Markus Niittgens, Frank J. Rump (Hrsg.)

EPK 2003

Geschaftsprozessmanagement mit
Ereignisgesteuerten Prozessketten

2. Workshop der Gesellschaft fiir Informatik e.V. (GI)
und Treffen ihres Arbeitkreises ,,Geschaftsprozessmanagement
mit Ereignisgesteuerten Prozessketten (WI-EPK)*

08. Oktober 2003 in Bamberg

Proceedings

Veranstalter

veranstaltet vom GI-Arbeitskreis "Geschéftsprozessmanagement mit Ereignisgesteuerten
Prozessketten (WI-EPK)" der GI-Fachgruppe WI-MobIS (FB-WI) in Kopperation mit
der GI-Fachgruppe EMISA (FB-DBIS) und der GI-Fachgruppe Petrinetze (FB-GInf).

Dr. Markus Niittgens (Sprecher)
Email: markus@nuettgens.de

Prof. Dr. Frank J. Rump (stellv. Sprecher)
Email: rump@informatik-emden.de

EPK 2003 / Geschéftsprozessmanagement mit Ereignisgesteuerten Prozessketten. Hrsg.:
Markus Niittgens, Frank J. Rump. — Bamberg 2003

© Gesellschaft fiir Informatik, Bonn 2003

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in
diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme,
dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als
frei zu betrachten wéren und daher von jedermann benutzt werden diirften.

EPC Syntax Validation with XML Schema Languages

Jan Mendling Markus Niittgens
Universitdt Trier Universitdt des Saarlandes
E-Mail: mendling@web.de E-Mail: markus@nuettgens.de

Abstract: This paper addresses syntactical validation of Event-Driven Process
Chains (EPC), in particular the syntactical validation of consecutive connectors.
Building on the distinction between implicit and explicit element and arc types a
definition of EPC syntax properties is given. Different XML Schema languages are
examined in how far they are able to express this definition. The contribution of
this paper is twofold: it is shown how EPCs can be represented in an XML syntax,
called EPC Markup Language (EPML), and it is demonstrated how Schematron
can be used to implement the EPC syntax definition as an EPML Schema
validator.

1. Introduction

Event Driven Process Chains (EPC) are a popular technique for model business
processes on a conceptual level [KNS92]. In order to leverage the benefits of business
process modeling, process documentations should be reused in workflow applications or
exchanged between different business process modeling tools. This avoids time-
consuming re-input of data, which is less error prone and which grants consistency
between models in different applications. Even for a small number of tools involved, it
becomes efficient to define an intermediary or exchange format.

The approach towards an EPC Markup Language (EPML) [MNO2] follows the guiding
principles of readability, extensibility, tool orientation, and syntactical correctness
[MNO3b]. The first three features mainly address the presence of certain markup
elements. The fourth aspect deals with correctness rules concerning the logical sequence
of different EPC elements.

There have been a lot of the contributions on EPCs focusing on semantics, especially on
the semantics of OR connectors. The translation of EPC process models to Petri Nets
plays an important role in this context. Examples of this research can be found in
Chen/Scheer [CS94], Rodenhagen [Ro97], Langner/Schneider/Wehler [LSW98], van der
Aalst [Aa99], Rittgen [Ri00], and Dehnert [De02]. A major point of discussion is the
“non-locality” of join-connectors [ADKO2]. This paper will present a syntax related work
based on the formal syntax definition of EPCs in [NRO2].

19

Type consistency of consecutive connectors poses a major problem for these definitions.
Fig. 1 illustrated this problem: when there is a chain of consecutive connectors, the
syntactical correctness of them depends on the types of transitive non-connector
ancestors and descendants. The connectors in the example are both correct because their
transitive ancestors are all Events and the transitive descendants are all Functions.
Mendling/Niittgens [MNO03a] address this problem by introducing implicit types for
elements and arcs. Such a concept allows validation of type consistency of connector
chains without taking transitive ancestors and descendants into consideration. Section
two will present a respective definition of flat EPCs including EPC syntax rules that
allow one to determine type consistency by checking only direct ancestors and
descendants. Properties of hierarchical EPCs can be found in [NR02]. Section three will
examine in how far different XML Schema Languages are capable to express these flat
EPC syntax rules. Finally, we will show how Schematron, a rule-based XML Schema
language, can be used to perform EPC syntax checks for process models expressed in
EPC Markup Language (EPML), an XML syntax for EPCs.

I \ / i 7
i A1 Y /
{ Event1) { Event2) (Event3
\ fo { W
\\ ’,.’ \\ / \
i
§ v
-'\\/\ J
e
4 NS \‘\
o)
R
| Function 1 } Function 2

{ Function 3

Fig. 1. Looking through the magnifier illustrates that syntactical correctness of the first
connector cannot be determined by checking only direct ancestors and descendants.

20

2. EPC Syntax Properties and Implicit Types

2.1. Explicit and Implicit Element Types

The distinction of explicit and implicit element types is rooted in two perspectives on
business process modelling, the perspective of the modeller and of verification. The task
of the modeller is to compose a structure from a given set of symbols that is able to
represent concepts of the domain in a pragmatic and abbreviated way [Si197]. This set of
symbols is provided by a business process modelling tool. EPC symbols usually refer to
the original definition of Keller/Niittgens/Scheer [KNS92] distinguishing event type E,
function type F, process interface P, connector AND, connector OR, and connector
XOR. We refer to them as explicit element types.

Implicit element types relate to the perspective of syntactical verification. Each implicit
element type captures a specific constellation in which explicit element types may occur
implying different restrictions on the set of allowed ancestors and descendants, and their
cardinality [MNO3a]. Events E may be Start Events Eg, Inner Event E,; or End Event E.
Process Interfaces P can be used as start and end symbols. Connectors can be either joins
or splits. When they have (transitive) event ancestors, their (transitive) descendants have
to be functions. When they have (transitive) function ancestors, their (transitive)
descendants have to be events. For OR- and XOR-connectors Event-Function-Splits are
forbidden [KNS92].

2.2. Explicit and Implicit Arc Types

Analogously to the distinction between explicit and implicit element types, implicit arc
types are defined as a partition of the control flow arc (explicit arc type) [Me03]. Implicit
arc types are subsets of the product of implicit element types. Fig. 2 presents which arcs
are allowed from and to implicit element types. The 16x16 matrix shows 100 implicit arc
types which are permitted. The distribution of them in this matrix suggests the distinction
between two different groups of implicit arcs. We will refer to them as Function-Event-
Arcs FEA and Event-Function-Arcs EFA. In order to define these two kinds of arcs, a
grouping of implicit element types into Event Types (from), Function Types (from),
Event Types (to), and Function Types (to) is needed.

Event Types (from) ETgon = Eg U Ejn U ANDgpg U ANDgp; U ORgpy U XORgpy (1)

Function Types (from) FTg, := F U Pg U ANDggpg U ANDggy U ORppg U (2)
ORFEJ) XOR]:ES |\ XORFEJ .

Event Types (tO) ETto =EnUEgU ANDEFS) ANDEFJ) OREF] |\ XOREFJ , (3)

Function Types (to) FT,, := F U Py U ANDggrg U ANDgg; U ORgry U XORgg; - 4)

21

o 2| z| 4| z =| gl z
(above) = = = = = "h',j = = > [
(left) Ad E| = vl = % % % % A3 g % QO‘
FROM |R|R|R|=|&~|~|<| €| €| <00 |0 |X|X|X
Eg — il R s — —
Ene - e - -
Ex
F - | = - |= - | > - | >
Ps - | = - | = - | = - | =
Py
ANDggs — il R s — —
AND gy - - |- |- - —
ANDygs - | = - |—= — 1 - |
AND gy - |- - |- - |- - |-
ORgpy —> - |= [= —> —>
ORpgs - |- - |- - |- - |-
ORgy;y - | > - | = [= - |=
XORggy - il e i - —
XORpzs - | = — 1 - | = - |
XORggy — 1 - |— — 1= — 1=

Fig. 2. Implicit arc types are a subset of the product of implicit element types. The arcs in the grey
cells are Function-Event-Arcs; those arcs in the white cells are Event-Function-Arcs.

We can then define these two different implicit arc type groups as

FEA - (FTfrom X ETto) > (5)

EFA c (ETfrom X FTto) s (6)

In the following, the definition of implicit arc type groups will be used in a redefinition
of EPCs. The advantages of such a definition are presented in section four.

2.3. Syntactical Constraints of Flat EPCs

Before presenting the syntactical properties of flat EPCs we still need some more
definitions. We restrict our discussion to flat EPC properties as presented in [MNO03a],
which are based on the definitions in [NRO2]. Let Eg, Ei, Eg, F, Ps, Pg, ANDggg,
ANDEFJ, ANDFEs, ANDFEJ, OREFJ, ORFEs, ORFEJ, XOREFJ, XORFEs, XORFEJ be sets of
elements of the respective element types. Then a set of vertices V is

V:=EqUE; UEf UF UPgU Pp U ANDgpg U ANDgp; U ANDppg U ANDygg; (7)
|\ OREFJ |\ ORFES |\ ORFEJ) XOREFJ |\ XORFES () XORFEJ

22

with all the elements of the union being mutually disjoint. Referring to the definitions (5)
and (6) aset of arcs A is defined as

A := FEA U EFA. 8)
The precondition set of a vertex v is made up by the set of ancestor arcs written as
—v:={ae Ala=(x,V) AX,vE V}.)
The postcondition set of a vertex v is defined as the set of descending arcs:
vo:={ae Ala=(vy)Avye V}. (10)
A cycle set C1is a set of vertices building a cycle:

C V= {v,v2,V3,..,Va} With = = 5V), v, = —5V;, ..., b= = 5V (11)

Then, a flat EPC Schema EPCy, has the following flat EPC properties:
1. EPCyy is a directed graph.
2. EPCy, is a simple graph forbidding reflexive arcs or multiple arcs between
two vertices.

EPCqy 1s a coherent graph.
EPCy, 1s an antisymmetric graph.
5. Cycles made up only of connectors are forbidden:

VCcV:Cn(EnmUF)#J.
6. The set of Events E = Eq U E, WUEg # .
7. The set of Functions F # &.

AW

Concerning vertices there are the following cardinality constraints:
1. Start vertices: Vv e Egu Pg: »v =0 and [v—| = 1.
End vertices: Vv e Es UPs: [—>v|=1 and v = .
Inner Events: V v € Ey: |[-v| =1 and [v—| = 1.
Functions: Vv e F: |[»v|=1 and [v—| = 1.
SplitSZ YV v € ANDgrs U ANDgps U ORfrs U XORFgg: ‘—)V‘ =1 and ‘V—)| > 1.
Joins: V v € ANDgp; U ANDggy U ORgrp U ORpp; U XORgp; U XORgg;:
|—>v| > 1 and [v—| = 1.

ANl

Concerning vertex types the following type consistency constraints apply:
1. Start Events: Vv e Eg: v— < EFA.
Inner Events: V v € Ene »v € FEA and v— < EFA.
End Events: Vv € Ep: —»v c FEA.
Start ProcessInterface: V v € Pg: v < FEA.
End ProcessInterface: V v € Py: —»v < EFA.
Function: V v € F: -v c EFA and v— < FEA.
Event-Function-Connects: V v € ANDgrs U ANDgr; U ORgrr U XOREgss:
—v € EFA and v € EFA.
8. Function-Event-Connects: V v € ANDgrg U ANDgg; U ORppg U ORpgy U
XORFEsU XORFEﬁ —v e FEA and v— € FEA.

Nk wD

23

In section four EPC syntax checks are discussed. We will refer to the EPC syntactical
constraints as Flat [-7 for flat EPC Schema properties, Card 1-6 for cardinality
constraints, and 7ype /-8 for type consistency constraints. Here, we still need to mention
constraints on arcs. Relating to our definition (1) - (4) of the different arc types, this
seems redundant. But when it comes to model checking, implicit arc type groups will be
a label on the respective arc which does not have to be consistent or correct. In that
context there is a need to check if the types of the referenced vertices match the implicit
arc type. Thus, we add Arc 1-2 to check arc consistency:

1. V(xy)e FEA: xe FTg,, and ye ET,,.

2. V(xy)e EFA: xe ETg,, and ye FT,,.

3. EPC Markup Language (EPML) and XML Schema Languages
3.1. EPML by Example

Fig 3 shows two EPC processes that both conform to the EPC syntax requirements. The
Start Event is followed by a Function “List Requirement”. Via a XOR connector two
Events may occur. The “Design Process” is linked to “Can be fulfilled” by a
ProcessInterface. The second process starts with the same ProcessInterface and the same
Event “Can be fulfilled” follows. Afterwards we present EPML code for these two
processes. It is simplified in that sense that it only describes the control flow, tool-
orientation and extensibility issues are left out.

EPC Symbols RequirementsEngineering DesignProcess
Event From }
Start Requ.iremgnt

Function

10

List
requirements

Can be
fulfilled

—_—

[

Process Interface

o N N
N EATIVA
'\,_/__;' \._>_<_/ '\,_/_/'

Connectors

Control Flow Arc

Fig. 3. Example of two flat EPC processes.

Cannot be Can be
fulfilled fulfilled

. vl
To Design
| Process)

Design ’

Design
finished

24

The code snippet in fig. 4 shows the corresponding representation in EPML according to
[MNO3b]. In the <Definitions> part objects are defined in order to allow their reusability
via multiple references in one or more <EPC> processes. Connectors are excluded from
this. The Defld attribute is set to a number unique in the context of <Definitions>, and
later referenced as DefRef in process objects. The name attribute allows a description of
the object. The <EPC> part is identified by a unique Epcld attribute, a name shall also be
allowed. The explicit type is taken for markup, the implicit type is featured in the type
attribute. <Arc> tags are identified by a unique combination of Fromld and Told
attributes. They also have a type attribute indicating their implicit arc type.

<EPML>

<Definitionss>
<EventDef DefId="1" name="Start"/>
<FunctionDef DefId="2" name="List Requirements"/>
<EventDef DefId="3" name="Cannot be fulfilled"/>
<EventDef DefId="4" name="Can be fulfilled"/>
<ProcessInterfaceDef DefId="5" name="Design Process"/>
<FunctionDef DefId="6" name="Design"/>
<EventDef DefId="7" name="Design finished"/>

</Definitions>

<EPC EpcId="1l" name="Requirements Engineering"s>
<Event DefRef="1" Id="11" type="EventStart"/>
<Function DefRef="2" 1Id="12" type="Function"s>
<Arc FromId="11" TolId="12" type="EventFunctionArc"/>
<XOR Id="13" type="XORFunctionEventSplit"/>
<Arc FromId="12" TolId=13" type="FunctionEventArc"/>
<Event DefRef="3" Id="14" type="EventEnd"/>
<Arc FromId="13" ToId="14" type="FunctionEventArc"/>
<Event DefRef="4" Id="15" type="EventInternal"/>
<Arc FromId="13" ToId="15" type="FunctionEventArc"/>
<ProcessInterface DefRef="5" Id="16" type="ProcessIntEnd">

<ToProcess EpcLinkId="2"/>

</ProcessInterface>
<Arc FromId="15" TolId="16" type="EventFunctionArc"/>

</EPC>

<EPC EpcId="2" name="Design Process">
<ProcessInterface DefRef="5" Id="21" type="ProcessIntStart"/>
<Event DefRef="4" 1Id="22" type="EventInternal"/>
<Arc FromId="21" ToId="22" type="FunctionEventArc"/>
<Function DefRef="6" Id="23" type="Function"/>
<Arc FromId="22" ToId="23" type="EventFunctionArc"/>
<Event DefRef="7" Id="24" type="EventEnd"/>
<Arc FromId="23" ToId="24" type="FunctionEventArc"/>

</EPC>

</EPML>

Fig. 4. Example of an EPML representation of the two flat EPC processes given in Fig. 3.

3.2. XML Schema Languages

In the following we will examine different XML schema languages. They are able to
express the structure given by the example above, but they differ in their ability to
express EPC syntax properties which are presented in section two. XML schema
languages play an important role when it comes to exactly describing a class of XML
documents. Document Type Definition (DTD) [Br00] has been the first schema language
for XML, granting continuity from SGML where DTDs have also been used.

25

But with the spread of XML, new schema languages have been developed. Mainly, these
efforts have been motivated by shortcomings of DTDs: lack of namespace support, non-
XML syntax, and a lack of a mechanism to express constraints [Og00]. We will follow
van der Vlist [V102] to distinguish three major groups: object-oriented XML schema
languages, grammar-based XML schema languages, and rule-based XML schema
languages. W3C XML Schema will be discussed as an object-oriented language, RELAX
NG as a grammar-based approach, and Schematron as a rule-based schema language.

3.3. W3C XML Schema

W3C XML Schema [BMO1], [Be0Ol] is a schema language introduced by the World
Wide Web Consortium to overcome shortcomings of DTDs. A major advantage is the
much higher flexibility in defining uniqueness constraints. The old ID and IDREF data
types of DTDs can still be used, but <xs:unique>, <xs:key>, and <xs:keyref> enable
uniqueness constraints on arbitrary data types, in definable contexts, and for both
attribute and element nodes. Nevertheless, W3C XML Schema has three grave
disadvantages. Firstly, constraints can only be expressed in terms of restrictive content
models or by using the above described uniqueness constructs. Take the four constraint
packages defined in section 2. Flat 1 of EPCs being a directed graph can be handled by
modelling arcs to have a Fromld and a Told. Flat 2 demanding for a simple graph can be
controlled by forbidding multiple arcs between two vertices with a uniqueness constraint,
but reflexive arcs cannot be prohibited by a uniqueness constraint. Concerning Flat 3-5
coherence, antisymmetry, and cycles also cannot be expressed with the help of
uniqueness constraints.

For the objects within <EPC> a <xs:choice maxOccurs="unbounded”> is the appropriate
definition to allow arbitrary sequences of any kind of object. To meet the existence-
constraints of a minimum of one Event and one Function in an EPC of Flat 6-7 there
should be one <Function> and one <Event > defined before that choice. This is still
okay with W3C XML Schema, but we have fixed the place of one mandatory Event and
Function. An idea might be to add another leading choice block similar to the other. But
this is forbidden according to the Unique Particle Attribution Rule, dready a part of
DTDs as nondeterministic content models. This is the second major disadvantage of
W3C XML Schema. Consider the schema validator to find an <Events>. It would not
know whether this element belongs to the choice definition or the element declaration. In
formal languages this is not a problem, but in W3C XML Schema it is forbidden.

In general, the cardinality constraints Card I-6 could be expressed by a uniqueness
constraint as a cardinality of one ancestor or one descendant respectively is demanded.
For example, the FromId of a ProcessInterface-Event-Arc would have to be unique
because there is only one arc from a Processinterface allowed. Unfortunately, this
constraint would have to be declared in the <arc> container fixing it for all arc types.
Taking an XML structure as presented above will not allow one to control cardinality via
W3C XML Schema uniqueness checks.

26

The Type I-8 constraints pose a problem due to the third shortcoming of W3C XML
Schema, the so called Consistent Declaration Rule. The Ids of objects could be
modelled as belonging to a specific simple type, i.e. by defining a prefix using a regular
expression (“Event[0-9]*”). This would cause problems with the type attribute in
<Arc>, because the Consistent Declaration Rule forbids the choice between elements of
the same name and different types. The Ids wouldhave to be of different types which is
not allowed. Finally, Arc 1-4 pose the same problems as Type -§.

3.4. RELAX NG

Let’s now take a look at RELAX NG [CMO1]. This XML schema language is based on
the formal concept of regular tree grammar. Its expressive power goes beyond W3C
XML Schema [MLMO0O0]. It does not have something like a Unique Particle Attribution
Rule, and is therefore able to handle nondeterministic content models. But when it comes
to constraints, RELAX NG depends on external data types. This means that only DTD
classic ID, IDREF and IDREFS can be used. For a readable EPML structure as presented
above, this is a major shortcoming. Take the cardinality constraints Card 1-6. We need to
define the Id’s of the object types as data type ID, Fromld and Told of the arc elements
as IDREF type. This forbids the control of uniqueness on the Fromld or the Told
attribute, because they need to be referenced and therefore have to have the IDREF data
type, which cannot be additionally declared to be a unique ID as well. This shortcoming
impedes the detection of multiple arcs between two vertices via a uniqueness check,
because attributes in arcs need to be of IDREF type. Thus, concerning Flat -5 RELAX
NG shows this disadvantage in contrast to W3C XML Schema. But thanks to its ability
to express nondeterministic content models, we can use the technique described in W3C
XML Schema section to grant the existence of at least one Event and one Function
element. If we consider the type constraints of ancestor and descendant vertices Type -8
and also Arc 1-2, we face the same problems as already with W3C XML Schema. Even
though RELAX NG is more powerful to describe structure than W3C XML Schema, it is
less flexible to check uniqueness, which is a disadvantage in the context of our document
structure. We will now have a look at Schematron belonging to the family of rule-based
schema languages.

3.5. Schematron

Schematron [Je02] follows a different paradigm than W3C XML Schema and RELAX
NG. Instead of declaring permitted structures Schematron checks for structures that are
not permitted. For this purpose Schematron allows assertions to be declared which state
positive properties of an instance document formulated as an XPath [CD99] expression.
This allows a great flexibility due to XPath built-in functions like element count or string
manipulation. A wide range of constraints can be expressed which is mt possible using
W3C XML Schema or RELAX NG.

27

As Flat I is already granted by the structure of the arc elements, we continue with Flat 2
demanding the EPC graph to be simple. Consider the following code which declares a
rule in the context of <Arc> elements:

<sch:rule context="Arc”>
<sch:assert test="./@FromId!=./@Told”>An arc is not reflexive
</sch:assert>

</sch:rule>

This check for reflexivity is easy to implement with Schematron, just like the check for
multiple arcs and coherence. The constraint for cycles demand closure calculation, they
cannot be formulated as XPath expressions. Flat 6-7 concerning the existence of Events
and Functions can easily be asserted with Schematron.

<sch:rule context="EPC”>
<sch:assert test="count(./Event)>1"/>
</sch:rule>

The cardinality constraints Card [-6 are also easy to specify with Schematron, for
example take the Function element:

<sch:rule context="Function”>
<sch:assert test="count(./@Id=../Arc/@FromId)=1"/>
<sch:assert test="count(./@Id=../Arc/@Told)=1"/>
</sch:rule>

The type consistency constraints Type [-8 can also be expressed using XPath. E.g. Type
7 imposes type restrictions for Event-Function-Connects:

<sch:rule context="AND|OR|XOR">
<sch:assert test="
(type='ANDEventFunctionSplit’ or type=’ANDEventFunctiondoin’ or
type='OREventFunctionJoin’ or type=’'XOREventFuntiondoin’)
and @Id[@Id=@FromId[../@type='EventFunctionArc’]]”/>
</sch:rule>

Similar to Type -8 also Arc I-2 can be checked using Schematron.

4. Conclusion on the Usefulness of Implicit Element and Arc Types

Table 3 summarizes the results. Schematron provides the best mechanism to express
syntactical constraints demanded by the formal definition of EPCs. W3C XML Schema
shows some advantages over RELAX NG when it comes to uniqueness assertions. But
both of them do not permit the expression of constraints as it is possible in Schematron.
Only coherence and cycles (Flat 3, Flat 5) cannot be checked even with Schematron,
because the EPC graph has to be traversed for these properties.

The good performance of Schematron is mainly a result of the EPC definition using
implicit element and arc types. Implicit types avoid graph expansion and closure
calculation for type consistency checks of connectors. Therefore, this EPC syntax
definition has proved valuable in conjunction with the definition of an EPC Markup
Language (EPML). It allows a straight forward EPC syntax validation (except Flat 3 and
Flat 5) given an EPML file as input, a Schematron definition of EPML, and a
Schematron schema validator. This represents a major simplification of EPC syntax
validation.

28

W3C XML Schema | RELAX NG Schematron

Flat 1: Directed via structure via structure via structure
Flat 2: Simple partly via uniqueness | no via rule
Flat 3: Coherent no no no

Flat 4: Antisymmetric no no via rule
Flat 5: Cycles no no no

Flat 6: 4 Event partly via structure via structure via rule
Flat 7: 3 Function partly via structure via structure via rule
Card 1: Start no no via rule
Card 2: End no no via rule
Card 3: Int. Event no no via rule
Card 4: Functions no no via rule
Card 5: Splits no no via rule
Card 6: Joins no no via rule
Type 1: Start Event no no via rule
Type 2: Int. Event no no via rule
Type 3: End Event no no via rule
Type 4: Start Proc.-1. no no via rule
Type 5: End Proc.-L no no via rule
Type 6: Function no no via rule
Type 7: EF-connects no no via rule
Type 8: FE-connects no no via rule
Arc 1: FEA no no via rule
Arc 2: EFA no no via rule

Table 1. The summary of the findings: XML schema hnguages and their ability to express the
constraints necessary to decide syntactical correctness of EPCs represented in EPML.

References

[Aa99]

v.d. Aalst, W.M.P.: Formalization and Verification of Event-driven Process Chains, in:
Information and Software Technology 41(1999)10, pp. 639-650.

[ADKO02]v.d. Aalst, W.M.P.; Desel, J.; Kindler, E.: On the semantics of EPCs: A vicious circle,

[BeO1]
[BMO1]
[Br00]

[CD99]

in: Nittgens, M.; Rump, FJ. (eds.): Geschiftsprozessmanagement mit
Ereignisgesteuerten Prozessketten - EPK 2002, Proceedings of the GI-Workshop EPK
2002, Trier, 2002, pp. 71-79

Beech, D.; Lawrence, S.; Moloney, M.; Mendelsohn, N.; Thompson, H.S. (eds.): XML
Schema Part 1: Structures. World Wide Web Consortium, USA, 2001.

Biron, P.V.; Malhotra, A. (eds.): XML Schema Part 2: Datatypes. World Wide Web
Consortium, USA, 2001.

Bray, T. et al. (eds.): Extensible Markup Language (XML) 1.0 (Second Edition). World
Wide Web Consortium, USA, 2000.

Clark, J.; DeRose, S.: XML Path Language (XPath) Version 1.0, World Wide Web
Consortium, Boston, USA, 1999.

29

[CMO1] Clark, J.; Murata, M.: RELAX NG Specification, 3 December 2001. URL:
http://www.relaxng.org/spec-20011203.html.

[CS94] Chen, R.; Scheer, A.-W.: Modellierung von Prozessketten mittels Petri-Netz-Theorie, in:
Scheer, A.-W. (ed.): Verdffentlichungen des Instituts fiir Wirtschaftsinformatik, Heft
107, Saarbriicken 1994,

[De02] Dehnert, J.: Making EPC's fit for Workflow Management, in: Niittgens, M.; Rump, F.J.
(eds.): Geschiftsprozessmanagement mit Ereignisgesteuerten Prozessketten - EPK 2002,
Proceedings of the GI-Workshop EPK 2002, Trier, 2002, pp. 51-69.

[Je02] Jelliffe, R.: The Schematron Assertion Language 1.5, 2002-10-01. URL:
http://www.ascc.net/xml/resource/schematron/Schematron2000.html.

[KNS92] Keller, G.; Niittgens, M.; Scheer, A.-W.: Semantische ProzeBmodellierung auf der
Grundlage ,Ereignisgesteuerter ProzeBketten (EPK)“. In: Scheer, A.-W. (ed.):
Veroffentlichungen des Instituts fiir Wirtschaftsinformatik, Heft 89, Saarbriicken, 1992.

[LSW98]Langner, P.; Schneider, C.; Wehler, J.: Petri Net Based Certification of Event driven
Process Chains, in: Desel, J.; Silva, M. (eds.): Application and Theory of Petri Nets
1998, LNCS Vol. 1420, Springer, Berlin et. al. 1998, pp. 286 305.

[Me03] Mendling, J.: Event-Driven-Process-Chain-Markup-Language (EPML): Anforderungen,
Konzeption und Anwendung eines XML-Schemas fiir Ereignisgesteuerte Prozessketten
(EPK), in: Hopfner, H.; Saake, G. (eds.): Proceedings of the Student Program of the 10th
Conference “Database Systems for Business, Technology and Web”, GI Section
Databases and Information Systems, Leipzig, 25.02.2003, Madgeburg, 2003, pp. 48-50.

[MLMOO]Murata, M.; Lee, D.; Mani, M.: Taxonomy of XML Schema Languages using Formal
Language Theory. In: Extreme Markup Languages, Montreal 2001. URL:
http://www.cobase.cs.ucla.edu/tech-docs/dongwon/mura0619.pdf.

[MNO2] Mendling, J.; Niittgens, N.: Event-Driven-Process-Chain-Markup-Language (EPML):
Anforderungen zur Definition eines XML-Schemas fiir Ereignisgesteuerte Prozessketten
(EPK), in: Nittgens, M.; Rump, F.J. (eds.): Geschiftsprozessmanagement mit
Ereignisgesteuerten Prozessketten - EPK 2002, Proceedings of the GI-Workshop EPK
2002, Trier, 2002, pp. 87-93.

[MNO3a] Mendling, J.; Niittgens, M.: EPC Modelling Based on Implicit Arc Types. In:
Godlevsky, M.; Liddle, S.W.; Mayr, H.C. (eds.): Information Systems Technology and
its Applications, International Conference ISTA'2003, June 19-21, 2003, Kharkiv,
Ukraine, Proceedings. LNI 30, pp. 131-142.

[MNO3b]Mendling, J.; Niittgens, M.: XML-basierte Geschéftsprozessmodellierung. In: Uhr, W.,
Esswein, W.; Schoop, E. (eds): Wirtschaftsinformatik 2003 / Band II, Heidelberg, 2003,
pp. 161 -180.

[NRO2] Niittgens, M.; Rump, F.: Syntax und Semantik Ereignisgesteuerter Prozessketten (EPK),
in: Prozessorientierte Methoden und Werkzeuge fir die Entwicklung von
Informationssystemen (Promise’2002), Hasso-Plattner-Institut fiir
Softwaresystemtechnik an der Universitdt Potsdam, 9.-11. Oktober 2002, Potsdam 2002.

[Og00] Ogbuyji, C.: Validating XML with Schematron, O’Reilly XML.com, Sebastopol et. al.
2000. URL: http://www.xml.com/pub/a/2000/11/22/schematron.html.

[Ri00] Rittgen, P.: Paving the Road to Business Process Automation, European Conference on
Information Systems (ECIS) 2000, Vienna, Austria, July 3- 5, 2000, pp. 313-319.

[Ro97] Rodenhagen, J.: Darstellung ereignisgesteuerter ProzeBketten (EPK) mit Hilfe von
Petrinetzen, Diplomarbeit Universitit Hamburg Fachbereich Informatik (Prof. Valk),
Hamburg 1997.

[Sc00] Scheer, A.-W.: ARIS —Business Process Modeling, 3rd edition, Berlin et. al. 2000.

[St73] Sinz, E.: Modell. In: Mertens, P. et al. (eds.): Lexikon der Wirtschaftsinformatik, Berlin
etal., 1997, S. 270.

[VI02] wvan der Vlist, E.: XML Schema, O’Reilly, Sebastopol et. al. 2002.

30

