and attributes, was
defined. The book of Jablonski et al. [9] discusses the topic of the meta-modelling
presenting the schema of the meta-levels and describing relations between them.
In [3] the motivation and concepts of using the Enterprise Process Modelling
Language (EPML), which considers different aspects of business processes, are
presented.

The book “Referenzmodellierung” [2] covers the general concepts, techniques
and applications of reference models. Fettke and Loos present the background
ideas in the research field of reference models and applications to such domains
as E-Business and business engineering in their works [5, 6]. Scheer discusses
the application of reference models to the industrial business processes in the
context of the Architecture of Integrated Information Systems (ARIS) [16].

The goal of our research lies in combining the different reference meta-models
and reference models.

6 Conclusion

In this paper, we presented an ontology for business process modelling, by first
introducing a controlled vocabulary and then formalizing it as a meta-model,
which we call AMFIBIA. As discussed in Sect. 5, the idea of devising an ontology
or a meta-model for business process models is not new at all. The justification
for yet another one is its new focus: Our meta-model shows that the different
aspects of business processes can be modelled independently of each other and
that it is possible to integrate them via the integral part. It is open for additional
aspects and is not biased towards any aspect. The meta-model is independent of
any particular modelling formalism and, actually, defines an interface that can
be implemented by most formalisms for that particular aspect.

Though, the presented meta-model is not restricted to business process ref-
erence models, it helps in this area by identifying the important aspects and
concepts independently of a particular formalism. And, once implemented, it pro-
vides a technological basis for using reference models with different formalisms.

References

1. B. Axenath, E. Kindler, and V. Rubin. The aspects of business
processes: An open and formalism independent ontology. Techni-
cal Report TR-RE-05-256, University of Paderborn, http://wwwcs.uni-
paderborn.de/cs/kindler/Publikationen/copies/AKR05.pdf, April 2005.

2. J. Becker and P. Delfmann, editors. Referenzmodellierung. Physica-Verlag, 2004.
3. N. P. Dalal, M. Kamath, W. J. Kolarik, and E. Sivaraman. Toward an integrated

framework for modeling enterprise processes. Commun. ACM, 47(3):83–87, 2004.
4. J. Evermann and Y. Wand. Towards Ontologically Based Semantics for UML

Constructs In Proceedings of the 20th International Conference on Conceptual
Modeling, pp. 354–367. Springer 2001.

5. P. Fettke and P. Loos. Referenzmodellierungsforschung. WIRTSCHAFTSINFOR-
MATIK, 46(5):331–340, 2004.

6. P. Fettke and P. Loos. Der Beitrag der Referenzmodellierung zum Business Engi-
neering. HMD - Praxis der Wirtschaftsinformatik, 241:18–26, 2005.

7. D. Hollingsworth. The Workflow Reference Model. Technical Report TC00-1003,
The Workflow Management Coalition (WfMC), January 1995.

8. D. Hollingsworth. A Common Object Model Discussion Paper. Technical Report
WfMC-TC-1023, WfMC, March 1999.

9. S. Jablonski, M. Böhm, and W. Schulze. Workflow-Management Entwicklung von
Anwendungen und Systemen. dpunkt.verlag, 1997.

10. D. Karagiannis and H. Kühn. Metamodeling platforms. In K. Bauknecht, A. Min
Tjoa, and G. Quirchmayer, editors, Proceedings of the Third International Confer-
ence EC-Web, LNCS 2455, page 182. Springer-Verlag, September 2002.

11. E. Kindler. Using the Petri Net Markup Language for Exchanging Business Pro-
cesses? Potential and Limitations. In M. Nüttgens and J. Mendling, editors,
XML4BPM 2004, Proceedings of the 1st GI Workshop XML4BPM, Marburg Ger-
many, March 2004, pages 43–60, March 2004.

12. F. Leymann and D. Roller. Production Workflow: Concepts and Techniques.
Prentice-Hall PTR, Upper Saddle River, New Jersey, USA, 1999.

13. Meta Object Facility (MOF) specification. Technical report, OMG, April 2002.
14. W. Pidcock. What are the differences between a vocabulary, a taxon-

omy, a thesaurus, an ontology, and a meta-model?, 2004. Web Page URL:
http://www.metamodel.com/article.php?story=-20030115211223271.

15. M. Rosemann and M. zur Muehlen. Evaluation of Workflow Management Systems
- a Meta Model Approach. In K. Siau, Y. Wand, and J. Parsons, editors, 2nd
CAiSE/IFIP 8.1 International Workshop on Evaluation of Modeling Methods in
Systems Analysis and Design (EMMSAD ‘97), Barcelona, 1997.

16. A.W. Scheer. Wirtschaftsinformatik. Studienausgabe. Referenzmodelle für indus-
trielle Geschäftsprozesse. Springer, Heidelberg, 1997.

17. W. van der Aalst and K. van Hee. Workflow Management: Models, Methods, and
Systems. Cooperative Information Systems. The MIT Press, 2002.

18. M. Weber and E. Kindler. The Petri Net Markup Language, pages 124–144. LNCS
2472. Springer, 2003.

19. Workflow Management Coalition: Terminology & Glossary. Technical Report
WFMC-TC-1011, The Workflow Management Coalition (WfMC), February 1999.

20. Workflow management facility specification, v1.2. Tech. report, OMG, April 2000.
21. Workflow Process Definition Interface – XML Process Definition Language. Tech-

nical Report WFMC-TC-1025, WfMC, October 2002. Version 1.0.

On the Syntax of Reference Model Configuration –
Transforming the C-EPC into Lawful EPC Models1

Jan Recker1), Michael Rosemann1), Wil van der Aalst2), Jan Mendling3)

1) Faculty of Information Technology
Queensland University of Technology

126 Margaret Street, Brisbane QLD 4000, Australia
{j.recker, m.rosemann}@qut.edu.au

2) Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

w.m.p.v.d.aalst@tm.tue.nl

3) Department of Information Systems and New Media
Vienna University of Economics and Business Administration

A-1180 Vienna, Austria
jan.mendling@wu-wien.ac.at

Abstract. For Enterprise Systems (ES) to provide support for the business op-
erations of enterprises, they need to be configured to fit organizational require-
ments. ES reference models aim at supporting this task but, up to now, fail in
providing adequate conceptual support due to missing configurability of the
models themselves. This paper extends the work on a configurable reference
modeling notation. In previous research we developed an adequate conceptual
notation for configurable reference models. This paper considers a syntactic
perspective of reference model configuration. We discuss the lawful environ-
ments of configurable nodes and report about syntactic and semantic implica-
tions of model configuration in these environments. We then apply these find-
ings in the design of a XML-based interchange format for reference model con-
figuration and discuss its applicability for the conceptual design of tool support
for the configuration of reference process models, which will facilitate and aid
the verification of the syntactical correctness of configured reference process
models that may then be mapped to executable process specifications.

Keywords. Process configuration, reference modeling, Enterprise Systems

1 Introduction – Reference Models and Enterprise Systems

Many organizations suffer problems from badly implemented Enterprise Systems
(ES) [1]. Both academia and industry state that these problems result from a mis-
alignment gap between business and IT, which, once closed, would lead to signifi-

1 The research on the C-EPC is financially supported by SAP Research.

cantly improved business performance [2]. The notion of (mis-) alignment primarily
embraces the process dimension, i.e. the alignment of IT functionality to the actual
business processes of an organization. In many cases, it is observed that the system
hampers the normal way of handling processes instead of supporting it.

This is even more surprising given the fact that business process orientation as a
concept has been a major topic in both academia and practice at least since the 1990’s
[3, 4]. Alongside this trend, the IS community has experienced the proliferation of an
enormous number of process modeling methods, including the Event-Driven Process
Chains (EPC) [5], which itself is used within the Enterprise System SAP.

The term Enterprise Systems represents integrated information systems that aim at
holistically supporting the operational processes of organizations. Though ES pack-
ages are distributed as commercial off-the-shelf (COTS) software, their implementa-
tion often results in tremendous configuration efforts. Given the fact that the align-
ment of “generic” ES solutions to “specific” organization needs denotes a highly
complex task, it was found that a model-driven solution would provide a more intui-
tive approach towards configuring, adapting, and customizing ES software to cus-
tomer demands. Such a model-driven approach naturally would take on existing ES
reference models, which have already been developed by ES vendors in order to
improve the understandability of their systems.

In the context of Enterprise Systems, such application reference models, describ-
ing the structure and functionality of software solutions on different levels of concep-
tual abstraction [6], are of particular interest. Due to their prescriptive nature, i.e.
application reference models usually depict the complete functionality of the system
[7], they are, however, only of limited use to the ES configuration process, mainly
due to a lack of conceptual support in the form of a configurable modeling language
underlying the reference models.

Addressing this issue, we have been developing a new reference modeling ap-
proach which considers the configurable nature of an Enterprise System. The repre-
sentation language of this approach is called a Configurable EPC (C-EPC). While
previous research efforts have been focused on the meta model and the notation of C-
EPCs [8], this paper discusses syntactical problems of C-EPCs in the light of refer-
ence model configuration. The scope of our paper is the translation of (configured)
C-EPC models into lawful (regular) EPCs. We will show that the application of C-
EPC in the process of ES reference model configuration leads to syntactic problems
and we will outline an approach how to handle these problems when translating C-
EPC models into lawful process models. More specifically, the aim of our paper is to
outline a XML schema-based approach using the EPC Markup Language (EPML) [9]
for the task of syntactical validation of reference process model configuration.

The remainder of our paper is structured as follows: Section 2 presents issues and
shortcomings of the EPC notation in the light of reference model configurability and
introduces the notion of a configurable reference process modeling technique. Also, it
briefly reports on related work in the field of configurative reference modeling. Sec-
tion 3 discusses semantic and syntactic problems that occur when configuring refer-
ence process models. We then present a XML-based specification of C-EPCs on
which the design of tool support for syntax validation and automatic model transla-

tion will be based. We briefly summarize in Section 4 and propose conclusions drawn
from our work.

2 A Configurable Reference Modeling Language

2.1 On syntax and semantics of EPCs

In order to gain an understanding for the C-EPC notation and to raise awareness of
problems we encounter during reference process model translation, we briefly outline
the notion of classical EPC models and discuss some issues related to the informal
semantics and syntax of EPC.

The EPC language was developed at the University of Saarland, Germany, in col-
laboration with SAP AG (see [5]). A simple EPC consists of events as passive states,
functions as active transformations, and logical connectors that connect events and
states through control flow. EPCs have – amongst others – been used for the design
of the reference process models in SAP [7].

As discussed quite intensively in academia, see e.g. [10-12], the definition of EPC
in [5], on which we based our research on the C-EPC language, leads to syntactic and
semantic problems. The syntax of EPCs as deployed in our research context can be
found in [8]. However, this definition does not cover behavioral aspects of EPCs and
thus may contain semantic ambiguities.

For instance, the informal semantics of an OR-join causes confusion as a joining
OR-connector may or may not synchronize incoming process flows [10]. While these
problems have been approached by academic contributions, see e.g. [11, 13, 14], in
general the issue of informal semantics of EPCs must at this point be considered an
open issue.

Considering such problems in the light of ES configuration, the informal semantics
of EPC lead to severe issues: EPC models, which depict those process scenarios that
are deemed relevant to a particular organization, need to be translated into executable
process specifications, which an Enterprise System can execute at run-time. Or, con-
sider a workflow management system that defines, executes, manages, and controls
the business processes based on these models. In whatever case, it is of paramount
importance to have syntactically correct, i.e. lawful EPC process models as an out-
come of the configuration process that may then be translated.

In our research, however, we did not want to further complicate the semantics of
(configurable) EPCs but decided to express the semantics of C-EPCs in terms of
traditional EPCs. Hence, we seek to validate the behavior of configurable processes
through their translation to regular EPCs. Then, any of the formalization approaches
mentioned in [11, 13, 14] may be used as a semantic foundation, and we may stop the
semantics discussion here. However, later we will need to discuss some semantic
implications when translating Configurable EPCs into lawful process models.

2.2 On Configurable Reference Process Models: The C-EPC Notation

Current reference modeling languages lack configuration support. As an example, the
SAP reference model [7], which is depicted in the EPC notation, covers in the version
4.6 more than 1,000 business processes and inter-organizational business scenarios.
As the main objective of reference models is to streamline the design of particular
models, they are coined by the “Design by Reuse” paradigm. To increase their appli-
cability, such models typically not include merely one proposed alternative for con-
ducting business in a certain domain but a range of often mutually exclusive alterna-
tives. Hence it denotes an ‘upperbound’ of process models that may possibly be im-
plemented in a particular enterprise. As an organization might merely favor one of the
depicted alternatives, they potentially only refer to a subset of ES functionality to be
implemented and accordingly only to a subset of the reference model. Up to today,
however, these types of decision cannot be reflected within the ‘upperbound’ refer-
ence model due to lacking configuration support of the underlying reference model-
ing language. Existing reference modeling techniques do not support the highlighting
and selection of different (process) configuration alternatives. This lack of expres-
siveness obviously denotes a major issue for reference model users.

Fig. 1. A simple C-EPC (before configuration, with selected configuration, and resulting EPC)

Addressing these issues, this section introduces Configurable EPCs (C-EPCs) (see
Fig. 1) as an extension to the popular EPC modeling technique. Focus was spent to
the active parts of process models, i.e. functionality (functions, tasks, transitions, and
the like) and control flow. We have not examined the configurability of events (or
states) as more passive parts of processes since they cannot actively be influenced by
an organization. It is the reaction to events that can be influenced and this reaction is
covered in C-EPCs. The notion of a configurable EPC has been introduced and for-

malized in [8], therefore we only discuss the basic notation here. Fig. 1 shows an
example of a C-EPC model, with the left part showing the configuration alternatives,
the middle part showing one selected configuration alternative, and the right part
showing a lawful resulting EPC model based on that configuration.

In a C-EPC functions and connectors can be configured. Notation-wise, these con-
figurable nodes are denoted by thick circles. Configurable functions may be included
(ON), excluded (OFF), or conditionally skipped (OPT). To be more specific, for
configurable functions, a decision has to be made whether to perform this function in
every process instance during run time, whether to dispose of this function perma-
nently, i.e. it will not be executed in any process instance, or whether to defer this
discussion to run time, i.e. for each process instance it has to be decided whether to
execute the function or not.

Configurable connectors may be restricted. A configurable ORC-connector may be
mapped to a regular OR-, XOR-, or AND-connector. Also, the OR-connector may be
disposed of, resulting in a normal process sequence SEQi A configurable AND-
connector may only be mapped to a regular AND-connector with a decision being
made as to how many of n available process sequences are to be executed in synchro-
nization. A configurable XOR-connector may be mapped to a regular XOR-connector
with a decision being made as to how many of n available mutually exclusive process
paths are to be provided for execution, or the XOR-connector may be disposed of,
resulting in a single process sequence SEQi.

In order to depict inter-dependencies between configurable EPC nodes, the notion
of configuration requirements has been introduced. Inter-related configuration nodes
may be limited by these requirements (constraints, expressed denoted by logical ex-
pressions). Consider the example given in Fig. 1. If the configurable function A is
excluded, the inter-related configurable connector ORC must be mapped to a regular
AND-connector.

Moreover, in order to provide input in terms of recommendations and proposed
best practices, configuration guidelines may be depicted to guide the configuration
process semantically. Consider again the example given in Fig. 1. A recommendation
could be that if function D is included, then so should be function E. Summarizing,
requirements and guidelines represent hard (must) respectively soft (should) con-
straints.

Concluding, we introduced a configurable reference modeling notation which po-
tentially facilitates a model-driven selection and modification of process flows and
process activities.

2.3 Related Work

Related work on configurative reference modeling includes the perspectives-based
configurative reference process modeling approach by BECKER et al. [15]. This ap-
proach focuses on adaptation mechanisms and proposes several mechanisms for
automatically transforming a reference model into an individual model. While the
work of BECKER et al. focuses on generic adaptation mechanisms, this research pur-
sues a reference model-driven approach towards ES configuration.

SOFFER et al.’s suggestions on ERP modeling [16] can also be regarded as close to
our proposed ideas. Following the concept of scenario-based requirements engineer-
ing, they evaluate the Object-Process Modeling Methodology in order to determine a
most appropriate ERP system representation language. The so-called argumentation
facet, related to the ability of a modeling language to express optionality-related in-
formation, is just one of many of their criteria. Their work does not comprehensively
analyze requirements related to modeling ERP configurability and focuses on tech-
nique evaluation rather than on the development of a more appropriate technique.

GULLA and BRASETHVIK [17] introduce three process modeling tiers to manage the
complexity of process modeling in comprehensive ERP Systems projects. Their func-
tional tier dimension deals with the functionality of the Enterprise System. However,
they do not study how reference models fit into in this tier.

3 On the Syntax of Reference Model Configuration

3.1 Configuration using the C-EPC modeling language

The task of configuring reference models that have been deemed configurable by
highlighting variation points embraces both a semantic and a syntactic dimension.
While the former is concerned with making business configuration decisions in order
to match organizational strategy and requirements, the latter is concerned with main-
taining syntactical correctness within the configured models to ensure a lawful trans-
lation into executable systems at run time. We will show, that these dimensions are
inter-related during configuration as syntactic considerations of implementing the
models do have semantic, i.e. business consequences and must hence be considered
during semantic configuration.

We have described the semantic dimension of configuration in [18]. Simplistically,
through the use of the C-EPC notation, process scenarios and process alternatives that
are deemed desirable for a particular organization are selected. This is done by
switching configurable nodes within a C-EPC model to a desired setting. Configura-
tion requirements and configuration guidelines restrict respectively aid this task.

The outcome of this phase is a C-EPC model where all configurable nodes have
been switched to a certain setting. What, however, hasn’t been ensured yet, is that
these configured C-EPC models apply to the formal syntax of regular EPC. As an
example, the middle part of Fig. 1 shows a configured version of the C-EPC model
shown in the left part, where the configurable OR-connector has been switched to a
regular XOR-connector and where function A and D have been excluded (shaded
grey).

As can be seen, the resulting process model would be syntactically inconsistent:
Consider function A: Assuming the control flow is reconnected where the excluded
function is missing, two events would follow each other. This is syntactically incor-
rect.

Inadvertently, the step beyond semantic configuration of C-EPC models from a
business perspective is the task of re-establishing syntactical correctness and consis-
tency, i.e. the translation of configurable process model into lawful regular process
specifications (as an example refer to the right part of Fig. 1).

3.2 Translating C-EPCs into EPCs: Syntactical and Semantic Problems

Now, in order to approach the syntactic and inherent semantic problems that arise due
to the configuration of C-EPCs, we need to develop a translation approach that maps
a configured C-EPC to a lawful regular EPC. This is a delicate task due to the seman-
tic problems of EPCs themselves, as discussed above. There are in principle several
options to approach this task:

• Refine the EPC specification to arrive at rigorously and unambiguously defined
semantics for EPCs and thus, for C-EPCs.

• Ignore the semantics of EPCs and merely focus on specifying an unambiguous
translation of C-EPCs to EPCs which themselves may then be further discussed.

Here, we opted for the latter alternative: We wanted to extend the work on refer-
ence modeling techniques rather than developing new ones. Due to its popularity for
the design of reference models and referring to the extensive academic work on its
formalization and definition we deemed it better to take EPCs as both starting and
ending point for our design of configurable process models instead of proposing yet
another semantic and synactic definition of EPCs.

Now, looking at the configuration of reference process models, this task can be di-
vided into global and local decisions, with the former being based on the general
model context and which can be made without studying the individual process model.
Local decisions on the other hand require an explicit study of the relevant (parts of)
process models. Our forthcoming discussion is focusing on the local aspects of con-
figuration. We do not deem it necessary to explicitly address global decisions for the
following reasons: First, EPCs and thus C-EPCs can be hierarchically structured by
decomposing single EPCs into more detailed sub-models. Analogously, each
(C-) EPC may be generalized to a simpler EPC on a coarser level of detail. Hence, all
contexts of configurable nodes may eventually be drilled up to the smallest possible
local environment, as will be discussed below. Second, the notion of C-EPCs pro-
vides explicit representation for the depictions of inter-dependencies and inter-
relationships between configurable nodes. Hence, global inter-relationships between
processes depicted in separate process models may be expressed, thereby not needing
an explicit addressing of a global process context. Third, as current practice shows
(consider e.g. the configuration of the SAP system), the process of reference model
configuration starts at a very coarse level of detail with industry sector-spanning
process models (in the SAP context: collaborative business scenarios). At this stage,
configuration refers to deleting dispensable processes from high-level process mod-
els. It can be seen as more of a scoping exercise in a pre-implementation stage.
Hence, global configuration decisions merely are decisions as to the inclusion or
exclusion of processes, the former of which then need to be locally configured.

Concluding, we argue that configured C-EPC models can be transferred into law-
ful EPC models in accordance to laws based on the local syntactic environment of
configurable nodes. We must, for the purpose of this paper, limit some of the discus-
sions to examples. A complete discussion of all local environments for configurable
nodes and the entire resulting process model variants would exceed the length of this
paper and is furthermore deemed unnecessary for making our argument.

Configurable Functions
Firstly, we investigate the local environments of configurable functions. As an EPC
consist of events (E), functions (F), and splitting (S) respectively joining (J) connec-
tors, there are nine different local environments for a configurable function A (see
Fig. 2).

Fig. 2. Local environments for configurable functions

Studying the local environments of configurable functions it becomes obvious that,
once a configurable function A has been switched to a desirable setting, the syntacti-
cal clean-up of the process model is not purely a technical decision. Due to missing
formal semantics of the EPC notation – e.g. the EPC modeling language does not
explicitly differ between triggering and resulting events that pre-/succeed a function –
removals or inclusions of process model elements (such as the disposal of an event
that follows a function) may have semantic and thus, business-related consequences.

Bearing that in mind, syntactic validation may lead to various syntactically lawful yet
semantically different process models.

Consider the following example. Referring to the local environment ‘Event-
Function-Event, EFE’ – the configurable function A is embedded in the context of a
preceding event EP and a succeeding event ES – configuration and syntactic validation
may lead to the process model variants shown in Fig. 3.

Now, as can be seen in Fig. 3, the syntactic handling of switching configurable
functions “on” or “off” are simple, according to the definitions in [8]. Optional func-
tions are trickier.

Fig. 3. Lawful alternatives for configuring a function in the EFE environment

Consider the configuration decision of switching the function A to “optional”. The
resulting process model must cater for a run time decision to either bypass the func-
tion or execute it. Due to the informal EPC semantics, it is not necessarily obvious
whether the succeeding event ES denotes a triggering state for a subsequent business
function or simply a resulting state for A. In the former case, the bypass does not
need to include ES (variant 1). In the latter case, EP needs not to be bypassed (vari-
ant 2). Maybe both states surrounding A may be bypassed, thereby passing a new
state EP/S (variant 3). Another syntactically valid solution is to introduce a ‘dummy’
function “skipA” which just propagates a process folder from EP to ES without any
transformation (variant 4). Or, a new decision function Z and an additional event Ex
are introduced to augment the configuration decision of switching A to “optional”
(variant 5). This case, obviously, requires the inclusion of knowledge external to the
model in order to specify the decision function Z.

Configurable connectors
Considering configurable connectors and referring back to the configuration con-
straints described in Section 2.2, these nodes may appear in any of the local environ-
ments shown in Fig. 4.

Fig. 4. Local environments for configurable connectors

According to the syntax rules of lawful EPC, some local environments are re-
stricted to the AND connector, since both OR- and XOR-connector need to be linked
to a preceding function that allows for the decision which branch to take. With re-
spect to syntactically lawful process variants for these local environments, configur-
able connectors are easier to handle, as shown in Fig. 5.

Fig. 5. Lawful alternatives for configuring an OR-connector in the FSE environment

As can be seen, for each configuration decision there exists exactly one syntactic
lawful process variant. As can easily be shown, for each of the configurable XOR-
and AND-connectors there exists merely one syntactic variant per desired setting as
both configurable nodes may only be restricted in their behavior or mapped to a sin-
gle sequence SEQi. Analogously, as configurable connectors are defined to at most
restrict their behavior, it is obvious that for each configuration in whatever local envi-
ronment there can only exist one corresponding syntactically lawful process variant.

Synopsis
The syntactic alternatives for all other local environments of configurable nodes, as
depicted in Fig. 2 and Fig. 4 are constructed in a similar way. We examined the law-
ful environments of configurable nodes and constructed syntactic alternatives for all

combinations of predecessors and successors. As already mentioned, we cannot dis-
cuss them in detail here.

As can be shown through our examples, the syntactic clean-up of configured refer-
ence process models bears some semantic decisions in itself. Due to the inherent
ambiguity of both syntax and semantics of the EPC modeling technique, syntactical
validation of C-EPC models may lead to several syntactically lawful yet semantically
different process model variants. Since we decided not to modify the EPCs but in-
stead to base our work on the (arguably ambiguous) traditional EPC definition, there
results a need for adequate tool support that facilitates and moreover aids the transla-
tion process from C-EPCs to EPCs. We will thus, in the next section, address this
translation task by presenting a XML-based schema specification of C-EPCs that will
be used to aid the syntax validation and translation of C-EPCs to regular lawful proc-
ess models.

3.3 Towards Tool Support for Reference Model Configuration

Research towards tool support for C-EPCs based on an interchange format was moti-
vated by two facts:

• A configuration of a C-EPC should correspond to a concrete EPC [8]. However, as
we discussed in this paper, it is not possible to automate such mapping, hence ade-
quate tool support is needed to facilitate and aid this task.

• EPCs and thus C-EPCs are not executable and thus cannot serve as specifications
for process or workflow execution engines – which would, however, be desirable
especially in the light of Enterprise Systems. In order to facilitate the interchange
of configured reference process models to other process specifications, a standard-
ized interchange format for “cutting-edge” process languages is needed.

Contemplating available options, we deemed a design specification based on a
XML schema the best alternative. In particular, we opted for the EPC Markup Lan-
guage (EPML) [9]. This selection was made for the following reasons: First, the
EPML is able to perform syntax validations of EPCs [19]. Second, the EPML lever-
ages the interchange of EPCs to other process modeling and execution languages
[20], e.g. Petri nets. Third, EPML can be generated from the ARIS Markup Language
(AML) and is also supported by open source modeling solutions [21], e.g.
EPC Tools; hence, tool platforms are available for implementing reference model
configuration tool support based on C-EPCs.

Now, due to space limitations we cannot give a thorough introduction to the EPML
definition, which can be found at http://wi.wu-wien.ac.at/~mendling/EPML/. Instead,
we merely introduce the main extensions to the EPML to cater for the C-EPC specifi-
cations (see Table 1).

As can be seen from Table 1, for each configurable node we introduce an EPML
representation element. A configurable function is defined as an extension to a regu-
lar EPC function in EPML, merely annotating a new attribute element configu-
ration, which is optional and may take a value of on, off, or opt. Configurable
connectors are likewise specified as extensions to regular connectors, with the option
of setting the attribute element configuration to a concrete value – in accor-

dance to the definitions outlined in Section 2.2. Specifically, if for a configurable
connector the value seq is selected, an attribute goto specifies the ID of an EPC
node of the process model sequence selected. Configuration requirements and guide-
lines, respectively, are defined as logical expressions involving a number of configur-
able nodes. In EPML they are thus defined as part of the root epc element, with a list
containing the IDs of involved elements (idRefs). The logical expressions them-
selves can be modeled via XPath expressions, e.g.
<configurationRequirement idRefs="2 4">
 <if xpath="function[@id=’2’]//configuration[@value=’off’]">
 <then xpath="function[@id=’4’]/ /configuration[@value=’on’]">
</configurationRequirement>

Note that this specification allows for a representation of C-EPCs both before con-
figuration (such as the one depicted in the left part of Fig. 1), and after configuration
(such as the one depicted in the middle part of Fig. 1). Also, as our definitions are
mere extensions to the traditional EPC specification in EPML, one the one hand tradi-
tional EPC models represented in EPML can also be validated against the extended
EPML schema, and on the other hand EPML tools that are not aware of configuration
aspects are still able to process C-EPCs as traditional EPCs by simply ignoring the
additional configuration element information.

Table 1. EPML representations for C-EPC notation

C-EPC
specification
element

EPML representation

<xs:element name="configurableFunction">
 <xs:complexType>
 <xs:choice minOccurs="0">
 <xs:element name="configuration">
 <xs:complexType>
 <xs:attribute name="value" use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="on"/>
 <xs:enumeration value="off"/>
 <xs:enumeration value="opt"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:complexType>
</xs:element>

<xs:element name="configurableConnector" type="typeCOR">
 <xs:complexType>
 <xs:choice minOccurs="0">
 <xs:element name="configuration">
 <xs:complexType>
 <xs:attribute name="value" use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="or"/>
 <xs:enumeration value="and"/>
 <xs:enumeration value="xor"/>
 <xs:enumeration value="seq"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="goto" type="xs:integer"/>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:complexType>
</xs:element>

<xs:element name="configurableConnector" type="typeCXOR">
 <xs:complexType>
 <xs:choice minOccurs="0">
 <xs:element name="configuration">
 <xs:complexType>
 <xs:attribute name="value" use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="xor"/>
 <xs:enumeration value="seq"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="goto" type="xs:integer"/>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:complexType>
</xs:element>

<xs:element name="configurableConnector" type="typeCAnd">
 <xs:complexType>
 <xs:choice minOccurs="0">
 <xs:element name="configuration">
 <xs:complexType>
 <xs:attribute name="value" default="and"
 use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="and"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:complexType>
</xs:element>

<xs:element name="configurationRequirement"
 <xs:complexType>
 <xs:sequence>
 <xs:element name="if">
 <xs:complexType>
 <xs:attribute name="xpath" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="then" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="xpath" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="idRefs">
 <xs:simpleType>
 <xs:list itemType="xs:integer"/>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
</xs:element>

<xs:element name="configurationGuideline">
 <xs:complexType>
 </xs:sequence>
 <xs:element name="if">
 <xs:complexType>
 <xs:attribute name="xpath" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="then" maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="xpath" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="idRefs">
 <xs:simpleType>
 <xs:list itemType="xs:integer"/>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
</xs:element>

Now, based on these EPML specifications, reference model configuration tool sup-
port may be designed that facilitates the model-driven configuration and translation of
C-EPCs. In particular, the EPML specifications will be used to (a) leverage the mod-
eling of C-EPCs via existing modeling tools, such as ARIS or the open source plat-
form EPC Tools, (b) design a XML schema-based tool for checking the validity of
configurations, (c) implement an EPML-based program for translating C-EPCs in
EPCs, and (d) facilitate the interchange of configured (C-) EPCs to other process
specification languages.

4 Summary & Conclusions

This paper reported on syntactical and semantic complications of reference model
configuration, using the example of translating C-EPC models to lawful regular EPC
models. We argued that configuration occurs before the background of the local envi-
ronment of the configurable nodes in C-EPC models and showed that both a syntacti-
cal and semantic perspective must be considered when mapping configurable nodes

to desired regular EPC nodes. Resulting from these elaborations, we presented our
initial conceptual work towards adequate tool support for the configuration of process
models. Based on our research, adequate tool support can be designed that embeds
our recommendations and thereby guides users when configuring Enterprise Systems
based on configurable reference process models.

Our research has a few limitations. First, our conceptual approach needs to be em-
pirically validated to prove its feasibility and applicability. We already conducted an
initial laboratory experiment with postgraduate IT students at an Australian university
on the perceived usefulness and perceived ease of use of C-EPCs in comparison to
EPCs resulting in the finding that C-EPCs are in fact perceived as more useful and
easier to use for the task of reference model configuration. 2 However, we still need to
empirically test our work with real business practitioners. This task is currently un-
derway. Second, we focused on the EPC notation and neglected the question of its
executability. However, we selected the EPML interchange format as a basis for our
conceptual design of tool support for good reason, as it denotes an interchange format
for various process modeling languages and may hence facilitate such translation
from (C-) EPC models to executable process specifications.

Acknowledgements

We appreciate the continuous fruitful contributions of Alexander Dreiling and Wasim
Sadiq to the C-EPC research project and of Markus Nüttgens to the EPML initiative.

References

1. Scott, J.E., Vessey, I.: Managing risks in enterprise systems implementations. Communica-
tions of the ACM 45 (2002) 74-81

2. Sabherwal, R., Chan, Y.E.: Alignment Between Business and IS Strategies: A Study of
Prospectors, Analyzers, and Defenders. Information Systems Research 12 (2001) 11-33

3. Davenport, T.H., Short, J.E.: The New Industrial Engineering: Information Technology and
Business Process Redesign. Sloan Management Review 31 (1990) 11-27

4. Hammer, M., Champy, J.: Reengineering the Corporation: A Manifesto for Business Revo-
lution. Harpercollins, New York (1993)

5. Keller, G., Nüttgens, M., Scheer, A.-W.: Semantische Prozessmodellierung auf der Grund-
lage "Ereignisgesteuerter Prozessketten (EPK)". Arbeitsberichte des Instituts für
Wirtschaftsinformatik 89. Institut für Wirtschaftsinformatik der Universität Saarbrücken,
Saarbrücken (1992)

6. Rosemann, M.: Using reference models within the enterprise resource planning lifecycle.
Australian Accounting Review 10 (2000) 19-30

7. Curran, T., Keller, G., Ladd, A.: SAP R/3 Business Blueprint: Understanding the Business
Process Reference Model. Prentice Hall PTR, Upper Saddle River (1997)

8. Rosemann, M., van der Aalst, W.: A Configurable Reference Modelling Language. Infor-
mation Systems to appear (2005)

2 The design and outcomes of the laboratory experiment are available from the authors on

request.

9. Mendling, J., Nüttgens, M.: EPC Markup Language (EPML) - An XML-Based Interchange
Format for Event-Driven Process Chains (EPC). Technical Report JM-2005-03-10. Vienna
University of Economics and Business Administration, Vienna (2005)

10. van der Aalst, W., Desel, J., Kindler, E.: On the semantics of EPCs: A vicious circle. In:
Nüttgens, M., Rump, F.J. (ed.): Proceedings of the GI-Workshop und Arbeitskreistreffen
EPK 2002 - Geschäftsprozessmanagement mit Ereignisgesteuerten Prozessketten. GI-
Arbeitskreis Geschäftsprozessmanagement mit Ereignisgesteuerten Prozessketten, Trier
(2002) 71-79

11. van der Aalst, W.: Formalization and Verification of Event-driven Process Chains. Infor-
mation and Software Technology 41 (1999) 639-650

12. Nüttgens, M., Rump, F.J.: Syntax und Semantik Ereignisgesteuerter Prozessketten (EPK).
In: Desel, J., Weske, M. (ed.): Proceedings of the GI-Workshop und Fachgruppentreffen
Promise 2002 - Prozessorientierte Methoden und Werkzeuge für die Entwicklung von In-
formationssystemen. Lecture Notes in Informatics, Vol. P-21. Gesellschaft fuer Informatik,
Potsdam (2002) 64-77

13. Langner, P., Schneider, C., Wehler, J.: Petri Net Based Certification of Event-Driven Proc-
ess Chains. In: Desel, J., Silva, M. (ed.): Proceedings of the 19th International Conference
on Application and Theory of Petri Nets. Lecture Notes in Computer Science, Vol. 1420.
Springer, Lisbon (1998) 286-305

14. Dehnert, J., Rittgen, P.: Relaxed Soundness of Business Processes. In: Dittrich, K.R., Gep-
pert, A., Norrie, M.C. (ed.): Proceedings of the 13th International Conference on Ad-
vanced Information Systems Engineering. Lecture Notes In Computer Science, Vol. 2068.
Springer, Interlaken (2001) 151-170

15. Becker, J., Delfmann, P., Dreiling, A., Knackstedt, R., Kuropka, D.: Configurative Process
Modeling - Outlining an Approach to increased Business Process Model Usability. In:
Khosrow-Pour, M. (ed.): Proceedings of the 14th Information Resources Management As-
sociation International Conference. IRM Press, New Orleans (2004) 615-619

16. Soffer, P., Golany, B., Dori, D.: ERP modeling: a comprehensive approach. Information
Systems 28 (2003) 673-690

17. Gulla, J.A., Brasethvik, T.: On the Challenges of Business Modeling in Large-Scale Reen-
gineering Projects. In: Chen, P.P., Embley, D.W., Kouloumdjian, J., Liddle, S.W., Rod-
dick, J.F. (ed.): Proceedings of the 4th International Conference on Requirements Engi-
neering. IEEE, Schaumburg (2000) 17-26

18. Dreiling, A., Rosemann, M., van der Aalst, W., Sadiq, W., Khan, S.: Model-Driven Process
Configuration of Enterprise Systems. In: Sinz, E.J., Ferstl, O.K. (ed.): Proceedings of the
7th International Tagung Wirtschaftsinformatik. Gesellschaft für Informatik, Bamberg
(2005) 691-710

19. Mendling, J., Nüttgens, M.: EPC Syntax Validation with XML Schema Languages. In:
Nüttgens, M., Rump, F.J. (ed.): Proceedings of the 2nd GI Workshop on Event-Driven
Process Chains. GI-Arbeitskreis Geschäftsprozessmanagement mit Ereignisgesteuerten
Prozessketten, Bamberg (2003) 19-30

20. Mendling, J., Nüttgens, M.: Exchanging EPC Business Process Models with EPML. In:
Nüttgens, M., Mendling, J. (ed.): Proceedings of the 1st GI Workshop XML4BPM - XML
Interchange Formats for Business Process Management. GI-Arbeitskreis Geschäftspro-
zessmanagement mit Ereignisgesteuerten Prozessketten, Marburg (2004) 61-79

21. Mendling, J., Nüttgens, M.: Transformation of ARIS Markup Language to EPML. In:
Nüttgens, M., Rump, F.J. (ed.): Proceedings of the 3rd GI Workshop on Event-Driven
Process Chains. GI-Arbeitskreis Geschäftsprozessmanagement mit Ereignisgesteuerten
Prozessketten, Luxembourg (2004) 27-38

Configurable Process Models as a Basis for

Reference Modeling

– position paper –

W.M.P. van der Aalst1,3, A. Dreiling2,3, F. Gottschalk1, M. Rosemann3, and
M.H. Jansen-Vullers1

1 Department of Technology Management, Eindhoven University of Technology, P.O.
Box 513, NL-5600 MB, Eindhoven, The Netherlands.

w.m.p.v.d.aalst@tm.tue.nl
2 European Research Center for Information Systems, University of Münster

Leonardo-Campus 3, 48149 Münster, Germany.
3 Queensland University of Technology, 126 Margaret St, Brisbane, QLD 4000,

Australia.

Abstract. Off-the-shelf packages such as SAP need to be configured
to suit the requirements of an organization. Reference models support
the configuration of these systems. Existing reference models use rather
traditional languages. For example, the SAP reference model uses Event-
driven Process Chains (EPCs). Unfortunately, traditional languages like
EPCs do not capture the configuration-aspects well. Consider for ex-
ample the concept of “choice” in the control-flow perspective. Although
any process modeling language, including EPCs, offers a choice construct
(e.g., the XOR connector in EPCs), a single construct will not be able
to capture the time dimension, scope, and impact of a decision. Some
decisions are taken at run-time for a single case while other decisions
are taken at build-time impacting a whole organization and all current
and future cases. This position paper discusses the need for configurable
process models as a basic building block for reference modeling. The focus
is on the control-flow perspective.

1 Introduction

The main objective of reference models is to streamline the design of partic-
ular models by providing a generic solution [19]. The application of reference
models is motivated by the “Design by Reuse” paradigm. Reference models ac-
celerate the modeling and configuration process by providing a repository of
potentially relevant models. These models are ideally “plug and play” but often
require some customization/configuration to be adjusted to individual require-
ments [7]. A configurable process model provides rules defining how a reference
model can be adapted. Such a generating adaptation must be distinguished from
non-generating adaptations as, e.g., aggregation, specialization or instantiation
[5]. Unfortunately, the languages used for reference modeling [4, 8, 18] provide lit-
tle or no support for configuration. The goal of this position paper is to discuss
the need for configurable process models.

One of the most comprehensive models is the SAP reference model [8]. Its
data model includes more than 4000 entity types and the reference process mod-
els cover more than 1000 business processes and inter-organizational business
scenarios [19]. Most of the other dominant ERP vendors have similar or alter-
native approaches towards reference models. Foundational conceptual work for
the SAP reference model has been conducted by SAP AG and the IDS Scheer
AG in a collaborative research project in the years 1990-1992 [13]. The outcome
of this project was the process modeling language Event-Driven Process Chains
(EPCs) [13, 14], which has been used for the design of the reference process mod-
els in SAP. EPCs also became the core modeling language in the Architecture
of Integrated Information Systems (ARIS) [21, 22]. It is now one of the most
popular reference modeling languages and has also been used for the design of
many SAP-independent reference models (e.g., the ARIS-based reference model
for Siebel CRM or industry models for banking, retail, insurance, telecommu-
nication, etc.). Despite its success, the basic EPC model offers little support for

process configuration. It contains (X)OR connectors but it is unclear whether the
corresponding decisions need to be taken at run-time (e.g., based on the stock-
level), at build-time (e.g., based on the size of the organization using SAP), or
somewhere in-between (e.g., based on the period of the year or resource avail-
ability). Therefore, we developed the so-called Configurable EPCs (C-EPCs) [19,
9], a generic-monolithic approach for constructing re-usable models [10]. Indeed
C-EPCs are extending the configuration opportunities of build-time operators
[23, 20, 17]. However, they only provide a partial solution as they are only a rep-
resentation variation, based on a specific language (EPCs), allowing the user
to select or hide elements [5, 6]. In this position paper we would like to trig-
ger a discussion on requirements for configurable process models in a broader
perspective.

The remainder of the paper is organized as follows. First, we elaborate on the
concept of “choice” which is essential for configurable process models. Second,
we approach the problem from a more theoretical viewpoint, i.e., we depict what
the essence of configuration is. Finally, we briefly discuss Configurable EPCs as
a first step towards such configurable models.

2 Configuration: It is all about making choices

This paper focuses on configurable process models, i.e., we restrict ourselves to
the control-flow perspective [12]. There are many languages to model processes
ranging from formal (e.g., Petri nets and process algebras such as Pi calculus)
to informal (flow charts, activity diagrams, EPCs, etc.). Each of these languages
provides some notion of choice (e.g., two transitions sharing a single input place
in a Petri net or an (X)OR-split connector in an EPC). Typically, it is not
possible to describe the nature of such a choice. At best one can either specify
a Boolean condition based on some data element (data-based decision) or one
can specify events that have to occur for triggering paths (event-based decision)
[16]. The usual interpretation is that a choice is made at run-time, based on such

a Boolean condition or based on occurring events. In the context of reference

models, this interpretation is too narrow.

The scope of a decision can vary. For example, if a hospital uses a rule like
“If a patient has high blood pressure a day before the planned operation, the
operation will be canceled”, then the scope of each choice (operate or not) is
limited to a single patient. There may also be choices which affect more cases,
e.g., consider the rule “If there is a major disaster in the region, all planned
operations will be canceled.” or also an entire process, e.g., “The admittance
process requires patients to pre-register.”. There may even be choices that affect
all processes in some organizations. The classical process modeling languages,
e.g., the languages used in workflow management systems [2, 12], allow only for
one level of choices. Reference models have to allow for a broader spectrum of
choices. Such choices are called configuration choices and are made at build-time.
Configuration choices also affect choices at run-time. For example, at build-time
one can choose not to use specific functionality offered by the system. Then
no choice needs to be made at run-time anymore. But it may also be possible
to use the functionality conditionally (e.g., depending on the workload). In this
case the choice must be made at run-time. One can view configuration as limiting

choices by making choices. Seen from this viewpoint, process modeling languages
need to distinguish between run-time choices and configuration choices (i.e., at
build-time). Note that the borderline between run-time choices and configuration
choices may be a bit fuzzy as the following examples show.

– Based on the volume of the order, the goods are shipped by truck or mail.
– On Saturday, goods are shipped by truck.
– If stock is below 100 items, only preferred customers are serviced.
– The Dutch branches require a deposit, while this is not needed for branches

in other countries.
– The organization chooses not to allow for pre-shipments.

Each of these choices is at another level. However, the processes in e.g. the SAP
reference model show only one type of choice: the (X)OR-split connector. This
triggered us to develop the so-called C-EPCs.

3 Configuration: A theoretical perspective

As described above a reference model provides a generic solution that needs to be
configured for a specific situation. A generic-monolithic approach for model re-
use should guide the user to a solution fitting to the individual requirements [10].
Therefore the reference model must be able to provide a complete, integrated
set of all possible process configurations. This means the reference model is
the least common multiple of all process variations, which leads to inheritance

of dynamic behavior [1, 3]. A reference model can be seen as a subclass of all
concrete models. A concrete model itself is a superclass of the reference model.
This may create confusion as the term “super” is intuitively connected to the
bigger and at first existing reference model (e.g., in [24] traditional inheritance

was altered to depict the reference model as superclass). However, it corresponds
to the traditional notion of inheritance in which the subclass adds things to
the superclass (e.g., additional methods or attributes). So configuration can be
described as the reverse of inheritance. This allows us to use some of the ideas
described in [1, 3], in particular we use the idea of hiding and blocking.

(a) (b) (c)

Fig. 1. Three labeled transition systems: (a) the initial model (e.g., the reference
model), (b) a particular configuration hiding and blocking specific edges/labels, and
(c) the resulting model.

Any process model having formal semantics can be mapped onto a labeled
transition system. The nodes in a labeled transition system represent states, the
directed edges represent transitions, and each transition has a label denoting
some event, action or activity. Traditional choices in the process model, cor-
respond to nodes in the labeled transition system with multiple output arcs.
Consider Figure 1(a) showing a labeled transition system. In the initial state
(the top node, edges go from top to bottom) there is a choice between a and b.
If a is selected, the next step is c and then there is a choice between d and e,
etc. If we consider Figure 1(a) to be a reference model, a configuration of this
model should select the desired parts. This can be done by blocking and hiding
edges or labels. In Figure 1(b) one edge is blocked and three edges are hidden.
Hiding and blocking should be interpreted as in [1, 3], i.e., hiding corresponds
to abstraction and blocking corresponds to encapsulation. If an edge is blocked,
it cannot be taken anymore. By hiding an edge the path is still possible but
the associated label is no longer relevant, i.e., it is renamed to a silent step τ .
One can think of the latter as simply skipping the edge. Figure 1(c) shows the
resulting model after blocking and hiding the edges indicated in Figure 1(b).

A configurable process model should allow for the specification of which
edges/labels can be blocked and hidden/skipped. An interesting question is
whether it should be possible to defer this decision to run-time. In the latter
case, there would be two more options: optional blocking and optional hiding (to
be decided at run-time).

4 Configuration: An example of a language

To conclude this position paper we introduce Configurable EPCs (C-EPCs) as an
example for a configurable process modeling language. C-EPCs are an extension
of the classical EPCs [13]. A classical EPC consists of functions (i.e., the activi-
ties), events and connectors. Functions follow events and events follow functions.
Moreover, to model splits and joins in a process connectors may be used. There
are three types of connectors: AND, OR and XOR. AND-splits and AND-joins
may be used to model parallel routing. XOR-splits and XOR-joins may be used
to model the selection of specific routes (e.g., an “if then else” construct). OR-
splits and OR-joins may be used to model a mixture of conditional and parallel
routing. (However, the semantics of the OR-join is still debated [14].)

In a C-EPC both functions and connectors may be configurable. Configurable
functions may be included (ON), skipped (OFF) or conditionally skipped (OPT).
Configurable connectors may be restricted at build-time, e.g., a configurable
connector of type OR may be mapped onto an AND connector. Local config-
uration choices like skipping a function may be limited by configuration re-
quirements. For example, if one configurable connector c of type OR is mapped
onto an XOR connector, then another configurable function f needs to be in-
cluded. This configuration requirement may be denoted by the logical expres-
sion; c = OR ⇒ f = ON . In addition to these requirements it is possible to add
guidelines, supporting the configuration process.

Figure 2 shows a C-EPC describing an invoice verification process. The classi-
cal EPC is extended with configurable functions and connectors (indicated using
thick lines). For example function Invoicing Plan Settlement is configurable, i.e.,
it may be included (ON), skipped (OFF) or conditionally skipped (OPT). The
diagram shows also some configurable connectors. In this position paper we do
not further elaborate on C-EPCs. For more information, we refer to [19, 9]. The
important thing to note is that it is possible to extend a language like EPCs with
configurable elements. Moreover, there are two types of choices: (1) configuration
choices made at build-time and (2) “normal” choices made at run-time.

C-EPCs can be seen as a rather naive, but very intuitive, configuration lan-
guage that allows (optionally) blocking and hiding of edges/labels at build-time
for specifying the configuration of the model. Using the theory developed in [1, 3]
and basic notions such as simulation, bisimulation, and branching bisimulation
[11, 15] on the one hand and practical experiences using C-EPCs on the other
hand, we hope to develop more mature configuration languages.

The aim of this position paper is to trigger a discussion on configurable
process models. To do this we argued that configuration is strongly related to

Purchase

order

c reated

Service is

accepted

Goods

rec eipt

pos ted

Invoice

received

V

V

Process

Invoice

XOR

G/R to be

settled

a utoma-

tically

Eva luated

Receipt

Settlement

(ERS)

Invoice

transmitted

for vendor’s
records

Material is

released

Invoice

posted

and blocked

for rele ase

Invoicing

plans

require

settlement

Invoicing

Plan

Settlement

V

Release

Invoice

manua lly

Invoice

rele ased

V

GUIDELINE

ERS = ON, if long term

contract with suppl iers

a nd goods and

condit ions are specified

REQUIREM ENT

IPS = ON

ERS = ON

Consign-

ment/

pipeline

li abili ty is

crea ted

Consign-

ment/

pipe line

liabilit ies

are to be

se ttled

Consign-

ment/

Pipeline

Settlement

V

XOR

V

Consign-

ment/

pipe line

settlement

document

tra nsmitted

XOR

XOR

Invoice

posted

(not blocked

for release)

Release

Invoice

automa-

tically

Fig. 2. A Configurable EPC.

the timing and scope of choices. We also showed an example of a language (C-
EPCs). However, to allow for a more language-independent discussion we also
tried to capture the essence of configuration in terms of (optional) hiding and
blocking of edges or labels.

References

1. W.M.P. van der Aalst and T. Basten. Inheritance of Workflows: An Approach
to Tackling Problems Related to Change. Theoretical Computer Science, 270(1-
2):125–203, 2002.

2. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods,
and Systems. MIT press, Cambridge, MA, 2002.

3. T. Basten and W.M.P. van der Aalst. Inheritance of Behavior. Journal of Logic
and Algebraic Programming, 47(2):47–145, 2001.

4. J. Becker, M. Kugeler, and M. Rosemann, editors. Process Management: A Guide
for the Design of Business Processes. Springer-Verlag, Berlin, 2003.

5. J. Becker, P. Delfmann, R. Knackstedt. Konstruktion von Referenzmodel-
lierungssprachen: Ein Ordnungsrahmen zur Spezifikation von Adaptionsmecha-
nismen für Informationsmodelle. In WIRTSCHAFTSINFORMATIK, 46(2004)4,
pages 251–264.

6. J. Becker, P. Delfmann, A. Dreiling, R. Knackstedt, D. Kuropka. Configurative
Process Modeling – Outlining an Approach to increased Business Process Model
Usability. In Proceedings of the 15th Information Resources Management Associ-
ation International Conference. New Orleans, 2004.

7. P. Bernus. Generalised Enterprise Reference Architecture and Methodology, Ver-
sion 1.6.3. IFIPIFAC Task Force on Architectures for Enterprise Integration, 1999.

8. T. Curran and G. Keller. SAP R/3 Business Blueprint: Understanding the Busi-
ness Process Reference Model. Upper Saddle River, 1997.

9. A. Dreiling, M. Rosemann, W.M.P. van der Aalst, W. Sadiq, and S. Khan. Model-
driven process configuration of enterprise systems. In O.K. Ferstl, E.J. Sinz, S. Eck-
ert, and T. Isselhorst, editors, Wirtschaftsinformatik 2005. eEconomy, eGovern-
ment, eSociety, pages 687–706, Physica-Verlag, Heidelberg, 2005.

10. P. Fettke and P. Loos. Methoden zur Wiederverwendung von Referenzmodellen
– Übersicht und Taxonomie. In J. Becker, R. Knackstedt, editors, Referenzmod-
ellierung 2002: Methoden – Modelle – Erfahrungen, Arbeitsberichte des Instituts
für Wirtschaftsinformatik Nr. 90 (in German), pages 9–33. University of Münster,
Münster, 2002.

11. R.J. van Glabbeek and W.P. Weijland. Branching Time and Abstraction in Bisim-
ulation Semantics. In Journal of the ACM, 43(3):555–600, 1996.

12. S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Architec-
ture, and Implementation. International Thomson Computer Press, London, UK,
1996.

13. G. Keller, M. Nüttgens, and A.W. Scheer. Semantische Processmodellierung auf
der Grundlage Ereignisgesteuerter Processketten (EPK). Veröffentlichungen des
Instituts für Wirtschaftsinformatik, Heft 89 (in German), University of Saarland,
Saarbrücken, 1992.

14. E. Kindler. On the Semantics of EPCs: A Framework for Resolving the Vicious
Circle. In J. Desel, B. Pernici, and M. Weske, editors, International Conference
on Business Process Management (BPM 2004), volume 3080 of Lecture Notes in
Computer Science, pages 82–97. Springer-Verlag, Berlin, 2004.

15. R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, 1980.

16. M. Owen and J. Raj. BPMN and Business Process Management – Introduction to
the New Business Process Modeling Standard, Popkin Software, 2003.

17. M. Rosemann. Komplexitätsmanagement in Prozessmodellen: methodenspezifische
Gestaltungsempfehlungen für die Informationsmodellierung (in German). Gabler,
Wiesbaden, 1996.

18. M. Rosemann. Application Reference Models and Building Blocks for Management
and Control (ERP Systems). In P. Bernus, L. Nemes, and G. Schmidt, editors,
Handbook on Enterprise Architecture, pages 596–616. Springer-Verlag, Berlin, 2003.

19. M. Rosemann and W.M.P. van der Aalst. A Configurable Reference Modelling
Language. In Information Systems (to appear, also available from BPMCenter.org),
2005.

20. M. Rosemann and R. Schütte. Grundsätze ordnungsmäßiger Referenzmodellierung.
In J. Becker, M. Rosemann, R. Schütte, editors, Entwicklungsstand und Perspek-
tiven der Referenzmodellierung, Arbeitsberichte des Instituts für Wirtschaftsinfor-
matik Nr. 52 (in German), pages 16–33. University of Münster, Münster, 1997.

21. A.W. Scheer. Business Process Engineering, Reference Models for Industrial En-
terprises. Springer-Verlag, Berlin, 1994.

22. A.W. Scheer. ARIS: Business Process Modelling. Springer-Verlag, Berlin, 2000.
23. R. Schütte. Grundsätze ordnungsmäßiger Referenzmodellierung – Konstruktion

konfigurations- und anpassungsorientierter Modelle (in German). Gabler, Wies-
baden, 1998.

24. A. Schwegmann. Objektorientierte Referenzmodellierung: theoretische Grundlagen
und praktische Anwendung (in German). Gabler, Wiesbaden, 1999.

	pagex01: 1
	pagex11: 2
	pagex21: 3
	pagex31: 4
	pagex41: 5
	pagex51: 6
	pagex61: 7
	pagex71: 8
	pagex81: 9
	pagex91: 10
	pagex101: 11
	pagex111: 12
	pagex121: 13
	pagex131: 14
	pagex141: 15
	pagex151: 16
	pagex161: 17
	pagex171: 18
	pagex181: 19
	pagex191: 20
	pagex201: 21
	pagex211: 22
	pagex221: 23
	pagex231: 24
	pagex241: 25
	pagex251: 26
	pagex261: 27
	pagex271: 28
	pagex281: 29
	pagex291: 30
	pagex301: 31
	pagex311: 32
	pagex321: 33
	pagex331: 34
	pagex341: 35
	pagex351: 36
	pagex361: 37
	pagex371: 38
	pagex381: 39
	pagex391: 40
	pagex401: 41
	pagex411: 42
	pagex421: 43
	pagex431: 44
	pagex441: 45
	pagex451: 46
	pagex461: 47
	pagex471: 48
	pagex481: 49
	pagex491: 50
	pagex501: 51
	pagex511: 52
	pagex521: 53
	pagex531: 54
	pagex541: 55
	pagex551: 56
	pagex561: 57
	pagex571: 58
	pagex581: 59
	pagex591: 60
	pagex601: 61
	pagex611: 62
	pagex621: 63
	pagex631: 64
	pagex641: 65
	pagex651: 66
	pagex661: 67
	pagex671: 68
	pagex681: 69
	pagex691: 70
	pagex701: 71
	pagex711: 72
	pagex721: 73
	pagex731: 74
	pagex741: 75
	pagex751: 76
	pagex761: 77
	pagex771: 78
	pagex781: 79
	pagex791: 80
	pagex801: 81
	pagex811: 82

