

 3

 4

 5

 6

On the semantics of EPCs:
Efficient calculation and simulation

Nicolas Cuntz, Ekkart Kindler
Computer Science Department, University of Paderborn, Germany

cuntz|kindler@upb.de

Abstract: One of the most debatable features of Event driven Process Chains (EPCs)
is their non-local semantics, which results in some difficulties when defining a formal
semantics for EPCs. Recently, we have overcome these problems by using techniques
from fixed-point theory for the definition of the semantics for an EPC, which consists
of a pair of related transition relations for each EPC.

The fixed-point characterization of the semantics for EPCs, however, provides a
mathematical characterization of the semantics of EPCs only. For simulating an EPC
based on this semantics, we need an efficient way for calculating the corresponding
pair of transition relations. A naive implementation of the underlying fixed-point ap-
proximation for calculating the transition relations, however, results in a practically
useless algorithm.

In this paper, we show how to calculate the transition relations of EPCs in a
more efficient way by employing different techniques and tricks from symbolic model
checking for the calculation of the pair of transition relations. In addition, we anal-
ysed all kinds of simplifications of EPCs to make the calculation of the semantics
more efficient, but it turned out that most of these techniques are ineffective. Still, the
algorithms are fast enough for simulating practical size EPCs.

In order to demonstrate the efficiency of our algorithms and data structures, we
have started an open source tool for EPCs, which we call EPC Tools. Right now, EPC
Tools can simulate EPCs and can check some simple properties. But, EPC Tools is
open for adding more sophisticated analysis and verification algorithms, and could
provide a good starting point for an open source tool for the EPC community.

1 Introduction

Event driven Process Chains (EPCs) have been introduced in the early 90ties for modelling
business processes [KNS92]. Initially, EPCs have been used informally only, without a
fixed formal semantics. For easing the modelling of business processes with EPCs, the
informal semantics proposed for the OR-join and the XOR-join connectors of EPCs is
non-local. This non-local semantics, however, results in severe problems when it comes
to a formalization of the semantics of EPCs and, recurrently, resulted in a debate on the
semantics of EPCs [LSW98, Ri00]. It turned out that these problems are inherent to the
informal non-local semantics of EPCs. In [vdADK02], we pin-pointed these arguments,
which render a formal semantics that exactly captures the non-local semantics of an EPC
in terms of a single transition relation impossible. But, we have shown that we can define

a semantics for an EPC that consists of a pair of two correlated transition relations [Ki04b]
by using fixed-point theory.

Due to their non-local semantics EPCs cannot be simply simulated by looking at the cur-
rent state; rather it requires calculating the transition relations beforehand. In principle,
the two transition relations defined as the semantics of an EPC can be calculated by fixed-
point iteration. The problem, however, is that the calculation of the transition relations by
naive fixed-point iteration is very inefficient and intractable in practice. In this paper, we
will show that some techniques from symbolic model checking [BCM+92, Mc93, CGP99]
and ordered binary decision diagrams (ROBDDs) [Br86] in particular can be used for
calculating the semantics of an EPC in a more efficient way.

We have implemented an EPC tool based on these techniques, which simulates practically
relevant EPCs with a reasonable response time. Since this tool needs to calculate the tran-
sition relations of an EPC anyway, it was easy to also implement some simple semantical
checks, and it should be easy to add all kinds of more sophisticated analysis and veri-
fication methods due to the fact that we use model checking techniques already for the
computation of the transition relation. The tool is open source and is based on the Eclipse
platform [Ecl]. Therefore, it could serve as the starting point of an open source project for
a collection of EPC tools, which is the reason for calling it EPC Tools.

2 Syntax and Semantics of EPCs

In this section, we introduce the syntax and the semantics of EPCs as defined and motivated
in [Ki04b]. The syntax, basically follows the presentation of [NR02] and the semantics
is inspired by the ideas of [KNS92, NR02], but resolving the technical problems of the
non-locality of EPCs as pointed out in [vdADK02].

2.1 Syntax

Figure 1 shows an example of an EPC. It consists of three kinds of nodes: events, which are
graphically represented as hexagons, functions, which are represented as rounded boxes,
and connectors, which are represented as circles. The dashed arcs between the different
nodes represent the control flow. The two black circles do not belong to the EPC itself;
they represent a state of an EPC. A state, basically, assigns a number of process folders
to each arc of the EPC. Each black circle represents a process folder at the corresponding
arc. In order to express some of the syntactical restrictions, we introduce a simple notation
for the ingoing and outgoing arcs of a node first:

Notation 1 (Ingoing and outgoing arcs) Let N be a set of nodes and let A ⊆ N × N
be a binary relation over N , the arcs. For each node n ∈ N , we define the set of its
ingoing arcs nin = {(x, n) | (x, n) ∈ A}, and we define the set of its outgoing arcs
nout = {(n, y) | (n, y) ∈ A}.

f1

Start1

Inner1

f’1

Stop1

f2

Start2

Inner2

f’2

Stop2

c2c1

Figure 1: An EPC

A connector can be either an AND-, an OR-, or an XOR-connector, which is indicated by
labelling the connector correspondingly. Each function has exactly one ingoing and one
outgoing arc, whereas each event has at most one ingoing and at most one outgoing arc.
A connector has multiple ingoing arcs and one outgoing arc, or it has one ingoing arc and
multiple outgoing arcs:

Definition 2 (EPC) An EPC M = (E,F,C, l, A) consists of three pairwise disjoint sets
E, F , and C, a mapping l : C → {and, or, xor} and a binary relation A ⊆ (E ∪ F ∪
C) × (E ∪ F ∪ C) such that

• |ein| ≤ 1 and |eout| ≤ 1 for each e ∈ E,

• |fin| = |fout| = 1 for each f ∈ F , and

• either |cin| > 1 and |cout| = 1 or |cin| = 1 and |cout| > 1 for each c ∈ C.

An element of E is called an event, an element of F is called a function, an element of C
is called a connector, and an element of A is called a control flow arc.

Note, that we do not consider subprocesses (called process signs in EPCs) here and that
we have omitted some syntactical restrictions for EPCs. Subprocesses and the syntactical
restrictions are important from a practical point of view, but they are not relevant for defin-
ing the semantics of EPCs. So, we do not formalize these restrictions here. For a complete
exposition of the syntax of EPCs, we refer to [NR02] .

In the definition of the semantics, we will need to distinguish among different types of
connectors: AND-, OR-, and XOR-, each of which can be either a split or a join connector.

Notation 3 (Nodes and connectors) For the rest of this paper, we fix the EPC M =
(E,F, C, l, A). We denote the set of all its nodes by N = E ∪ F ∪ C and we define the
following sets of connectors:

split connectors join connectors
∧ Cas = {c ∈ C | l(c) = and ∧ |cin| = 1} Caj = {c ∈ C | l(c) = and ∧ |cout| = 1}
∨ Cos = {c ∈ C | l(c) = or ∧ |cin| = 1} Coj = {c ∈ C | l(c) = or ∧ |cout| = 1}
× Cxs = {c ∈ C | l(c) = xor ∧ |cin| = 1} Cxj = {c ∈ C | l(c) = xor ∧ |cout| = 1}

2.2 States

For defining the semantics of EPCs, we need to define the states of an EPC first. In general,
a state is an assignment of a number of process folders to the arcs of the EPC. In order to
keep the state space and the transition relations finite, we consider the case of at most one
folder at each arc here.

Definition 4 (State of an EPC) For an EPC M = (E,F,C, l, A), we call a mapping
σ : A → {0, 1} a state of M . The set of all states of M is denoted by Σ.

2.3 Transition relation

The semantics of an EPC defines how process folders are propagated through an EPC.
Clearly, this depends on the involved node. For events and functions, a process folder is
simply propagated from the incoming arc to the outgoing arc. The transition relation for
events and functions is graphically represented in the top row of Fig. 2 (a. and b.). For
connectors, the propagation of folders depends on the type of the connector (AND, OR,
resp. XOR) and whether it is a join or a split connector. Figure 2 shows the transition
relation for the connectors. For example, the AND-split connector (c.) propagates a folder
from its incoming arc to all outgoing arcs. The AND-join connector (d.) needs one folder
on each incoming arc, which are propagated to a single folder on the outgoing arc.

The more interesting connectors are the OR-join and the XOR-join connectors. Here, we
focus on the XOR-join. An XOR-join (h.) waits for a folder on one incoming arc, which
is then propagated to the outgoing arc. But, there is one additional condition: The XOR-
join must not propagate the folder, if there is or there could arrive a folder on the other
incoming arc. In Fig. 2.h, this is represented by a label at the other arc. Note that
this condition cannot be checked locally: whether a folder could arrive on the other arc or
not depends on the overall behaviour of the EPC. Therefore, we call the semantics of the
XOR-join connector non-local. Likewise, the OR-join (f.) has a non-local semantics.

Note that, in this informal definition of the transition relation, we refer to the transition
relation itself when we require that no folders should arrive at some arcs according to
the transition relation. Therefore, we cannot immediately translate it to a mathematically
sound definition. For now, we resolve this problem by assuming that one transition rela-
tion P is given, and we define a function R(P), which defines the transition relation by
referring to P instead of referring to R(P).

For defining R(P), we introduce some notation for restricting transition relations and for

its induced reachability relation:

Notation 5 (Restriction and reachability) For some transition relation R ⊆ Σ×N ×Σ,
and some subset N ′ ⊆ N , we define the restriction of R to N ′ as R|N ′ = {(σ, n, σ′) ∈
R | n ∈ N ′}. By slight abuse of notation, we define the reachability relation R∗ of R as
the reflexive and transitive closure of the binary relation → = {(σ, σ′) ∈ Σ × Σ | ∃n ∈
N : (σ, n, σ′) ∈ R}.

Next we can define R(P), where we define a separate transition relation Rn(P) for each
node n ∈ N of the EPC first. Then, the overall transition relation R(P) is just the union
of the transition relations Rn(P) of all nodes n.

Definition 6 (Transition relation R(P)) Let P be a transition relation for an EPC M .
For each node n ∈ N , we define the transition relation Rn(P) ⊆ Σ × N × Σ as follows:

a. For n = e ∈ E with ein = {i} and eout = {o}, we define Re(P) ⊆ Σ×N ×Σ by
(σ, e, σ′) ∈ Re(P) iff σ(i) = 1, σ(o) = 0, σ′(i) = 0, σ′(o) = 1, and σ′(a) = σ(a)
for each a ∈ A \ {i, o}.

a’. For n = e ∈ E with ein = ∅ or eout = ∅, we define Re(P) = ∅.

b. For n = f ∈ F with fin = {i} and fout = {o}, we define Rf (P) ⊆ Σ×N ×Σ by
(σ, f, σ′) ∈ Rf (P) iff σ(i) = 1, σ(o) = 0, σ′(i) = 0, σ′(o) = 1, and σ′(a) = σ(a)
for each a ∈ A \ {i, o}.

c. For n = c ∈ Cas with cin = {i}, we define Rc(P) ⊆ Σ × N × Σ by (σ, c, σ′) ∈
Rc(P) iff σ(i) = 1, σ(o) = 0 for each o ∈ cout, σ′(i) = 0, σ′(o) = 1 for each
o ∈ cout, and σ′(a) = σ(a) for each a ∈ A \ ({i} ∪ cout).

d. For n = c ∈ Caj with cout = {o}, we define Rc(P) ⊆ Σ × N × Σ by (σ, c, σ′) ∈
Rc(P) iff σ(i) = 1 for each i ∈ cin, σ(o) = 0, σ′(i) = 0 for each i ∈ cin,
σ′(o) = 1, and σ′(a) = σ(a) for each a ∈ A \ (cin ∪ {o}).

e. For n = c ∈ Cos with cin = {i}, we define Rc(P) ⊆ Σ × N × Σ by (σ, c, σ′) ∈
Rc(P) iff, for some S ⊆ cout with |S| ≥ 1, we have σ(i) = 1, σ(o) = 0 for
each o ∈ S, σ′(i) = 0, σ′(o) = 1 for each o ∈ S, and σ′(a) = σ(a) for each
a ∈ A \ ({i} ∪ S).

f. For n = c ∈ Coj with cout = {o}, we define Rc(P) ⊆ Σ × N × Σ by (σ, c, σ′) ∈
Rc(P) iff, for some S ⊆ cin with |S| ≥ 1, we have σ(i) = 1 for each i ∈ S,
σ̂(a) = 0 for each σ̂ with σ(P |N\{c})∗σ̂ and for each a ∈ cin \ S, σ(o) = 0,
σ′(i) = 0 for each i ∈ S, σ′(o) = 1, and σ′(a) = σ(a) for each a ∈ A \ (S ∪ {o}).

g. For n = c ∈ Cxs with cin = {i}, we define Rc(P) ⊆ Σ × N × Σ by (σ, c, σ′) ∈
Rc(P) iff, for some o ∈ cout, we have σ(i) = 1, σ(o) = 0, σ′(i) = 0, σ′(o) = 1,
and σ′(a) = σ(a) for each a ∈ A \ {i, o}.

h. For n = c ∈ Cxj with cout = {o}, we define Rc(P) ⊆ Σ × N × Σ by (σ, c, σ′) ∈
Rc(P) iff, for some i ∈ cin, we have σ(i) = 1, σ̂(a) = 0 for each σ̂ with
σ(P |N\{c})∗σ̂ and for each a ∈ cin \ {i}, σ(o) = 0, σ′(i) = 0, σ′(o) = 1,
and σ′(a) = σ(a) for each a ∈ A \ {i, o}.

f fe ea. b.

c. d.

e. f.

g. h.

Figure 2: The transition relation Pn = R(P) for the different nodes n

We define the transition relation R(P) =
⋃

n∈N Rn(P)

Below, we briefly discuss the important cases f. and h. of the above definition, which
concerns the non-local semantics of the OR-join and the XOR-join connectors: When
there is a folder on at least one of its incoming arcs S ⊆ cin of an OR-join connector
and no folder can arrive (according to P) on the other arcs without the occurrence of
c, the folder is propagated to the outgoing arc. In order to formalize that no folder can
arrive on the other incoming arcs a ∈ cin \ S, the definition refers to the states σ̂ that
can be reached from σ (with respect to P) without the occurrence of c. This is formalized
by σ (P |N\{c})∗ σ̂. The XOR-join is similar to the definition of the OR-join. Instead
of selecting some set S of incoming arcs on which a folder must be present, we select
exactly one incoming arc i. We require that no folder can arrive on the other incoming
arcs (with respect to P) before the occurrence of c. Again, this can be formalized by using
the relation (P |N\{c})∗.

The most important property of R(P) is that it is monotonously decreasing in P , i. e. for
each two transition relations P and P ′ with P ⊆ P ′ we have R(P) ⊇ R(P ′). The reason
is that P occurs under a negation in the definition of R(P) (see [Ki04b] for more details).

2.4 Semantics

Based on R(P), we can now define the semantics of the EPC. Ideally, we would like to
define it to be a fixed-point P = R(P). Unfortunately, there are EPCs for which R(P)
does not have a fixed-point. So, we define it as a pair of transition relations P and Q
such that P = R(Q) and Q = R(P), were P is the least such transition relation and
Q is the greatest such transition relation. In [Ki04b], we have proved that this pair is
uniquely defined by applying standard fixed-point theory, exploiting the fact that R is
monotonously decreasing. We called P the pessimistic transition relation of the EPC, and
we called Q the optimistic transition relation of the EPC. Unfortunately, P and Q can be
different for some (nasty) EPCs, and we have argued that these are exactly the EPCs for
which a single transition relation cannot fully capture the informal semantics of EPCs. For
EPCs for which P and Q coincide the semantics exactly captures the informal semantics.
Therefore, we call EPCs with P = Q clean.

In [Ki04b], we did not bother to give an operational characterization of this semantics,
since we were interested only in defining a precise semantics. But, the fixed-point theorem
of Kleene immediately gives us a simple algorithm for calculating this pair (which is called
fixed-point approximation):
Let P0 = ∅ and Q0 = Σ × N × Σ. For each i ∈ N, we define Pi+1 = R(Qi) and
Qi+1 = R(Pi). Since R(P) is monotonously decreasing, we have that Pi ⊆ Pi+1 and
Qi ⊇ Qi+1 for each i. Moreover, Σ × N × Σ is finite, which implies that for some i ∈ N

we will have Pi+1 = Pi and Qi+1 = Qi. For this i, we have R(Pi) = Qi+1 = Qi and
R(Qi) = Pi+1 = Pi. And this (Pi, Qi) is the semantics of the EPC. So, starting with
P0 = ∅ and Q0 = Σ × N × Σ and iteratively computing the next Pi+1 and Qi+1 will
eventually terminate with the semantics of the EPC.

Unfortunately, an explicit representation of the transition relations Pi and Qi and an ex-
plicit calculation of Pi+1 = R(Qi) and Qi+1 = R(Pi) is extremely inefficient. For
realistic EPCs, there are millions of potential states Σ and billions of potential arcs in
the transition relation1. Moreover, an explicit calculation of R(P) involves a reachability
analysis on P (at least for the non-local connectors). So a naive explicit implementation
of the fixed-point approximation does not work in practice.

3 Calculating the transition relations

In the previous sections, we have rephrased the semantics of EPCs in an operational way.
Next, we will show how the two transition relations can be calculated in a more efficient
way. To this end, we will use techniques from symbolic model checking and ordered bi-
nary decision diagrams. We use formulas and temporal formulas for representing the tran-
sition relations Rn(P), and we will show how these formulas can be used for efficiently
calculating the semantics of the underlying EPC.

1Note that not all of these states will be reachable in the final semantics; but they will be necessary in the
calculation of the semantics.

3.1 Representing Rn(P)

Let us start with the semantics of an AND-split connector, with ingoing arc i and outgoing
arcs o1, . . . , on. In order to define the corresponding behaviour, we assume that i and
o1, . . . , on are boolean variables. The values of these variables represent the state before
the transition, where value true means that there is a process folder on the corresponding
arc, and value false means that there is no process folder. Moreover, we assume that, for
each variable, there is a primed version i′ and o′1, . . . , o

′
n, which represent the state after

the transition. With this notation and understanding, the behaviour of the AND-split can
be expressed by the following formula:

i ∧ ¬o1 ∧ . . . ∧ ¬on ∧ ¬i′ ∧ o′1 ∧ . . . ∧ o′n

This formula exactly captures the fact that there must be a folder on the ingoing arc i of
the AND-split and there must be no folders on the outgoing arcs o1, . . . , on before firing
the AND-split; and, after firing the AND-split, the ingoing arc has no folder anymore, but
the outgoing arcs have a folder each. Altogether the formula is an immediate translation
of Def. 6 (c), where we assume that variables not occurring in the formula do not change.

Altogether, we can apply this standard technique [CGP99, HR00] for defining the be-
haviour of all EPC nodes with a local semantics. The complete list of formulas for all
connectors is shown below, where, for simplicity, we assume that connectors have at most
two input and output arcs:

a. / b. For n ∈ E ∪ F with nin = {i} and nout = {o}, the formula for Rn(P) is
i ∧ ¬o ∧ ¬i′ ∧ o′.

c. For n = c ∈ Cas with cin = {i} and cout = {o1, o2}, the formula for Rn(P) is
i ∧ ¬o1 ∧ ¬o2 ∧ ¬i′ ∧ o′1 ∧ o′2.

d. For n = c ∈ Caj with cin = {i1, i2} cout = {o}, the formula for Rn(P) is
i1 ∧ i2 ∧ ¬o ∧ ¬i′1 ∧ ¬i′2 ∧ o′.

e. For n = c ∈ Cos with cin = {i} and cout = {o1, o2}, the formula for Rn(P) is
i ∧ ¬(o1 ∧ o2) ∧ ¬i′ ∧ (o1 ⇒ o′1) ∧ (o2 ⇒ o′2) ∧ (o′1 = o1 ∨ o′2 = o2).

g. For n = c ∈ Cxs with cin = {i} and cout = {o1, o2}, the formula for Rn(P) is
i ∧ ¬(o1 ∧ o2) ∧ ¬i′ ∧ (o1 ⇒ o′1) ∧ (o2 ⇒ o′2) ∧ (o′1 = o1 xor o′2 = o2).

The formulas for the OR- and the XOR-split connectors are a bit more involved. For the
OR-split connector (cf. e.), it is required that no outgoing arcs has less folders than before
and at least one has more, which can be formulated in terms of a implication o ⇒ o′ (i. e.
if there is a folder on o in the source state of the transition then there is a folder on o in the
target state of the transition).

For the XOR-split (cf. g.) connector, we also require that no outgoing arc has less folders
than before and exactly one arc has one more. Some formulas are a bit involved, but, in
principle, there is no problem with these formulas for the local connectors, because the
transition relation Rn(P) does not refer to P .

But, how about the formulas for the non-local operators? For these connectors the defini-
tion of Rn(P) refers to P . So, we need to refer to P in the formula for Rn(P) somehow.
To this end, we use a temporal logic formula that is interpreted on the transition relation
P . Since we use very simple formulas only, we do not bother to introduce temporal logic
in full detail. The only temporal operator needed is the CTL operator EF : For some for-
mula ϕ the temporal formula EFϕ is true in exactly those states from which a state can
be reached (with respect to P) in which ϕ is valid. This way, we can express that no folder
can arrive on some arc i by the formula ¬EFi.

With this temporal formula, it is easy to express the behaviour of the XOR-join connector:
For an XOR-join connector with the two incoming arcs i1 and i2 and one outgoing arc o,

((i1 ∧ ¬EFi2) ∨ (¬EFi1 ∧ i2)) ∧ ¬o ∧ ¬i′1 ∧ ¬i′2 ∧ o′

precisely captures its behaviour. The formulas ¬EFi1 resp. ¬EFi2 guarantee that a tran-
sition does occur only when no folder can arrive from the other arc, respectively.

For the OR-join connector, the transition relation is similar. It requires that there is one
folder on one incoming arc and, if there is no folder on the other incoming arc no folder
can arrive at this arc anymore. Altogether, we define:

f. For n = c ∈ Coj with cin = {i1, i2} cout = {o}, the formula for Rn(P) is
((i1 ∧ i2) ∨ (i1 ∧ ¬EFi2) ∨ (¬EFi1 ∧ i2)) ∧ ¬o ∧ ¬i′1 ∧ ¬i′2 ∧ o′

h. For n = c ∈ Cxj with cin = {i1, i2} and cout = {o}, the formula for Rn(P) is
((i1 ∧ ¬EFi2) ∨ (¬EFi1 ∧ i2)) ∧ ¬o ∧ ¬i′1 ∧ ¬i′2 ∧ o′

Experts in model checking may be a bit concerned about mixing primed variables and
temporal operators in a single formula. Usually, there are transition formulas that may
contain primed variables, but no temporal operators, and there are temporal formulas that
must not contain primed variables. A transition formula or a set of transition formulas
represents the underlying system; the temporal formulas represent properties to be verified
for that system. Though uncommon, in principle, there is no harm in mixing primed
variables and temporal operators in a single formula. It defines a new transition relation
based on a given transition relation, which is exactly what we need for calculating Rn(P).

3.2 Calculating the transition relations

Next, we will discuss how to calculate the two transition relations that actually represent
the semantics of an EPC, where we assume that the EPC has the local nodes l1, . . . , lj and
the non-local nodes n1, . . . , nk, and g1, . . . , gj are the formulas representing the transition
relations Rli(P) for the local nodes, and h1, . . . , hk are the formulas representing the
transition relations Rni(P) for the non-local nodes.

Let us first discuss the operations from model checking that we need for this calculation.
In symbolic model checking, a transition relation given as a formula (with primed vari-
ables) is transformed into a data structure that is called a reduced ordered binary decision

diagram2 (ROBDD), which have the nice feature that equivalent formulas will have ex-
actly the same ROBDD representation. For a formula f with primed variables without
temporal operators, there is a standard procedure for this transformation [CGP99, HR00].
We denote this procedure by f.toROBDD(), which is close the corresponding methods
of our object oriented model checker MCiE [Ki04a].

Formulas with primed variables and temporal variables are very uncommon. So there is
no standard procedure for converting it to an ROBDD. But, there is a standard proce-
dure for calculating an ROBDD representing the set of states of a transition system in
which a given temporal formula is true. We assume that the transition system is given
as a set P of ROBDDs representing the transitions of the system. This procedure can be
easily extended to formulas that contain primed variables. For such a formula f and an
ROBDD-representation P of the transition relation, f.toROBDD(P) denotes the result-
ing ROBDD.

Given some transition system (represented as a set of ROBDDs) Pcurr, we can calculate
Pnext = R(Pcurr) as follows:

Pnext:= { g1.toROBDD(), . . . , gj.toROBDD() };
for i:= 1 to k do

Pnext:= Pnext.add(hi.toROBDD(Pcurr));

In the first line, we insert all the transitions of the local nodes to Pnext; in the loop, we add
the transition relation for each non-local node to Pnext. To be precise, the calculation is a
bit more involved: In order to exactly capture the semantics formalized in Sect. 2.4, we
must switch off the transition relation corresponding to node ni for calculating the next
transition relation for node ni. Since this is a minor technical detail, we do not include this
into the presented pseudo code.

Based on this code, we can easily start the calculation of the transition relations Pi and Qi

as stated in the formal definition of the semantics in Sect. 2: P0 = ∅ and Q0 = Σ×N ×Σ
and Pi+1 = R(Qi) and Qi+1 = R(Pi). In order to save computation time, we do not
calculate every Pi and every Qi, rather we calculate Q0, P1, Q2, P3, . . . in a zig-zag way.
As stated before, we will eventually end up with Pi+2 = Pi and Qi+2 = Qi; in order
to detect this point, we need to store the last two versions of the calculated transition
relations and compare them to the next one. When they are equal, we have calculated the
two transition relations that represent the semantics of the EPC.

Altogether, the algorithm for calculating the semantics of an EPC looks as follows.

2Often reduced ordered binary decision diagrams are called ordered binary decision diagrams (OBDDs) or
even binary decision diagrams (BDDs) only. We stick to the term ROBDD throughout this paper, however.

Pcurr:= { false }; // P0

Pnext:= { true }; // Q0

step:= 1;

repeat
Pprev:= Pcurr;
Pcurr:= Pnext;
step:= step + 1;

// Pnext = R(Pcurr)
Pnext:= { g1.toROBDD(), . . . , gj.toROBDD() };
for i:= 1 to k do

Pnext:= Pnext.add(hi.toROBDD(Pcurr));

until Pnext == Pprev;

Upon termination Pcurr and Pnext contain the two transition relations for the EPC. The
question, however, is which of them is the pessimistic and which is the optimistic transition
relation. In order to decide this, we use the step counter. If it is odd, Pcurr represents the
pessimistic transition relation and Pnext is the optimistic transition relation; otherwise, it
is the other way round.

3.3 Simulation

Once we have calculated the two transition relations for an EPC, it is easy to simulate
it. For some given state, we must calculate all nodes that can propagate a process folder
(according to the pessimistic or according to the optimistic transition relation). In that
case, we call the corresponding node enabled in this state. Since we store the calculated
ROBDDs Px for each transition relation for node x separately, checking the enabledness
is simple. Let enabled be the CTL formula EXtrue, which is valid in all states for
which the underlying transition relation has a successor. Then enabled.toROBDD(Px)
represents all those states in which the node is enabled.

When the user wants to fire an enabled transition, the simulator explicitly removes and
adds the folders in the current state according to semantics of the corresponding node. It
is not necessary to use ROBDDs here because only the enabledness of a node is non-local.
The propagation of the folders itself is local.

3.4 Implementation

It is easy to implement the above algorithms based on some standard ROBDD package.
The only tricky part might be the mixed occurrence of primed variables and temporal
operators in formulas. Since our own Model Checking in Education (MCiE) project im-

mediately supports this kind of formulas, we implemented the algorithm based on MCiE.
Though MCiE is implemented in Java and efficiency is not MCiE’s highest priority, the
first experiments with this algorithm were surprisingly good. Without further optimiza-
tions, it worked reasonably well on small EPCs. For calculating the semantics for larger
EPCs, however, we had to come up with some optimizations, which will be discussed
below.

In principle, we could use any other ROBDD package for implementing the calculation of
the semantics of EPCs. Since we were heading for an Eclipse based tool (see Section 5)
and MCiE was available in Java, however, we still use MCiE.

4 Optimizations

As mentioned above, we had to apply several tricks and optimizations in order to compute
the semantics of larger EPCs. In our discussion, we distinguish between two different
kinds of optimizations.

The first kind tries to exploit properties of the semantics of EPCs in order to reduce and
to simplify them. The idea is to calculate the semantics of a simpler and smaller EPC
and, based on this information, simulate the original EPC. These optimizations have been
investigated in [Cu04]. Unfortunately, there are many negative results, which basically can
be considered as a backfiring of the non-local semantics of EPCs. The non-local semantics
of EPCs seems to have many nasty side effects and renders many ideas for optimizations
impossible – except for very trivial ones.

The second kind is a smart application and combination of optimization techniques gen-
erally known from model checking. It turned out that these techniques were much more
effective than the ones for EPCs and could be used in combination with the ones for EPCs.

Note that, in spite of all our optimizations, the worst case complexity of our algorithms is
still very bad: it is exponential. It is an interesting open question whether this is inherent to
the semantics of EPCs or not. But, we feel that, again, this worst case complexity cannot
be avoided because of the non-local semantics of EPCs. But, our experimental results
have shown that, for many practical examples, we can calculate the semantics of many
practically relevant EPCs in a reasonable time (see Sect. 4.3).

4.1 EPC techniques

We start with a brief discussion of techniques that exploit the properties of EPCs.

Eliminating chains It is clear that reducing the size of an EPC also reduces the complex-
ity of the simulation problem. For our model checking algorithm, the number of arcs of
the simulated EPC is essential, because the computation time is exponential in the number
of variables respectively arcs.

One possible approach is to simplify an EPC by eliminating chains of nodes that do not
influence the semantical behaviour of other nodes. Obviously, a sequence of consecutive
event and function nodes such as the ones shown in Fig. 3 (labelled Event and Function)
can be omitted when computing the enabledness of the XOR-join connectors. We call this
optimization chain elimination,

We can apply chain elimination, when the following two conditions are satisfied:

1. In the considered state, there are no process folders on the arcs eliminated by this
simplification.

It is obvious that, otherwise, a process folder in the predecessor set of an XOR-join
connector which would have potentially influenced the behaviour of the XOR-join
in the original EPC would be missing in the simplified EPC.

Note that this condition implies that we can omit only those arcs from a chain that do
not have a folder on them. Therefore, chain elimination depends on the considered
state of the EPC. For simulation, this is no serious problem because we can compute
another simplified EPC each time the state has changed. Since the simplified EPC
is much smaller than the original one, we can hope that the fixed-point computation
is significantly faster for the reduced EPC. For the analysis and, in particular, for
checking whether the semantics of an EPC is clean, however, we cannot apply this
chain elimination technique directly.

2. In order to correctly apply chain elimination, it is necessary that in no reachable
state of the reduced EPC, a node is blocked because of a process folder on one of its
outgoing edges. We call such states contact situations. The problem with contact
situations is, that the simplified EPCs tend to have more contact situations as com-
pared to the original EPCs. In this situation, the behaviour of the original and the
simplified EPC are different. The simplified EPC is blocked, whereas the original
version could still fire. Therefore, we cannot use the simplified version for simu-
lation the original one. Fortunately, it is easy to calculate whether the simplified
EPC has reachable contact situations, which provides us an a posteriori condition,
whether chain elimination can be applied. In that case, we can switch back to cal-
culating the semantics of the original EPC, which of course is less efficient.

If both requirements have been checked, the simulator can use the transition relation com-
puted for the simplified EPC to determine whether an XOR-join resp. an OR-join connec-
tor is enabled in the original EPC or not (other nodes can be checked locally anyway).
Because we only eliminate event and function nodes, those connectors are contained in
the reduced EPC.

The main disadvantage of the chain elimination approach is that it cannot be applied for
arbitrary EPCs because of the above requirements. Also, chain elimination does not allow
us to calculate the complete semantics of an EPC. Therefore, it can be used for simulation
only; it cannot be used for our analysis and verification algorithms.

Syntactical restrictions An other idea for simplifying the simulation problem was to
identify some restricted classes of EPCs for which no fixed-point iteration would be nec-

Event 1

Function 1

Event 3

Function 3

Function 4

Event 4

Function 2

Event 2

Event

Function

Figure 3: The example used for the measurements in Fig. 4

essary. For example, we considered EPCs without cycles on non-local nodes such as the
ones shown in Fig. 1, or EPCs that are constructed from clean EPC constructs only. We
hoped that we could calculate the semantics of EPCs from these sub-classes in a much
more efficient way. Unfortunately, it turned out that this hope was in vain, and we found
some nasty counter-examples, which spoiled this approach. A detailed discussion of these
negative results can be found in [Cu04].

4.2 Model checking techniques

There are many techniques that make model checking more efficient. Using ROBDDs as a
representation for sets of states and for the transition relations is one of them. It is only this
choice, that made our algorithms work for small examples. In addition to using ROBDDs,
we used two other techniques: optimization of the variable order and partitioning of the
transition relation.

Variable order It is well-known that the size (number of nodes) of the ROBDDs repre-
senting some boolean function or formula strongly depends on the chosen variable order.
In turn, the computation time of the operations on ROBDDs depends on the size of the
ROBDDs. So, it is important to find a good variable order for efficiently calculating the
semantics of EPCs. One heuristic for a good variable order is that related variables should
be close to each other in the variable order. For EPCs, it is quite easy to identify those
variables (arcs) that are related: Two variables resp. arcs are related, when they are at-
tached to the same node. The problem, however, is that each arc belongs to two nodes;
so it is impossible to have all related variables close to each other in the variable order, in
particular, when the EPC has cycles in its control flow arcs. In order to calculate a good
variable order, we thought of some sophisticated schemes. But, in the end, it turned out
that a simple breadth first traversal of all nodes starting from the start events of the EPC

 0

 2000

 4000

 6000

 8000

 10000

 12000
1

2

4

3

5

 14000

 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

tim
e

in
 m

s

nodes

1

3

2

4

5

Naive approach using model checking

+ unchanged variables optimization

+ partitioning of the transition relation
(+ variable order optimization)

+ variable order optimization

+ chain optimization

(− variable order optimization)

Figure 4: Benefit of the implemented optimization techniques (compare to Fig. 3)

provided a variable order with the best results.

Though this variable order provided satisfactory results, we feel that there is some room
for further improvement. But, this needs further investigations.

Partitioning of the transition relation In the algorithm for calculating the transition
relations of an EPC, we distinguish the ROBDDs for the transition relations for each node
of the ROBDD. It is well known that this results in much less nodes for representing the
transition relation than for representing all transitions within a single ROBDD.

In order to make these ROBDDs even smaller, we imposed one additional assumption on
the formulas representing the transition relation: we assume that all variables not occurring
in the formula do not change. Expressed in a naive way, this means adding the formula
a1 = a′

1 ∧ a2 = a′
2 ∧ . . . ∧ an = a′

n for all variables that are not touched by this
node. Adding this formula explicitly to the transition relation, however, would result in
much bigger ROBDDs, which in turn would result in much longer computation times.
Therefore, we did not add this formula to the representation of the transition relation, but
we implemented the procedure for calculating EX within the ROBDD library in such
a way that these variables were implicitly assumed to be unchanged. This unchanged
variables optimization resulted in significantly better computation times.

4.3 Measurements

In order to illustrate the benefits of the optimizations, Fig. 4 shows the computation times
for calculating the semantics of the example of Fig. 3 for the different optimization tech-
niques. In order to see the influence of the size of the EPC, we measured the computation
time for different numbers of nodes on the chain between Event 4 and Function 4. The
x-axis represents the number of nodes of the resp. EPC, the y-axis shows the computation
times for the different optimizations. The first graph shows the computation time without
partitioning the transition relations. The second graph shows the computation time with
partitioning, but without the improvement for unchanged variables. The third graph shows
the time when incorporating also the optimization for unchanged variables in the transition
relations. The fourth graph shows the time with an optimized variable order. Note that par-
titioning the transition relation along with an explicit algorithm for unchanged variables
makes a significant difference in the computation times.

The fifth graph shows that chain elimination can drastically improve the simulation of
EPCs. Note, however, that this example is a bit misleading because it was chosen to show
the positive effect of chain elimination. In other examples, the figures are not as impressing
and, in many situations, chain elimination is not applicable at all (see discussion above).

The above figures come from a technical example. In order to give an impression of
computation times for real-world examples, we have considered two examples from the
SAP reference processes of the ARIS Toolset3, which are shown in Fig. 5. The calculation
of the semantics of the first EPC took 13 ms; for the second, it took 4.015 s. With the
transition relation computed, the other operations (simulation and analysis) can be done in
virtually no time.

5 EPC Tools

The algorithm for calculating the semantics of an EPC and for simulating an EPC based
on this semantics is integrated into an Eclipse [Ecl] based tool, which we call EPC Tools.
EPC Tools can be obtained from [CuKi04] free of charge. Figure 6 shows a screen-shot
of Eclipse with the EPC Tools plugin running. EPC Tools comes with a graphical editor
and an interactive simulator for EPCs. Moreover, it is easy to import EPCs from other
tools because EPC Tools supports the EPC exchange format EPML [MN04a], and there
are converters between the AML format of the ARIS Toolset and EPML [MN04b].

Moreover, EPC Tools checks simple semantical properties of the EPC. For example, it
indicates whether the EPC is clean, i. e. whether both transition relations coincide. This
is important, because unclean EPCs can easily lead to different interpretations and should
be considered harmful. EPC Tools identifies unclean EPCs right away. In addition, EPC
Tools checks whether an EPC might deadlock and whether there are contact situation, i. e.

3ARIS Toolset is a registered trademark of IDS Scheer. For more information see http://www.
ids-scheer.com/.

A
na

ly
se

zu
 b

ea
rb

ei
te

n M
aß

na
hm

en
−

fre
ig

ab
e

un
d

−d
ur

ch
−

fü
hr

un
g

is
t e

in
zu

le
ite

n

In
ve

st
iti

on
sp

ro
fil

m
it

E
in

ze
lp

os
te

na
b−

re
ch

nu
ng

 is
t f

es
tg

el
eg

t

B
ila

nz
re

le
va

nt
e

B
ew

er
tu

ng
 v

on
 B

e−

A
bs

ch
re

ib
un

g/
Zi

ns
en

G
ep

la
nt

e
A

bs
ch

re
ib

un
ge

n

üb
er

ge
be

n
w

er
de

n

G
ep

la
nt

e
K

al
ku

la
to

ris
ch

e

A
nl

ag
ev

er
m

ög
en

s
(z

uk
.

is
t z

u
an

al
ys

ie
re

n

A
na

ly
se

re
ch

nu
ng

 is
t f

es
tg

el
eg

t

A
fA

−S
im

ul
at

io
ns

−

A
fA

−S
im

ul
at

io
ns

−

P
au

sc
ha

le
r

A
uf

tra
g

an
ge

le
gt

In
ve

st
iti

on
sp

ro
fil

is
t f

es
tg

el
eg

t
m

it
E

in
ze

lp
os

te
na

b−
In

ve
st

iti
on

sp
ro

fil
m

it
su

m
m

ar
. A

br
.

da
te

nb
ea

rb
ei

tu
ng

da
te

n
si

nd
 g

ep
fle

gt

so
lle

n
an

 K
os

te
nr

ec
hn

un
g

P
la

nu
ng

si
nt

eg
ra

tio
n

C
O

P
ro

gr
am

m
an

al
ys

e
is

t a
bg

es
ch

lo
ss

en
S

im
ul

at
io

n
w

ur
de

du
rc

hg
ef

üh
rt

A
uf

tra
gs

an
al

ys
e

[In
ve

st
iti

on
−

A
uf

tra
gs

an
al

ys
e

is
t a

bg
es

ch
lo

ss
en

K
os

te
ne

nt
w

ic
kl

un
g

ei
ne

s
A

uf
tra

ge
s

is
t z

u
pr

üf
en

P
ro

gr
am

m
an

al
ys

e
A

fA
−S

im
ul

at
io

n/
V

or
au

ss
ch

au
[In

ve
st

iti
on

−P
ro

je
kt

]

si
nd

 a
n

C
O

 ü
be

rg
eb

en

S
im

ul
at

io
n

fü
r T

ei
le

 d
es

G
J)

 is
t d

ur
ch

zu
fü

hr
en

D
ire

kt
ak

tiv
ie

ru
ng

]

M
aß

na
hm

en
an

−
fo

rd
er

un
g

is
t z

u

M
aß

na
hm

en
−

an
fo

rd
er

un
g

In
ne

na
uf

tra
g

is
t

an
zu

le
ge

n

M
aß

na
hm

en
be

−
ar

be
itu

ng

A
uf

tra
g

is
t

be
ar

be
ite

t

M
aß

na
hm

en
−

pl
an

un
g

m
it

su
m

m
ar

. A
br

.
is

t f
es

tg
el

eg
t

In
ve

st
iti

on
sp

ro
fil

G
ep

la
nt

e
ka

lk
ul

at
or

is
ch

e

si
nd

 a
n

C
O

 ü
be

rg
eb

en

A
uf

tra
gs

an
al

ys
e

is
t

ab
ge

sc
hl

os
se

n

P
ro

gr
am

m
an

al
ys

e
is

t
ab

ge
sc

hl
os

se
n

S
im

ul
at

io
n

w
ur

de
du

rc
hg

ef
üh

rt
A

bs
ch

re
ib

un
g/

Zi
ns

en

P
er

io
de

na
bs

ch
lu

ss
un

d
A

br
ec

hn
un

g

P
er

io
de

na
bs

ch
lu

ss
un

d
A

br
ec

hn
un

g

M
aß

na
hm

e
is

t
vo

lls
tä

nd
ig

ab
ge

re
ch

ne
t

M
aß

na
hm

e
is

t t
ei

lw
ei

se
ab

ge
re

ch
ne

t
B

ud
ge

t
is

t
ak

tu
al

is
ie

rt

A
kt

ua
lis

ie
ru

ng
[In

ve
st

iti
on

s−
pr

oj
ek

te
]

ab
ge

sc
hl

os
se

n

M
aß

na
hm

en
fre

ig
ab

e
un

d
−d

ur
ch

fü
hr

un
g

is
t z

u
du

rc
hz

uf
üh

re
n

M
aß

na
hm

en
fre

ig
ab

e

un
d

−d
ur

ch
fü

hr
un

g

st
än

de
n

is
t d

ur
ch

zu
fü

hr
en

In
ve

st
iti

on
sp

ro
gr

am
m

K
om

pl
ex

e
In

ve
st

iti
on

sm
aß

na
hm

en
ab

w
ic

kl
un

g

Figure 5: Two examples from the SAP reference processes of the ARIS Toolset

Figure 6: EPC Tools in the Eclipse environment

whether there are situations in which nodes are only blocked because of process folders
on their outgoing arcs. Often, such contact situations indicate bad design.

The properties checked right now in EPC Tools, however, are quite preliminary. Once the
semantics of the EPC is calculated, we could easily do much more. For example, we could
check some soundness properties similar to the soundness criteria for workflow nets as
proposed by van der Aalst [vdAvH02] or we could check properties by applying model
checking. This should take less time than calculating the semantics. The main problem is
to identify the properties that are relevant for EPCs.

Overview on the functionality The EPC Tools plugin can be used to edit, to simu-
late, and to analyse EPCs with the help of graphical control elements integrated into the
Eclipse environment. The editor functions are provided by a tool palette containing but-
tons for adding nodes and arcs to the EPC. Pushing the “select” button allows a user to
move, rename, and scale nodes directly by clicking on them. Some other functions like
undo commands are accessible through a context menu. Figure 7 shows all these editor
functions. In addition, EPC Tools provides a print function and allows a user to zoom into

Create and select
nodes and connections

Rename nodes Scale nodes Context menu

Figure 7: Editor and simulator functions

and out of EPC diagrams by using the standard Eclipse toolbar and the main menu.

The simulator functions are mainly located in the panel shown in Fig. 7 on the right side.
It is possible to highlight all currently enabled nodes, and then to simulate one step by
specifying a node or by randomly choosing a node. The randomized simulation can be
very useful when simulating several steps consecutively by simply clicking one button.
A checkbox defines whether the simulation should be done according to the optimistic
or according to the pessimistic transition relation computed by the fixed-point iteration
algorithm. This option is important when the simulated EPC is unclean, otherwise it does
not make any difference. In the same panel, there are some LEDs corresponding to the
properties of the EPC. This information can be updated by pushing the “refresh” button.
Then, the LEDs light up green or red in order to indicate the valid and invalid properties.

6 Conclusion

In this paper, we have shown that the semantics of an EPC can be efficiently calculated
by using ROBDDs and techniques from model checking. With the presented optimiza-
tions, the simulation of medium size EPCs works quite well and is practically feasible.
Moreover, it is quite easy to adapt this algorithms to slightly different semantics by using
different formulas for defining the semantics of the nodes.

The presented algorithms have been implemented in a new Tool for EPCs, which is Eclipse
based and is called EPC Tools. This tool comes with a graphical editor and it is easy to
extend it by new features. EPC Tools is open source published under the GNU Public
License, which might make it a good starting point for an open source tool for EPCs. It
can be obtained from [CuKi04].

Acknowledgment We would like to thank Jan Mendling for the EPML files of the examples from
Fig. 5, which we used as a practical benchmark for the calculation of the semantics.

References

[vdADK02] van der Aalst, W., Desel, J., and Kindler, E.: On the semantics of EPCs: A vicious cir-
cle. In: Nüttgens, M. und Rump, F. J. (Eds.), EPK 2002, Geschäftsprozessmanagement
mit Ereignisgesteuerten Prozessketten. pp. 71–79. November 2002.

[vdAvH02] van der Aalst, W. and van Hee, K.: Workflow Management: Models, Methods, and
Systems. Cooperative Information Systems. The MIT Press, 2002.

[BCM+92] Burch, J., Clarke, E., McMillan, K., Dill, D., and Hwang, L.: Symbolic model check-
ing: 1020 states and beyond. Information and Computation 98:142–170, 1992.

[Br86] Bryant, R. E.: Graph-based algorithms for boolean function manipulation. IEEE Trans.
Computers 35(8):677–691, 1986.

[CGP99] Clarke, E., Grumberg, O., and Peled, D.: Model checking. MIT Press, 1999.

[Cu04] Cuntz, N.: Über die effiziente Simulation von Ereignisgesteuerten Prozessketten. Mas-
ter’s thesis. University of Paderborn, Department of Computer Science, June 2004.

[CuKi04] Cuntz, N. and Kindler, E.: The EPC Tools Project.
http://www.upb.de/cs/kindler/research/EPCTools, 2004.

[Ecl] The Eclipse Foundation: The Eclipse platform. http://www.eclipse.org.

[HR00] Huth, M. and Ryan, M.: Logic in Computer Science: Modelling and reasoning about
systems. Cambridge University Press, 2000.

[Ki04a] Kindler, E.: The Model Checking in Education (MCiE) Project.
http://www.upb.de/cs/kindler/teaching/MCiE, 2004.

[Ki04b] Kindler, E.: On the semantics of EPCs: Resolving the vicious circle. In: Desel, J., Per-
nici, B., and Weske, M. (Eds.), Business Process Management, Second International
Conference, BPM 2004. LNCS 3080, pp. 82–97. Springer, June 2004. (An earlier
version of this paper was presented at EPK 03.)

[KNS92] Keller, G., Nüttgens, M., and Scheer, A.-W.: Semantische Prozessmodellierung auf
der Grundlage Ereignisgesteuerter Prozessketten (EPK). Technical Report Veröf-
fentlichungen des Instituts für Wirtschaftsinformatik (IWi), Heft 89. Universität des
Saarlandes, January 1992.

[LSW98] Langner, P., Schneider, C., and Wehler, J.: Petri Net Based Certification of Event
driven Process Chains. In: Desel, J. and Silva, M. (Eds.), Application and Theory of
Petri Nets 1998. LNCS1420, pp. 286–305. Springer, 1998.

[Mc93] McMillan, K. L.: Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[MN04a] Mendling, J. and Nüttgens, M.: Exchanging EPC Business Process Models with
EPML. In: Mendling, J. and Nüttgens, M. (Eds.), XML interchange formats for busi-
ness process management, proceedings of the 1st Workshop XML4BPM 2004, pp. 61–
80. March 2004.

[MN04b] Mendling, J. and Nüttgens, M.: Transformation of ARIS Toolset’s AML to EPML. To
appear.

[NR02] Nüttgens, M. and Rump, F. J.: Syntax und Semantik Ereignisgesteuerter Prozessketten
(EPK). In: PROMISE 2002, Prozessorientierte Methoden und Werkzeuge fürr die
Entwicklung von Informationssystemen. GI Lecture Notes in Informatics P-21, pp.
64–77. Gesellschaft für Informatik, 2002.

[Ri00] Rittgen, P.: Quo vadis EPK in ARIS? Wirtschaftsinformatik. 42:27–35, 2000.

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

Plan ist
eingereicht

Plan an
betroffene

Gemeinden
senden

Plan ist
gesendet

Plan
bekanntmachen

Plan ist
bekanntgemacht

Akteneinsicht in
den Plan
gewähren

Plan öffentlich auslegen

Betroffene
Gemeinde

Betroffene
Gemeinde

Betroffene auf
Bekanntheit

prüfen

Betroffene sind
bekannt

Betroffene sind
nicht bekannt

Anhörungs-
behörde

Öffentliche
Auslegung

abgeschlossen

Öffentliche
Auslegung

entscheiden

Öffentliche
Auslegung

Keine öffentliche
Auslegung

Einsicht
gewähren

Anhörungs-
behörde

Betroffene
Gemeinde

Anhörungs-
behörde

TöB

Betroffene
Bürger

Plan öffentlich
auslegen

Anhörungs-
behörde

 47

Stellung-
nahmen
einholen

Plan öffentlich
auslegen

Stellung-
nahmen sind

eingeholt

Öffentliche
Auslegung

abgeschlossen

Anhörungs-
behörde

TöB

Einwände
materiell prüfen

Einwände
materiell nicht

korrekt
Einwände

materiell korrekt

Einwände
zurückweisen

Einwände sind
zurückgewiesen

Erörterungs-
termin

durchführen Anhörungs-
behörde

Erörterungs-
termin ist

durchgeführt

Abschließende
Stellungnahme

abgeben
Anhörungs-

behörde

Anhörungs-
verfahren

durchführen

Anhörungs-
verfahren ist
durchgeführt

Beschluss-
verfahren

durchführen

Plan ist
eingereicht

Planfestellungs-
verfahren

durchführen

Planfestellungs-
beschluss ist

erlassen

betroffene
Bürger

Plan ist
eingereicht

Planfestellungs-
beschluss ist

erfasst

Planfestellungsver-
fahren durchführen

Plan ist
eingereicht

Anhörungs-
verfahren ist
durchgeführt

Anhörungsverfahren durchführen

Einwände
entgegennehmen

Einwände
vorgebracht

Keine Einwände
vorgebracht

Einwände
formell korrekt

Einwände
formell nicht

korrekt

Anhörungs-
behörde

Anhörungs-
behörde

Notwendigkeit für
Erörterungstermin

prüfen

Notwendigkeit
ist gegeben

Notwendigkeit
ist nicht
gegeben

TöB

Notwendigkeit
von Änderungen
im Plan prüfen

Änderungen
sind notwendig

Änderungen
sind nicht
notwendig

Änderungen
vornehmen

Änderungen
sind

vorgenommen

Einwände
formell prüfen

Anhörungs-
behörde

Anhörungs-
behörde

Planfeststellungs-
verfahren
fortführen

 48

Anhörungs-
verfahren

durchführen

Beschluss-
verfahren

durchführen

Planfestellungs-
beschluss ist

erfasst

Planfeststel -
lungsbehörde

Anhörungs-
verfahren

durchführen

Anhörungs-
verfahren

durchführen

Anhörungs-
verfahren

durchführen

Einwände sind
zurückgewiesen

Anhörungs-
verfahren ist
durchgeführt

Notwendigkeit
ist nicht
gegeben

Keine Einwände
vorgebracht

Planfeststellungs-
verfahren
fortführen

Planfeststellungsverfahren fortführen

 49

 50

 51

 52

 53

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

	pagex61: 7
	pagex71: 8
	pagex81: 9
	pagex91: 10
	pagex101: 11
	pagex111: 12
	pagex121: 13
	pagex131: 14
	pagex141: 15
	pagex151: 16
	pagex161: 17
	pagex171: 18
	pagex181: 19
	pagex191: 20
	pagex201: 21
	pagex211: 22
	pagex221: 23
	pagex231: 24
	pagex241: 25
	pagex251: 26

