Transformation of ARIS Markup Language to EPML

Jan Mendling’, Markus Niittgens*
TVienna University of Economics and BA
jan.mendling@wu-wien.ac.at
tHamburg University of Economics and Politics
nuettgens@hwp-hamburg.de

Abstract: Heterogeneous and proprietary interchange formats pose a major problem
for business process management. This applies in particular to processes that have
been modelled as Event-Driven Process Chains (EPCs). This paper addresses het-
erogeneous representations of EPCs. We take ARIS Markup Language (AML)', the
proprietary interchange format of ARIS Toolset, as a starting point and discuss its ad-
vantages and shortcomings. Afterwards, we propose a mapping from AML to EPC
Markup Language (EPML) and discuss the implementation of these mappings as a
XSLT transformation program. The mappings reveal that all major AML elements can
be transformed to similar EPML elements. Furthermore, the XSLT program makes
EPC models managed by ARIS Toolset available in EPML format.

1 Introduction

Business process modeling (BPM) is supported by various graphical modeling tools. Cur-
rently, there are at least 14 major tools for BPM available on the market [Je04]. Most of
these tools use heterogeneous proprietary formats for import and export. That is in par-
ticular true for tools that support modelling of Event-Driven Process Chains (EPC). As a
consequence, moving model data from one tool to another requires non-trivial transforma-
tions and detailed knowledge about the data formats of each tool involved. This is a major
road block for integrating different BPM tools. A recent survey by Delphi Group identifies
the lack of a commonly accepted interchange format as one of the major hindrances for
BPM [De03].

This heterogeneity of proprietary data formats has been the major motivation for the defini-
tion of EPML (EPC Markup Language) [MNO02, MNO03, MN(O4a]. EPML aims to serve as
a tool-neutral, XML-based interchange format for EPC business process models. Accord-
ingly, it is related to other tool-neutral interchange formats like OMG’s XML Metadata
Interchange (XMI) [Ob03], the Petri Net Markup Language (PNML) [BCvVH 03] or the
XML Process Definition Language (XPDL) [Wo02] proposed by the Workflow Manage-
ment Coalition. Furthermore, EPML can serve as an intermediary format between hetero-

LARIS, ARIS Toolset, and AML are trademarks of IDS Scheer AG. The use of registered names and trade-
marks in this paper does not imply that such names are free for general use.

27

geneous tools. This is especially economic when the number of tools is large. Instead of
defining bilateral transformations between every pair of tools, the usage of an intermedi-
ary format reduces the number of transformations from O(n?) to O(n) [WHB02]. EPML
is especially suited for this purpose, because it represents EPCs in a generic, tool-neutral
manner. When the interchange format is good to read and understand (for readability see
[SWO01, AN02, MN04b]) software developers can faster write transformations programs
from and to that format, e.g. with XSLT [C199]. EPML has been designed to comply with
the design principle of readability [MNO4a] in order to allow fast and easy development
of transformation programs.

The EPC method [KNS92] is very much related to ARIS (Architecture of Integrated In-
formation Systems) [Sc00] and IDS Scheer AG as one of its major supporters. Today,
many EPC business process models are maintained by the help of ARIS Toolset of IDS
Scheer AG. ARIS Toolset supports import and export of business process models in a pro-
prietary XML-based interchange format which is called ARIS Markup Language (AML)
[ID03]. Although AML also builds on XML it is much more difficult to understand and
to transform than data available in EPML. This is a major hindrance for the AML-based
integration of ARIS Toolset with other tools and for the automated information extrac-
tion from process models available in AML. Accordingly, a transformation from cryptic
AML to EPML is desirable in order to leverage the reuse to EPC model data in differ-
ent applications and to make numerous EPC models available in EPML. Moreover, the
transformation allows insight into the expressive power of EPML relative to AML.

The rest of the paper is structured as follows. In Section 2 we will give an introductory
example to illustrate AML and EPML. Section 3 will present and discuss AML in detail.
Section 4 will introduce EPML and an extension of EPML that is capable to represent
non control flow aspectsof EPC models. In Section 5 we will define transformations from
AML to EPML. Furthermore, we present an XSLT program that automates these transfor-
mations. Section 6 concludes the paper and gives some outlook on future research.

2 AML and EPML by Example

Figure 1 gives the example of a very simple EPC business process model and parts of its
representation both in AML and in EPML. The code wants to give a first impression of
AML and EPML. Here, we only give some short explanations, details are given in the
subsequent sections.

In AML the start event is split up in two syntax element: the object definition (ObjDef)
represents the logical event and the object occurrence (ObjoOcc) the appearance of the log-
ical event in the graphical diagram. Models (Model) are organized in groups (Group) and
control flow arcs are represented by logical cxnDef and graphical CxnOcc elements at-
tached to their source object. In EPML the start event is captured by an event element, the
arc is a separate arc element. EPC models (epc) are arranged in directories (directory).
A logical representation of the start event is declared in a definition right after the root
element. Further details on both formats will be given in the following sections.

28

EPC AML EPML

<AML> <epml>
<Group Group.ID=Group.Root"> <definitions>
Start <ObjDef <definition defId¥111"s
ObjDef .ID="0ObjDef.1234--0----- p--" B
TypeNum="0T EVT"> <name>Start</name>
<AttrDef - </definition>
AttrDef.ID="AttrDef.1235--0----- 501" o
AttrDef.Type="AT NAME"> </definitions>
<AttrValueStart</AttrValue> <directory name="Group.Root"s
</AttrDef> <epc epcId="1">
<CxnDef q
e e P <event id="1" defRef="111">
ToObjDef . IdRef="0bjDef .1237-~0----- p--"> eSS EE e e
. </CxnDef > <graph1;s?
Action </ObjDef> <ieeEiEden
X=1Q" y=uQn
“Model width="250" height="156"/>
Model . ID="Model.1238--0----- u--" </graphics>
Model . Type="NT_EEPC"> /s
<ObjOcc - <arc id="14">
ObjOcc. ID=0bj0cc. 1239 -0 - —x-1 <flow source="1" target="5"/>
ObjDef . TdRef=0bjDef .1234--0-----p-1 TS oew o wieen
SymbolNum=ST EV'> spesiitien s=NiB50 y=l156"/>
<Position Pos.X=0" Pos.Y="0" /> <position x="125" y="312"/>
<Size Size.dX=250" Size.dY="156" /> </graphics>
E d <CxnOcc </arc>
n CxnOcc . ID=Exn0cc . 1240~ -0 -~~~y -1
CxnDef .IdRef=CxnDef.1236--0-----g-4

ToObjOcc.IdRef=0bjOcc.1241--0--x-¥>
<Position Pos.X=125" Pos.Y="156" />
<Position Pos.X=125" Pos.Y='"312" />

</CxnOcc>

<AttrOcc
AttrOcc.ID=AttrOcc.1242--0----- 12vu
AttrTypeNum=AT NAME" />

</ObjoOcec>

Figure 1: An example of AML and EPML representation of an EPC.

3 AML Format of ARIS Toolset

AML and a so-called ARIS-Export DTD is the proprietary XML interchange format of
ARIS Toolset. This section refers to the ARIS-Export.dtd and describes a subset of its
syntax elements and their semantics. For a complete introduction to AML see [ID03].

An AML file starts with an AML element as the root element. General information like time
of creation, name of the ARIS database, language, and font style is stored in subelements
of aML. The Group element, also a subelement of AML, is a container for all model-related
information. In ARIS Toolset each Group element refers to a directory folder of the ARIS
Explorer. A Group must have a unique Group.ID attribute and it may have multiple
AttrDef, ObjDef, Model or further Group subelements as children. When the Group
and its related directory have a name, ARIS Toolset stores it in an AttrDef (attribute def-
inition) subelement whose AttrDef . Type attribute is set to AT_NAME. This is typical for
AML. Every specific information of objects is stored in At trDef or AttrOcc subelements
of these objects (see Figure 2).

Another principle idea of ARIS Toolset reflected in AML is the separation between def-
inition and occurrence: each model element is first defined in an abstract way and later
referenced as an occurrence in a model. This allows one logical object to be included with
e.g. two occurrence in a model. Accordingly, the Model element contains ObjOcc (ob-
ject occurrence) elements that refer to ObjDef (object definition) elements. The ObjDef
element provides an abstract definition of an object. It has a unique ObjDef . ID attribute
and a TypeNum attribute that refers to an object type, like e.g. EPC function or EPC event.
Its LinkedModels.IdRefs attribute provides a list of ID-references to linked models.

29

Group

Group.ID
groups groups
i 4 |
Model ObjDef has = | AttrDef *
L -t
Model.ID ObjDef.ID AttrDef.ID
Model.Type TypeNum has * AttrDef. Type
LinkedModels.IdRefs » CxnDef 7\
CxnDef.ID
X CxnDef.Type
defines ToObjDef.IdRef
describes
. defines graphical
\ \ B representation
ObjOcc CxnOcc
. has*
ObjOcc.ID P CxnOcc.ID
includes | ObjDef.IdRef CxnDef.IdRef
P71 SymbolNum ToObjOcc.ldRef
Size.dX AttrOcc
Size.dY :
Pos.X has P AttrOcc.ID
Pos.Y AttrTypeNum
has

Figure 2: A UML class diagram showing a part of the AML metamodel.

These can be used e.g. for hierarchical refinement of functions. ObjDef elements may
have multiple AttrDef and multiple CxnDef subelements. CxnDef elements represent
arcs between objects. Each CxnDef has a unique CxnDef . ID attribute, a CxnDef . Type
attribute, and a ToObjDef . IdRef attribute which represents the target of the arc. Depend-
ing on the CxnDef . Type attribute the arc may represent control flow, information flow, or
different kinds of semantic association between the objects.

A Model has, among others, a unique Model . ID and a Model . Type attribute. The model
type, like e.g. EPC, refers to the allowed set of objects. The Model element may contain
AttrDef elements to store model specific information and ObjOcc elements to represent
graphical elements in a visual model. An object occurrence has among others a unique
ObjoOcc. ID attribute and a reference to an object definition via the ObjDef . IdRef at-
tribute. The SymbolNum attribute refers to a graphical icon that is used to represent the
object in the visual model. An EPC function would be e.g. represented by a green rect-
angle with radiused edges. An Objocc element may have subelements that describe its
size and its position in the visual model. Furthermore the AttrOcc element defines how
information attached via an AttrDef is visually represented in a model. It has a unique
AttrOcc.ID attribute and an AttrTypeNum attribute that refers to its type. This type
provides a syntactical link between an AttrOcc and an AttrDef element of two as-
sociated ObjoOcc and ObjDef elements. Similar to object definitions ObjOcc may also
have multiple CxnOcc elements. Each of them has a unique CxnOcc. ID attribute and a
CcxnDef . IdRef reference to an arc definition and a reference to the target of the arc via
an ObjOcc.IdRef attribute.

The AML metamodel is not bound to EPCs. It can represent any kind of objects whose

30

type and icon references are understood by the application. This is a very flexible solution
and allows for an easy extension of ARIS Toolset with new kinds of models and objects.
Yet, there are some problems in both the design of the metamodel and its representation in
AML:

Cryptic Element Names: AML uses cryptic names for some of the elements, e.g.
CxnOcc for an arc in a model. This contradicts domain-independent XML guide-
lines proposed e.g. by ANSI X12 [ANO02] or SWIFT [SWO01] that both suggest to use
telling names and no abbreviations. Such naming conventions provide for a better
readability of the data and consequently for a simpler development of applications
using that data.

Arc Representation: AML is to our best knowledge the only XML interchange for-
mat for BPM that uses adjacency sub-element lists representing arcs as child ele-
ments of the source node (see [MNO04b]). This has some conceptual implications.
Using this representation does not allow to have arcs that are not connected to a
source node. Nevertheless, it could make sense to have such arcs when an incom-
plete model should be stored.

Separation of Definition and Occurrence: AML strictly separates abstract definition
of objects and graphical representation in models. This is motivated by using one
logical object multiple times in a model. As a consequence, information is split up
in two XML elements while even if there is actually only one logical object. This
provokes the question whether to put certain information in the definition or in the
occurrence. Some design decisions of AML can be questioned in this context, e.g.
it is not clear why there needs to be a CxnDef attached to an object definition. It
would be sufficient to represent arcs in models only.

Beyond that, there is a flaw in the way how AML is used by ARIS Toolset. The types of
object definitions and the icons of object occurrences are stored in the TypeNum and the
SymbolNum attribute. The values of these attributes are neither enumerated in the DTD,
nor do they have a telling name. An EPC function has e.g. an object type OT_-FUNC and a
symbol type ST_FUNC. As these predefined type values are not documented in the DTD, the
developer has to find out about their meaning by analyzing AML code of process models.
That fact contributes to AML’s limited readability. This shortcoming does not really count
if one wants to exchange models only between different ARIS Toolset implementations.
But as soon as these models have to be moved to other applications or have to be used in a
different context, non-trivial transformations are needed. The limited readability of AML,
then, is a road block for developing transformation programs. The following section will
explain the EPML representation of EPCs and an extension to capture non control flow
aspects of business process models.

31

4 EPML and Non Control Flow Aspects

EPML is a XML-based tool-neutral interchange format for EPC business process models
[MNO2, MNO3, MNO4a]. The epml element is the root of every EPML file. It con-
tains among others a directory element that can nest further directories and epc mod-
els. Each of these models is identified by a unique epcId and a name attribute. An
epc element is a container for multiple control flow elements like event, function,
processInterface, as well as and, or, and xor connectors, and multiple control flow
arc elements. Each of these elements is identified by a unique 14 attribute and a name
element. The function and the processInterface element may include ToProcess
elements. The latter has a 1inkToEpcId attribute representing a logical pointer to a sub-
process of a function or to a subsequent process of a process interface. Each arc has a
flow element whose source and target attributes represent the source and the target of
the control flow arc. All EPC elements may have a graphics element. This element may
contain position, £i11 (not applicable for arcs), 1ine, and font visualization informa-
tion. For control flow elements the position element specifies the x and the y position
of the top left corner of a bounding box. Its size is indicated via the attributes width and
height. Control flow arcs may have multiple position elements, each representing a
point of a polyline. In the most simple case there are two position elements to represent
the start point and the end point of the arc. For further details and further syntax elements
of EPML we refer to [MNO4a].

In general there are two categories of information that are frequently added to a business
process model. First, attributes represented as (name,value) pairs can be used to attach
statistical or configurational data to a process or to process objects. Second, various objects
involved in the execution of a business process are frequently displayed as icons in the
visual process model. Dedicated elements of EPML have been defined to represent both
these kinds of information (see [MNO4a]). Yet, a clear separation of textual attributes
and graphical object icons like proposed by AML is also desirable for EPML in order to
provide for a better tool orientation. As a consequence, we propose in the following some
modifications to the way such additional information is represented in EPML.

The new Version 1.1 of the EPML Schema renames the former elements view, unit,
and unitReference to attributeTypes, attributeType as well as attribute el-
ements, respectively. Arbitrary attributeTypes can be declared as top-level elements
of an EPML file. Single attribute elements can be attached to epc elements and to
all its child elements like e.g. function elements. The attributeType may have a
description and it must have a unique typeName attribute. This type name is refer-
enced in the typeRef attribute of an attribute element. The attribute type declaration
provides for a consistent naming of extension attributes used by individual tools.

Moreover, the new EPML version adds non-control flow elements which can be displayed
in a graphical EPC process model. Figure 3 shows an example of these new EPC subele-
ments. A participant uses an application and the application uses a certain data field e.g.
to execute a task. The relationship is declared in a definition element at the top of the
EPML file.

32

<definition defId=“0“
type="relationshipType"“>
Participant <names>uses</names>
</definition>
uses <epc epcld="1" name=“example“>
<participant id=“1“>
<name>Participant</name>
</participants>

Application a1 defRefovon
from="1" to="2%/>
<application id=“2“>
uses <name>Application</name>
</application>
! <relation id="“23" defRef="0"
DataField from="2% to="3"/>

<dataField id="“3"“>
<name>DataField</name>
</dataField>

Figure 3: Example of new EPC subelements.

In contrast to ARIS Toolset that offers about 100 different icons and object type, EPML
restricts itself to three objects: dataField, participant, and application. These
three process objects are also found in both XPDL [W002] and, with different names, the
Architecture of Integrated Information Systems (ARIS) [Sc00]. All these three elements
have a name and a description element and they are identified by a unique id attribute.
Furthermore, they may have graphics and attribute elements. Relationships between
these elements or between these elements and control flow elements are represented by
relation elements. A relation is a directed edge between an element whose id is
referenced in the from attribute and another element referred to in the to attribute. The
relation element is related to the arc element. Yet, the syntactical distinction between
both allows to easily identify control flow with arc elements. The relation elements
may have multiple graphics elements. They can also contain attribute elements.
Furthermore, the defRef attribute of a relation must reference a def1d of a definition
element. The definition is meant to describe the semantics of the relationship. Including
these new elements an epc may now have function, event, processInterface, and,
or, xor, and arc elements as well as participant, application, dataField, and
relation elements as children.

5 Transformation from AML to EPML

In this section we will present the transformation from AML to EPML. This transforma-
tion has been implemented as an XSLT program. For further information see Attp.//wi.wu-
wien.ac.at/"mendling/EPML. In the following we will illustrate the transformation sub-
divided into five aspects: generation of positive integer identifiers, generation of EPML
header fields, mapping of navigation structure, mapping model elements, and mapping

33

model element subelements (see Table 1). To avoid confusion we use the namespace pre-
fixes aml, epml, and xs1 in the text.

Table 1: Mapping of AML elements to EPML elements

AML EPML

aml :Model.ID epml :epcId

aml :ObjDef . Id epml :defId

aml :0bjOcc. Id epml:id

aml :AttrDef.Type epml:defId

aml :0bjDef epml:definition
aml :AttrDef epml:attributeType
aml : Group epml :directory
aml :Model epml :epc

aml :0bjOcc different EPML elements
aml : CxnOcc epml:arc or epml:relation
aml :Pos.X epml : x
aml:Pos.Y epml:y
aml:Size.dX epml:width

aml :Size.dY epml : height

EPML requires identifying attributes to have positive integer values. As AML identifiers
are of string type there has to be a mapping. Figure 4 illustrates how a list of (identi-
fier,position) pairs can be generated. An XSLT node set of e.g. all aml:0bjoOcc is pro-
cessed via a xsl:for-each loop. Each pair of an identifier and its position in the node
set is written to the list. Later in the transformation program this list can be queried via a
xsl:select of an XSLT xs1 :value-of statement (see Figure 4).

<xsl:variable name="ObjOccTable">

<xgl:for-each select="//* [name ()="'0bjOcc']">
<xsl:value-of select="@0bjOcc.ID" />
<xsl:value-of select="concat (' ', position(),' ")" />

</xsl:for-each>
</xsl:variable>

<xsl:value-of select="substring-before (substring-after (

substring-after ($ObjOccTable, $Id),"' '),' ")" />

Figure 4: A list of ObjOcc.ID-Position pairs and a related query.

EPML header fields include definition and attribute type elements. First, if there are two
or more aml :ObjOcc elements that share an aml:OccDef element a corresponding def-
inition element has to be included to represent such a relationship. Subelements of EPC
models have to reference the epml : defId attribute of a definition in their epml : defRef

34

attribute. Second, definition elements have to be added for non control flow relation-
ships. Accordingly, epml:relation elements reference the respective epml:defId
in their epml:defRef attribute. Third, attribute type elements have to be added for all
types of attributes used in the EPC models. These attributes have to reference the correct
epml: typelId in their epml: typeRef attribute. For all these elements and their identi-
fiers dedicated (identifier,position) lists have to be stored in variables similar as described
above for aml : ObjOcc. ID attributes.

The navigation structure of AML and EPML is very similar. In AML the aml :group
element corresponds to the epml :directory element. Moreover, the aml:model el-
ement is mapped to an epml:epc element. The aml:Model.ID attribute maps to an
epml : epcId attribute following the mechanism described above concerning identifiers.
Figure 5 illustrates how the name of a directory or a model is retrieved from an AML
element. It is stored in the aml :AttrValue element of an aml:AttrDef. The corre-
sponding aml : AttrDef . Type is AT_NAME.

<xsl:attribute name="rame">
<xsl:value-of select="./* [name ()='AttrDef']/
* [name () ='AttrValue'] [../@AttrDef.Type="'AT NAME']" />
</xsl:attributes>

Figure 5: Mapping names from AML to EPML.

The subelements of epml : epc are derived from aml : ObjOcc and aml : CxnOcc elements.
The type of aml : 0ObjOcc elements can be identified via its aml : SymbolNum attribute and
the aml : TypeNum attribute of its corresponding aml : ObjDef element. Table 2 gives an
overview of the mapping rules. For the aml:CxnoOcc element two mappings have to be
distinguished. First, if the source and the target of the edge are both EPC control flow
elements, then the edge maps to an epml:arc element. Second, if at least the source
or the target of the edge is not an EPC control flow element, then the edge maps to an
epml : relation element.

The different subelements of epml : epc may contains further information. We use the
case of an epml: function to explain the mappings. Similar to identifiers and names
of directories as described above the id attribute and the name element of a function can
be generated from the AML elements. Moreover, the graphics element of a function
includes position information. The corresponding epml :x, epml :y, epml :width, and
epml : height attributes can be generated using aml : Pos .X, aml : Pos .Y, aml : Size.dX,
and aml:Size.dY attributes, respectively. Linked EPC business process models captured
in the epml : 1inkToEpcId attribute can be extracted from aml : LinkedModels.IdRefs
attributes. Finally, aml :AttrDef and aml : AttrOcc elements map to epml:attribute
elements.

The proposed mapping from AML to EPML permits the following conclusions. First,
EPML is capable to capture the essential AML concepts without loss of information. This
has been demonstrated by the implementation of the described XSLT transformation pro-
gram. Second, EPML uses a more intuitive representation of EPCs than AML. This rather
subjective statement is supported by two facts: EPML uses telling element names inspired

35

Table 2: XSLT-Mapping of AML’s ObjOcc elements to EPML elements

AML’s ObjOcc EPML

aml : TypeNum='OT_FUNC’ and function
aml : SymbolNum!='ST_PRCS_IF’
aml : TypeNum='OT_FUNC’ and processInterface
aml : SymbolNum='ST_PRCS_IF’

aml : TypeNum='OT_EVT’ event
aml : TypeNum='ST_OPR_XOR._1’ XOor
aml : TypeNum='ST_OPR_AND_1’ and
aml : TypeNum='ST_OPR_.OR_1' or

contains (aml:TypeNum, ' .ORG’) or participant

contains (aml:TypeNum, ' _PERS')
contains (aml: TypeNum, ' _EMPL')

contains (aml:TypeNum, ' _APP’) or application

contains (aml:TypeNum, ' .CMP’) or

contains (aml:TypeNum, ' MOD’) or
contains (aml: TypeNum, ' _PACK')

contains (aml:TypeNum, ' .CLS’) or dataField
contains (aml:TypeNum, ' . INFO’) or
contains (aml:TypeNum, ' KPI’) or
contains (aml:TypeNum, ' .LST’) or
contains (aml:TypeNum, ' .OBJ’) or
contains (aml: TypeNum, ' _-TERM')

by the generic names of EPC syntax elements. Furthermore, EPC models transformed to
EPML are less than half as large as the original AML files. This intuitive and generic
representation of EPCs in EPML contributes to its readability. As a consequence, build-
ing EPML-based applications is easier than relying on AML. We estimate that thoroughly
understanding and deciphering AML’s names and abbreviations takes at least half a week,
considering that AML object types and symbol types are not documented in the AML man-
ual. Third, the transformation program makes available EPC models managed by ARIS
Toolset for EPML-based applications, like EPC Tools [CK04] or EPML2SVG [MBNO04].

6 Conclusion and Future Work

In this paper we presented an approach to transform EPC business process models avail-
able as files conforming to the ARIS Markup Language (AML) to EPC Markup Lan-
guage (EPML). This transformation has been implemented as an XSLT program (see
http://wi.wu-wien.ac.at/"mendling/EPML). Such a transformation is on the one hand im-

36

portant from a pragmatic point of view because many EPC business process models are
managed by the help of ARIS Toolset and a transformation program makes these models
available for EPML-based applications, like EPC Tools [CK04] or EPML2SVG [MBNO04].
On the other hand the transformation offers insight into the different representational al-
ternatives for EPCs in XML. EPML uses a more generic and more readable representation
for EPCs than AML. This is helpful when building EPML-based applications. Beyond its
readability, EPML is still capable to capture all essential model elements that are included
in AML. Future research will be dedicated to the analysis of XML-based representation
of EPCs in further business process management tools. This will include the development

of related transformation programs to leverage EPML as a tool-neutral interchange format
for EPCs.

Acknowledgement. The authors would like to thank the anonymous reviewers for there
comments on an earlier version of this paper, which helped to improve the presentation of
the ideas.

Disclaimer. We, the authors and the associated institutions, assume no legal liability or
responsibility for the accuracy and completeness of any information about ARIS Toolset
and AML contained in this paper. However, we made all possible efforts to ensure that the
results presented are, to the best of our knowledge, up-to-date and correct.

References

[ANO2] ANSI X12: ASC X12 Reference Model for XML Design. Technical Report Type I1 - ASC
X12C/TG3/2002-xxx. ANSI ASC X12C Communications and Controls Subcommittee.
July 2002.

[BCvH 03] Billington, J., Christensen, S., van Hee, K. E., Kindler, E., Kummer, O., Petrucci,
L., Post, R., Stehno, C., and Weber, M.: The Petri Net Markup Language: Concepts,
Technology, and Tools. In: W. M. P. van der Aalst and E. Best (eds.), Applications and
Theory of Petri Nets 2003, 24th International Conference, ICATPN 2003, Eindhoven, The
Netherlands. volume 2679 of Lecture Notes in Computer Science. pages 483-505. 2003.

[CK04] Cuntz, N. and Kindler, E.: On the semantics of EPCs: Efficient calculation and simulation.
In: M. Niittgens and F. J. Rump (eds.), Proceedings of the 3rd GI Workshop on Business

Process Management with Event-Driven Process Chains (EPK 2004), Luxembourg, Lux-
embourg. 2004.

[C199] Clark, J.: XSL Transformations (XSLT) Version 1.0. W3C Recommendation 16 Novem-
ber. World Wide Web Consortium. 1999.

[De03] Delphi Group: BPM 2003 — Market Milestone Report, White Paper. 2003.

[ID03] IDS Scheer AG: XML-Export und -Import (ARIS 6 Collaborative Suite Version 6.2 Schnitt-
stellenbeschreibung). ftp://ftp.ids-scheer.de/pub/ARIS/HELPDESK/EXPORT/. Juni 2003.

[Je04] Jenz und Partner (ed.): Business Process Modeling Tools, accessed on 3th July 2004.
http://www.jenzundpartner.de/Resources/Product_Watchlist/product_watchlist.htm. 2004.

[KNS92] Keller, G., Niittgens, M., and Scheer, A. W.: Semantische Prozessmodellierung auf der
Grundlage “Ereignisgesteuerter Prozessketten (EPK)”. Technical Report 89. Institut fiir
Wirtschaftsinformatik Saarbriicken. Saarbriicken, Germany. 1992.

37

[MBNO04] Mendling, J., Brabenetz, A., and Neumann, G.: Generating SVG Graphics from EPML
Processes. In: M. Niittgens and F. J. Rump (eds.), Proceedings of the 3rd GI Workshop
on Business Process Management with Event-Driven Process Chains (EPK 2004), Luxem-
bourg, Luxembourg. 2004.

[MNO2] Mendling, J. and Niittgens, M.: Event-Driven-Process-Chain-Markup-Language (EPML):
Anforderungen zur Definition eines XML-Schemas fiir Ereignisgesteuerte Prozessketten
(EPK). In: M. Niittgens and F. J. Rump (eds.), Proc. of the Ist GI-Workshop on Busi-
ness Process Management with Event-Driven Process Chains (EPK 2002), Trier, Germany.
pages 87-93. 2002.

[MNO3] Mendling, J. and Niittgens, M.: XML-basierte Geschaftsprozessmodellierung. In: W.
Uhr and W. Esswein and E. Schoop (eds.), Proc. of Wirtschaftsinformatik 2003 / Band 11,
Dresden, Germany. pages 161 —180. 2003.

[MNO4a] Mendling, J. and Niittgens, M.: Exchanging EPC Business Process Models with EPML.
In: J. Mendling and M. Niittgens (eds.), Proc. of the 1st GI-Workshop XML4BPM - XML

Interchange Formats for Business Process Management, Marburg, Germany, March, 2004.
pages 61-79. 2004.

[MNO4b] Mendling, J. and Niittgens, M.: XML-based Reference Modelling: Foundations of an
EPC Markup Language. In: J. Becker and P. Delfmann (eds.), Referenzmodellierung -
Proceedings of the 8th GI-Workshop on Reference Modelling, MKWI Essen, Germany.
pages 51-71. 2004.

[Ob03] Object Management Group: XML Metadata Interchange (XMI). Specification, Version
2.0. Object Management Group. May 2003.

[Sc00] Scheer, A. W.: ARIS business process modelling. Springer Verlag. 2000.

[SWO1] SWIFT: SWIFT Standards XML Design Rules Version 2.3. Technical Specifica-
tion (http://xml.coverpages.org/EBTWG-SWIFTStandards-XML200110.pdf). Society for
Worldwide Interbank Financial Telecommunication. 2001.

[WHBO02] Wiistner, E., Hotzel, T., and Buxmann, P.: Converting Business Documents: A Classifi-
cation of Problems and Solutions using XML/XSLT. In: Proceedings of the 4th Interna-
tional Workshop on Advanced Issues of E-Commerce and Web-based Systems (WECWIS).
pages 61-68. 2002.

[Wo02] Workflow Management Coalition: Workflow Process Definition Interface XML Process
Definition Language. Document Number WFMC-TC-1025, October 25, 2002, Version
1.0. Workflow Management Coalition. 2002.

38

