
Information Systems and e-Business Management manuscript No.
(will be inserted by the editor)

EPC Markup Language (EPML)

An XML-Based Interchange Format for Event-Driven
Process Chains (EPC)

Jan Mendling1, Markus Nüttgens2

1 Department of Information Systems and New Media, Vienna University of Eco-
nomics and Business Administration, A-1180 Vienna, Austria
(e-mail: jan.mendling@wu-wien.ac.at)

2 Chair of Information Systems, University of Hamburg, D-20146 Hamburg, Ger-
many
(e-mail: nuettgens@hwp-hamburg.de)

Key words Business Process Management, Interchange Formats, Event-Driven
Process Chains (EPC), XML, EPML

The date of receipt and acceptance will be inserted by the editor

Abstract This article presents an XML-based interchange format for Event-
Driven Process Chains (EPC) that is called EPC Markup Language (EPML).
EPML builds on EPC syntax related work and is tailored to be a serial-
ization format for EPC modelling tools. Design principles inspired by other
standardization efforts and XML design guidelines have governed the spec-
ification of EPML. After giving an overview of EPML concepts we present
examples to illustrate its features including flat and hierarchical EPCs, busi-
ness views, graphical information, and syntactical correctness.

1 Introduction

Today business process modelling is mainly used in two different contexts:
business analysts use process models for documentation purposes, process
optimization and simulation; information system analysts use them on the
middleware tier in order to glue together heterogeneous systems. For both
kinds of application analysts can choose from a variety of tools in order to
support modelling of processes. Gartner Research (2002) distinguishes 35
major vendors of such software. Heterogeneity of concepts and data formats
cause interoperability problems between these tools. A survey of Delphi
Group (2003) identifies the lack of a common and accepted interchange

2 Jan Mendling, Markus Nüttgens

format for business process models as the major encumbrance to business
process management.

Event-Driven Process Chains (EPC) introduced by Keller et al. (1992)
are a wide-spread method for business process modelling. Keller and Teufel
(1998) describe the application of EPCs in the context of the SAP refer-
ence model. Motivated by the heterogeneity of business process modelling
tools, a proposal for an interchange format for EPCs has been developed by
Mendling and Nüttgens (2002, 2003b,c). It is called EPC Markup Language
(EPML). In the domain of business process modelling the establishment of
a standardized representation may be even more beneficial than in other ar-
eas, because it can be used in two different directions: horizontal interchange
simplifies the integration of BPM tools of the same scope. Vertical inter-
change leverages the integration of simulation engines, execution engines,
and monitoring engines as intended by interface definitions of the WfMC
(2002). Standardization might be a crucial step to close the engineering gap
between business process modelling and implementation.

This article gives an overview of EPML. Section 2 introduces Event-
Driven Process Chains (EPCs) as a method for business process modelling,
their syntactical elements, and related research on EPC syntax. Section 3
discusses EPML general design principles and XML design guidelines that
have guided the specification. Section 4 explains the structure of EPML and
how the different syntax elements relate to each other. Furthermore, it is
outlined why edge element lists are used to describe EPC process graphs
in EPML. Section 5 introduces specific aspects of EPML illustrated by
examples including flat EPCs, hierarchies of EPCs, business perspectives,
graphical representation, and syntactical correctness. Section 6 concludes
the paper and gives an outlook on future work.

2 Event-Driven Process Chains (EPCs)

In Keller et al. (1992) the EPC is introduced as a modelling concept to rep-
resent temporal and logical dependencies in business processes. Elements of
EPCs may be of function type (active elements), event type (passive ele-
ments), or of one of the three connector types AND, OR, or XOR. These
objects are linked via control flow arcs. Connectors may be split or join
operators, starting either with function(s) or event(s). The four resulting
combinations are discussed for each of the three connectors yielding twelve
possibilities. OR-Split and XOR-Split are prohibited subsequent to events.
This restriction refers to the semantics of events as passive elements which
are unable to determine the functions that should follow. Based on practical
experience with the SAP Reference model, Keller and Meinhardt (1994) in-
troduce process interfaces and hierarchical functions as additional element
types of EPCs. These two elements permit to link different EPC models:
process interfaces can be used to point from the end of a process to a sub-
sequent process; hierarchical functions point from a function to a refining

EPC Markup Language (EPML) 3

sub-process. Keller and Teufel (1998), Rump (1999), and van der Aalst
(1999) provide formal approaches towards EPC syntax definition. Building
on this work, Nüttgens and Rump (2002) introduce the concepts of a flat
EPC Schema and a hierarchical EPC Schema. A flat EPC Schema is defined
as a directed and coherent graph with cardinality and type constraints. A
hierarchical EPC Schema is a set of flat or hierarchical EPC Schemas. Hier-
archical EPC Schemas consist of flat EPC Schemas and hierarchy relations
linking functions or process interface to other EPC Schemas. Figure 1 shows
the example of a hierarchical EPC Schema for the waterfall model for soft-
ware engineering as proposed in Boehm (1976). It consists of two processes:
the List requirements function of the Waterfall Model EPC is linked via a
hierarchical relation to the List requirements EPC process which describes
a sub-process for this function.

Most of the formal contributions on EPCs have been focused on seman-
tics, especially on the semantics of OR connectors. The translation of EPC
process models to Petri Nets plays an important role in this context. Exam-
ples of this research can be found in Chen and Scheer (1994), Langner et al.
(1998), van der Aalst (1999), Rittgen (2000), and Dehnert (2002). In van der
Aalst et al. (2002) the so called non-locality of join-connectors is presented
as the major point of discussion. Recently, this aspect has been formalized
by Kindler (2003). In this paper we will focus on EPC syntax based on
the definition in Nüttgens and Rump (2002). Work on EPML started off in
2002 mainly inspired by heterogeneity of business process modelling tools
and potential efficiency gains through the use of an intermediary format as
described in e.g. Wüstner et al. (2002). As a first step, comparable efforts
towards standardized interchange formats in the area of Petri Nets, BPML,
and UML have been analyzed in Mendling and Nüttgens (2002). Work on
syntactical correctness led to a revised EPC syntax definition based on im-
plicit arc types and related syntax properties in Mendling and Nüttgens
(2003a). In Mendling and Nüttgens (2003b) an analysis on the suitability
of different XML schema languages for EPC syntax validation is presented.
A proposal for an EPML schema is presented in Mendling and Nüttgens
(2004). Mendling et al. (2004b) extend this version with elements to de-
scribe organizational entities, data elements, and applications. The EPML
schema is available at http://wi.wu-wien.ac.at/˜mendling/EPML.

3 Design Principles

In order to define a platform independent XML-based interchange format
for EPC models, this global goal has to be translated into general design
principles. These provide the foundation for design decisions. XML design
guidelines help to develop XML Schemas in a standardized way and with
certain quality properties.

4 Jan Mendling, Markus Nüttgens

Event

Function

Process Interface

Connectors

Control Flow Arc

EPC Symbols

Participant

Application

Data

Relation

Start

List
requirements

Requirements
verified

Specification

Specification
verified

Additional
Requirements

found

Design

Design
verified

New
Design Aspect

found

Implementation

Implementation
tested

New
Implementation

aspect found

Integration

Integration
tested

New
Integration

aspect found

Start

Interview
Potential

User

Requirements
verified

Further
Interviews

needed

Analyst

Minute

Waterfall Model EPC List Requirements EPC

Figure 1 EPC representing the waterfall model for software engineering.

EPC Markup Language (EPML) 5

3.1 EPML General Design Principles

In order to put EPML design principles into context, we present design prin-
ciples proposed for the ASC X12 Reference Model for XML Design (X12) by
ANSI X12 (2002) and Petri Net Markup Language (PNML) by Billington
et al. (2003). X12 is a specification describing a seven layer model for the
development of business documents. The definition of X12 was guided by
four high level design principles: alignment with other standards, simplic-
ity, prescriptiveness, and limit randomness. Alignment with other standards
refers to the specific domain of business documents where other organiza-
tions including OASIS and UN/CEFACT, World Wide Web Consortium,
and OASIS UBL also develop specifications. Simplicity is a domain inde-
pendent principle. It demands features and choices to be reduced to a rea-
sonable minimum. Prescriptiveness is again related to business documents.
This principle recommends one to define rather more precise and specific
business documents than too few which are very general. Limit Random-
ness addresses certain constructs in XML schema languages that provide
multiple options and choices. These aspects shall be limited to a minimum.
The PNML approach by Billington et al. (2003) for Petri Nets is governed
by the principles flexibility, no ambiguity, and compatibility. Flexibility is
an important aspect for Petri Nets, because all kinds of currently discussed
and prospective classes of Petri Nets shall be stored. This is achieved via
labels which can be attached to arcs and nodes. No ambiguity refers to the
problem of standardized labels. For this purpose Petri Net Type Definitions
are used to define legal labels of a particular net type. Compatibility deals
with the problem of semantically equivalent labels used by different Petri
net types. These overlapping labels shall be exchangeable.

The EPML approach by Mendling and Nüttgens (2003c) reflects these
different design principles. It is governed by the principles of readability,
extensibility, tool orientation, and syntactical correctness . Readability ex-
pects EPML elements and attributes to have intuitive and telling names.
This is important because EPML documents will be used not only by appli-
cations, but also by humans who write e.g. XSLT-scripts that transform be-
tween EPML and other XML vocabularies. Readability is partially related
to simplicity and limited randomness of the X12 approach. Extensibility
reflects a problem that is analogous to different types of Petri nets. Mod-
elling of different business perspectives and views is an important aspect of
BPM. EPML can express arbitrary perspectives instead of supporting a pre-
defined set. Tool orientation deals with graphical representation of EPCs.
This is a crucial feature, because BPM tools provide a GUI for developing
models. EPML is able to store various layout and position information of
EPC elements. Finally, syntactical correctness summarizes aspects dealing
with EPC syntax elements and syntax constraints. As shown in Mendling
and Nüttgens (2003b) XML schema languages do not provide a solution for
this issue in the general case.

6 Jan Mendling, Markus Nüttgens

3.2 XML Design Guidelines

Basically, two general approaches towards XML design guidelines can be
distinguished: a theoretical one building on normal forms and information
content measures like entropy; and a pragmatic one giving advise on when
to use which XML language concepts and how to name elements and at-
tributes.

The theoretical approach builds on insights from database theory. For re-
lational database models concepts like functional dependency (FD), multi-
value dependency (MVD), and join dependency (JD) have been formally de-
scribed. For an overview see e.g. Biskup (1998). In order to derive schemas
with good properties, decomposition algorithms have been developed to
achieve different levels of normal forms. These normal forms avoid redun-
dancies and anomalies from operations on relational data. Analogously, Em-
bley and Mok (2001) as well as Arenas and Libkin (2002) present a normal
form for XML documents called (XNF). In Arenas and Libkin (2003) an
information-theoretic approach is presented that bridges the conceptual gap
between relational and XML representations. A theory is developed building
on entropy measures that brings forth a concept-independent understanding
of the interrelation of redundancies and normal forms. A schema is called
well-designed when it cannot contain instance data with an element that
has less than maximum information in terms of conditional entropy. From
this it can be shown that a schema which has only FDs and neither MVDs
nor JD is well-designed iff (if and only if) it is in Boyce-Codd-Normal Form.
FD for XML schemas occur when paths from the root to nodes in the XML
tree depend upon other paths. Analogously, Arenas and Libkin (2003) show
that an XML schema subject to FDs is well-designed iff it is in XNF. A
violation of XNF implies redundancies in the sense that a path may reach
different nodes, but that these nodes all have the same value. Such viola-
tions can be cured by a normalization algorithm also presented in Arenas
and Libkin (2003) that moves attributes and creates new elements until
XNF is achieved. Consequently, this implies for XML interchange format
design that there should be no XPath (Clark and DeRose (1999)) state-
ment that always returns a set of nodes all containing the same value. Then
the XNF condition is fulfilled and the schema is well-designed.

Pragmatic approaches deal with extensibility and design leeway in XML.
ISO (2001), SWIFT (2001), and ANSI X12 (2002) establish design rules
in order to minimize ambiguity and maximize communicability of XML
schemas. Pragmatic XML design guidelines include conventions for names;
for the choice of style between elements and attributes; for the use of special
schema language features; and for namespace support. Naming conventions
refer to the choice of element and attribute names. ISO, SWIFT, and X12
agree on using English words for names. Names may also consist of mul-
tiple words in so-called Upper Camel Case (no separating space, each new
word beginning with a capital letter). According to SWIFT and ISO, ab-
breviations and acronyms shall be limited to a minimum. Style conventions

EPC Markup Language (EPML) 7

govern the choice between elements and attributes. X12 recommends the
usage of attributes for metadata and elements for application data. In this
context, it is a good choice to understand identifying keys as metadata and
put them into attributes. That allows a DTD conforming usage of the ID,
IDREF, and IDREFS data types and a respective key or keyref declara-
tion in a W3C XML Schema (Beech et al. (2001) and Biron and Malhorta
(2001)). Furthermore, ANSI X12 (2002) considers attributes to provide a
better readability of content. Therefore, content that can never be extended
may also be put into attributes. Schema conventions recommend one to use
only a reduced set of the expressive power provided by an XML schema
language. X12 advises one to avoid mixed content, substitution groups, and
group redefinition from another schema. One should use only named con-
tent types and built-in simple types, to name but a few aspects. We refer
to ANSI X12 (2002) for a broader discussion. Namespace conventions refer
to the usage of namespaces in instance documents. X12 recommends one
to use explicit namespace references only at the root level. Theoretical and
pragmatic approaches offer complementary guidelines for the development
of “good” XML schemas. The guidelines presented have contributed to the
EPML proposal.

4 Structure of EPML

Figure 2 gives an overview of EPML and its syntax elements. The epml

element is the root element of an EPML file. Like all other elements it
may have documentation or toolInfo child elements. These elements may
contain data that has been added by the editor of the EPML file or tool
specific data attached by an application. They are defined in the schema
as anyType which means that they may hold arbitrary data. It is recom-
mended to add only such application specific data that has relevance for
the internal storage of models in a certain tool, but which does no influ-
ence the graphical rendering of a model. General graphic settings may be
defined in the graphicsDefault element. These apply for all EPC elements
as long there is nothing else specified in an elements graphics sub-element.
The coordinates element is meant to explicate the interpretation of coor-
dinates annotated to graphical elements of an EPC. The xOrigin attribute
may take the values leftToRight or rightToLeft, and the yOrigin attribute
can hold topToBottom or bottomToTop. It is recommended to always use the
leftToRight and topToBottom settings which most of the tools assume. Yet,
there are still exceptions like Microsoft Visio that has its y-axis running
from the bottom of the screen upward. It is recommended to transform
these coordinates when storing EPC models in EPML.

In Nüttgens and Rump (2002) an EPC Schema Set is defined as a set
of hierarchical EPC Schemas. Each of these hierarchical EPC Schemas con-
sists of a flat EPC Schema which may have hierarchy relations attached
with functions or process interfaces. In EPML a hierarchy of processes is

8 Jan Mendling, Markus Nüttgens

epml
 documentation?
 toolInfo?
 graphicsDefault?
 fill? (color, image, gradient-color, gradient-rotation)
 line? (shape, width, color, style)
 font? (family, style, weight, size, decoration, color,
 verticalAlign, horizontalAlign, rotation)
 coordinates (xOrigin, yOrigin)
 definitions?
 definition* (defId)
 name
 description
 attributeTypes?
 attributeType* (typeId)
 description
 directory (name)
 directory* (name) ...
 epc* (epcId, name)
 attribute* (typeRef, value)
 event* (id, defRef) ...
 function* (id, defRef)
 name
 description?
 graphics?
 position? (x, y, width, height)
 fill? (color, image, gradient-color, gradient-rotation)
 line? (shape, width, color, style)
 font? (family, style, weight, size, decoration, color,
 verticalAlign, horizontalAlign, rotation)
 syntaxInfo? (implicitType)
 toProcess? (linkToEpcId)
 attribute* (typeRef, value)
 processInterface* (id, defRef) ...
 and* ...
 or* ...
 xor* ...
 arc* ...
 application* ...
 participant* ...
 dataField* ...
 relation* ...

Figure 2 EPML elements as a syntax tree. An asterisk denotes multiplicity of
n, question marks refer to optional elements, attributes are put in brackets. The
directory element may hold further directory and epc elements. The other epc
sub-elements have similar child elements as the function element.

organized by the help of directories. A directory element has a name at-
tribute and it can contain other directories and/or EPC models. Each epc

element is identified by an epcId attribute and has a name attribute. The
epcId can be referenced by hierarchy relations attached to functions or pro-
cess interfaces. In a hierarchy of EPC models there may be the problem of
redundancy. An EPC process element might be used in two or more EPC
models. In such a case there should be a place to store it once and reference
it from the different models. This is achieved via the definitions element.
It serves as a container for control flow elements that are used more than
once in the model hierarchy. The attributeTypes element allows additional

EPC Markup Language (EPML) 9

information to be defined. An attributeType element can specify such data
that is not directly captured by standard elements of EPML. This may be
important to model business views and perspectives on a process. Further
EPML syntax elements that are also included in Figure 2 are introduced in
the following section.

5 EPML in Detail

5.1 Flat EPCs in EPML

This section describes how a simple flat EPC process is encoded in EPML.
Figure 3 shows the example of an Online Shopping process. The process
starts with the event Start Online Shopping which is represented by an
EPC event element. Afterwards the customer has to decide on a list of
products that she wants to buy. This is modelled via a function element.
It is a syntactical constraint of EPCs that functions and events have to
alternate. The subsequent event triggers a loop that is modelled via a cycle
between two xor elements. The loop continues until all products of the list
have been found and added to the shopping cart. Finally, all products have
been added to the shopping cart. A processInterface element Continue
with Order Process points to a continuing process.

Figure 3 also illustrates the EPML representation of this EPC process.
The root tag of every EPML file is epml and it must belong to the EPML
namespace. In the example the directory tag contains one EPC model which
has the name Online Shopping and the id attribute set to 1. The EPC ele-
ment serves as a container of an unordered set of EPC control flow elements.
All of the latter have a unique id attribute. The name element of events
and functions carry the text which is displayed as the label of the respective
symbol in the process diagram. Arcs are modelled as individual elements
with source and target attributes. This way of process graph representation
is called edge element list according to Mendling and Nüttgens (2004). It
is also used by Petri Net Markup Language (PNML) as described in We-
ber and Kindler (2002) or XML Metadata Interchange for UML models
defined by OMG (2003) to name but a few. In contrast languages like the
Business Process Execution Language for Web Services (BPEL4WS) spec-
ified by Andrews et al. (2003) use a block-oriented representation. AML,
the XML format of ARIS Toolset defined by IDS Scheer AG (2001) uses
adjacency sub-element lists that are attached to the source node of an arc.
Arcs and connectors are not required to have a name. The connectors and

and or are not included in the example of Figure 3. Syntactically, they are
used similarly to the xor connector.

5.2 Hierarchical EPCs in EPML

Consider an extension of the example above. After the Online Shopping
process has been modelled, the function Search Product is refined by a

10 Jan Mendling, Markus Nüttgens

All
Products

in Cart

Not all
Products

in Cart

Add Product to
Shopping Cart

Online Shopping

Search
Product

Not all
Products
in Cart

Product
found

Determine
List of Products

Start Online
Shopping

<?xml version ="1.0" encoding ="UTF-8"?>
<epml:epml xmlns:epml ="http://www.epml.de">

<coordinates
xOrigin ="leftToRight"
yOrigin ="topToBottom "/>

<directory name ="Root">

<epc epcId ="1"
name ="Online Shopping ">

<event id ="1">
<name>Start Online Shopping</name>

</event>

<arc id ="10">
<flow source ="1" target ="2"/>

</arc>

<function id ="2">
<name>Determine List of Products</name>

</function >

<arc id ="11">
<flow source ="2" target ="3"/>

</arc>

<event id ="3">
<name>Not all Products in Cart</name>

</event>

<arc id ="12">
<flow source ="3" target ="4"/>

</arc>

<xor id ="4"/>

<arc id ="13">
<flow source ="4" target ="5"/>

</arc>

...

<processInterface id ="111">
<name>Continue with Order Process</name>

...

</processInterface >

</epc>

</directory>

</epml:epml>

Continue
with Order

Process

Figure 3 Flat EPC in graphical and EPML representation.

Search Product sub-process. This means that the EPML file now includes
a second process and a hierarchical relation between the function and the
sub-process. Figure 4 illustrates the EPML representation of EPC processes
with hierarchy relations. The hierarchy relation is described via sub-element
of the function called toProcess. That element has a linkToEpcId attribute
pointing to the Product Selection process which has an epcId attribute of 2.
Hierarchy relations of processInterfaces are also described via a toProcess

element. In that situation the process interface at the end of a process
points to a start process interface of another process. The epcId attribute
of a process must be unique for the whole EPML file. EPC models may
be organized in a hierarchy of directory elements. Hierarchy relations be-
tween processes are allowed independently from where they are placed in
the directory hierarchy, as long as hierarchy relations are acyclic. In order
to avoid redundancies, multiple occurrences of a function, an event, or a
process interface can be defined in the definitions block. In the example

EPC Markup Language (EPML) 11

All
Products

in Cart

Not all
Products

in Cart

Add Product to
Shopping Cart

Online Shopping

Search
Product

Not all
Products
in Cart

Product
found

Determine
List of Products

Start Online
Shopping

<?xml version ="1.0" encoding ="UTF-8"?>
<epml:epml xmlns:epml ="http://www.epml.de">
 ...

<definitions >
<definition defId ="001">

<name>Not all Products in Cart</name>
</definition>

</definitions >

<directory name ="Root">
<epc epcId ="1"

name ="Online Shopping ">
 ...

<event id ="3">
<name>Not all Products in Cart</name>

</event>
...
<function id ="5">

<name>Search Product </name>
<toProcess linkToEpcId="2"/>

</function >
</epc>

<epc epcId ="2"
name="Search Product">

<event id ="1" defRef ="001"/>
 ...

</epc>
</directory>

</epml:epml>

Continue
with Order

Process

Not all
Products

in Cart

Search Product

Query Product
Database

Product
found

Product
not in List

Figure 4 A hierarchical EPC schema with two linked EPC Processes and an
event definition.

the event Not all Products in Cart occurs in multiple places in the process
model. Semantically these events are the same. Therefore, an definition

element can be defined to include data that is common for occurrences of
that event, e.g. name. This avoids redundancies in the EPML file.

5.3 Business Perspectives and Views in EPML

Business perspectives and views play an important role for the analysis and
conception of process models, especially for EPCs. Perspectives have proven
valuable to partition the specification of a complex system (Finkelstein et al.
(1992)). There have been many different perspectives proposed for business
process modelling. In Scheer (2000) the Architecture of Integrated Informa-
tion Systems (ARIS) extends the EPC with a data-oriented, a functional, an

12 Jan Mendling, Markus Nüttgens

organizational, an application-oriented, and a product/service-oriented per-
spective. The PROMET concept by Österle (1995) differentiates between
business dimensions explicitly including organization, data, functions, and
personnel. Rosemann and zur Mühlen (1997) give an in-depth survey of
organizational entities provided in workflow management systems. In Neu-
mann and Strembeck (2002) the link between role-based access control
(RBAC) and business scenarios is analyzed in order to define a method-
ology to generate role hierarchies. From a delegation perspective van der
Aalst et al. (2003) formalize the organizational perspective of a workflow
system via a meta model including resources, organizational units, users,
and roles. In White (2004)swim lanes and pools are recommended as a
metaphor for the graphical representation of parties involved in a process.
Recently, BPM languages like BPEL4WS contain references to WSDL de-
scriptions of Web Services as a new category of resource perspectives. The
OWL Services Coalition (2004) has developed a standardized business pro-
cess ontology for Web Service. Thinking of the variety of potential perspec-
tives and views the definition of such an ontology is a difficult. There are
even doubts whether a standardized ontology is desirable, because different
domains and different business sectors need tailor-made meta models that
best fit their specific business model (see Karagiannis and Kühn (2002)).

In general there are two categories of information that are frequently
added to a business process model. Firstly, attributes represented as (name,
value) pairs can be used to attach statistical or configurational data to a
process or to process objects. In EPML they reflect the design principle
of extensibility, as arbitrary attributeTypes can be declared at the top of
an EPML file. Single attribute elements can be attached to epc elements
and to all its child elements like e.g. function elements. The attributeType

may have a description and it must have a unique typeId attribute. This
type name is referenced in the typeRef attribute of an attribute element.
The attribute type declaration provides for a consistent naming of exten-
sion attributes used by individual tools. Secondly, various objects involved
in the execution of a business process are frequently displayed as icons in
the visual process model. For this purpose, EPML includes non-control flow
elements which can be displayed in a graphical EPC process model. In con-
trast to some business process modelling tools that offer various icons and
object type, EPML restricts itself to three objects: dataField, participant,
and application. These three process objects are also found in both XPDL
of the WfMC (2002) and, with different names, the Architecture of Inte-
grated Information Systems (ARIS) proposed by Scheer (2000). All these
three elements have a name and a description element and they are iden-
tified by a unique id attribute. Furthermore, they may have graphics and
attribute elements. Relationships between these elements or between these
elements and control flow elements are represented by relation elements.
A relation is a directed edge between an element whose id is referenced
in the from attribute and another element referred to in the to attribute.
The relation element is related to the arc element. Yet, the syntactical

EPC Markup Language (EPML) 13

Order
completed

Product List
checked

Verify Order

Order

Enter
Shipping
Address

Shipping
Address
entered

Check
Product List

in Cart

Start Ordering
<?xml version ="1.0" encoding ="UTF-8"?>
<epml:epml xmlns:epml ="http://www.epml.de">

...

<attributeTypes >
<attributeType typeId ="average time"/>

</attributeTypes >

<directory name ="Root">
<epc epcId ="1" name ="Order">

...

<function id ="2">
<name>Check Product List in Cart</name>
<attribute typeRef ="average time" value ="1 min"/>

</function >

 <relation from ="2" to ="6"/>

<participant id ="6">
<name>Customer</name>

</participant>

 <application id ="9">
 <name>Order System </name>
 </application>

...

</epc>

</directory>

</epml:epml>

Customer

Order
System

Customer

Customer

1 min

3 min

0,5 min

Figure 5 An EPC with non control flow aspects.

distinction between both allows to easily identify control flow with arc ele-
ments. The relation elements may have multiple graphics elements. They
can also contain attribute elements. Furthermore, the defRef attribute of
a relation must reference a defId of a definition element. The definition is
meant to describe the semantics of the relationship. Including these new ele-
ments an epc may have function, event, processInterface, and, or, xor, and
arc elements as well as participant, application, dataField, and relation

elements as children.
Figure 5 illustrates the use of attribute and non control flow elements

in an Order process. In the header of the EPML file an attribute type with
a typeId of average time is declared. An attribute with value 1 min is anno-
tated to the function Check Product List in Cart. Furthermore, a participant
called customer is modelled as a contributor to each of the functions, as well
as an application Order System that receives data from the Verify Order
function. Both, attribute types and non control flow elements can be used
to declare arbitrary business perspectives for an EPC business process in
EPML.

5.4 Graphical Information in EPML

Graphical Information refers to the rendering of EPC models in graphical
BPM tools. This topic is not specific to EPML. The Petri Net Markup
Language (PNML) has worked out and included a proposal for graphi-
cal information to be exchanged between modelling tools. This concept is
also well suited for EPML and adopted here. There are some small mod-

14 Jan Mendling, Markus Nüttgens

Start Online
Shopping

X

Y

@x

@y

@width
@
h
e
i
g
h
t

@color

anchor point

bending point

Figure 6 An Event and an Arc with Graphical Information.

ifications that will be made explicit in the discussion of the details. Each
control flow object may have a graphics element. Similar to the top level
element graphicsDefault it may contain fill, line, and font information.
Additionally, position information may be included for each control flow
element.

All the four attributes of the position element refer to the smallest rect-
angle parallel to the axes that can be drawn to contain the whole polygon
symbolizing the object (see Figure 6). The x and y attributes of the ob-
ject describe the offset from the origin of the coordinates system of that
angle of the object that is closest to the origin. The width and the height

describe the length of the edges of the container rectangle. In PNML a sep-
arate dimension element is used to represent width and height. Arcs may
have multiple position elements to describe anchor point where the arc runs
through. Position elements of arcs do not have width and height attributes.
An arc should have at least two position elements for two anchor points.
Each position in between describes a bending point.

The fill element describes the rendering of the interior of an object.
Arcs do not have fill elements. The color attribute must take a RGB value
or a predefined color of Cascading Stylesheets 2 (CSS2) (Bos et al. (1998)).
In order to describe a continuous variation of the filling color an optional

EPC Markup Language (EPML) 15

gradient-color may be defined. The gradient-rotation sets the orientation
of the gradient to vertical, horizontal, or diagonal. If a URI of an image is
assigned to image the other attributes of fill are ignored. The line element
defines the outline of an object. The shape attribute refers to how arcs are
displayed: the value line represents a linear connection of anchor points to
form a polygon; the value curve describes a quadratic Bezier curve. The
font element holds family, style, weight, size, and decoration attributes
in conformance with CSS2. In addition to PNML, there may be a font
color defined. The verticalAlign and horizontalAlign attributes specify
the alignment of the text. The align attribute in PNML corresponds to the
EPML horizontalAlign attribute, and verticalAlign is covered by a PNML
offset element. The rotation attribute describes a clockwise rotation of the
text similar to the concept in PNML.

5.5 Syntactical Correctness of EPCs in EPML

Syntactical correctness of EPCs depends on a set of properties described in
Nüttgens and Rump (2002). These include process graph related properties;
cardinality constraints on the number of incoming and outgoing arcs for each
control flow element; type consistency constraints prescribing alternation of
functions and events with an arbitrary number of intermediate connectors;
and properties of hierarchy relations. Mendling and Nüttgens (2003b) show
that most of these syntax rules can be validate by the help of XML schema
languages. However, some properties require graph expansion and transitive
closure calculation like for example the prohibition of cycles that consist only
of connector elements. Such so called graph expansion properties cannot be
validated by usual XML schema languages.

Type consistency also belongs to the properties that require closure cal-
culation because alternating functions and events may have multiple inter-
mediate connectors. But in contrast to other graph expansion properties
type consistency can be redefined in a way so it can be validated by some
XML schema languages. In Mendling and Nüttgens (2003a) for each EPC
control flow element a set of so called implicit types is defined. An implicit
type indicates in which constellation a control flow element is used in a pro-
cess model. For example an AND connector can be either a join or a split
operation and it may either follow event(s) or function(s). Each of the four
resulting constellation defines one implicit type of the AND connector. Sim-
ilarly, arcs have two different implicit types. So called function-event-arcs
(FEA) run from functions to events. Event-function-arcs (EFA) are defined
analogously. For a complete discussion see Mendling and Nüttgens (2003a).

Figure 7 illustrates the type consistency problem. Connector AND3 is
only connected with other connectors (AND1, AND2, and AND4). In or-
der to check whether AND3 has antecedants that are all of event type
and descendants that are all of function type, or the other way round, the
graph needs to be expanded. As all (transitive) antecedants of AND3 are

16 Jan Mendling, Markus Nüttgens

EF-AND

E1

F1

E2 E3 E4

E5

AND1

AND3

AND4

AND2

E5
Start

Event

Function

Start

Event

Start

Event

Start

Event

End
Event

Start

Event

EFAEFA EFA EFA EFA

EFA EFA

EFA

EFA

FEA

EF-AND

EF-AND

EF-AND

(a) (b)

Figure 7 An EPC process model (a) without implicit types and (b) with implicit
types for each control flow element.

events and all (transitive) descendants are of function type, the connector
complies with EPC type consistency rules. In Figure 7 (b) all control flow
elements are labelled with their implicit type. As all incoming arcs of AND3
are of implicit type EFA and all outgoing arcs as well, the connector ful-
fills the type consistency rules described in Mendling and Nüttgens (2003a)
without having to expand the process graph. In EPML each control flow
element may have an optional <syntaxInfo> element with an @implicitType

attribute. This attribute can be used by validation tools to speed up syn-
tax checking. Furthermore, it can be used to attach information generated
during validation of type consistency rules.

6 Summary

This paper has presented an XML-based interchange format for Event-
Driven Process Chains called EPML. EPML builds on EPC syntax related
work and reflects experiences from the specification of other XML vocabu-
laries in its design principles. EPML supports:

– the definition of flat EPC models arranged in directories;
– the specification of hierarchical EPCs including element definitions;
– the attachment of business perspectives and views to functions;
– the exchange of detailed graphical information; and
– the specification of syntax-related information.

EPML addresses the lack of interchange formats in the domain of busi-
ness process modelling. XSLT scripts can be programmed to provide for a
simple conversion between EPML and other XML-based formats. Examples
of such transformations between EPML and AML of ARIS Toolset as well
as EPML and SVG are reported in Mendling et al. (2004a) and Mendling et
al. (2004b), respectively. Future areas of research will be dedicated to the in-
terrelation of different business process modelling methods. The XML4BPM
Workshop (Nüttgens and Mendling (2004)) that gathered experts working
on XML-based interchange formats has been a first step in this direction.

EPC Markup Language (EPML) 17

One open question in this context is: how can separately developed inter-
change formats be integrated in a meaningful way. Another research aspect
is related to tool support for EPML. The success of EPML will depend
on the number and analysis capabilities of the tools supporting it. So far,
Cuntz and Kindler (2004) have developed an EPC simulation tool that uses
EPML as an interchange format. Furthermore, EPML is supported by the
professional BPM tool Semtalk. Finally, there is still much research needed
to create a general understanding of business perspectives for BPM. In this
context, the development of EPML can - beyond its principle purpose as an
interchange format - serve as a catalyst and a framework for the discussion
of all these related topics.

References

van der Aalst WMP (1999) Formalization and Verification of Event-driven
Process Chains. Information and Software Technology, 41(10):639–650.

van der Aalst WMP, Desel J, Kindler E (2002) On the semantics of EPCs:
A vicious circle. In Nüttgens M, Rump FJ, eds., Proc. of the 1st GI-
Workshop on Business Process Management with Event-Driven Process
Chains (EPK 2002), Trier, Germany, pages 71–79.

van der Aalst WMP, Kumar A, Verbeek HMW (2003) Organizational
Modeling in UML and XML in the Context of Workflow Systems. In
Proceedings of the 2003 ACM Symposium on Applied Computing (SAC),
pages 603–608.

Andrews T, Curbera F, Dholakia H, Goland Y, Klein J, Leymann F, Liu K,
Roller D, Smith D, Thatte S, Trickovic I, Weerawarana, S (2003) Business
Process Execution Language for Web Services, Version 1.1, Specification,
BEA Systems, IBM Corp., Microsoft Corp., SAP AG, Siebel Systems.

ANSI X12 (2002) ASC X12 Reference Model for XML Design, Technical
Report Type II - ASC X12C/TG3/2002-xxx, ANSI ASC X12C Commu-
nications and Controls Subcommittee.

Arenas M, Libkin L (2002) A normal form for XML documents. In Pro-
ceedings of the 21st ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS’02), pages 85–96.

Arenas M, Libkin L (2003) An Information-Theoretic Approach to Normal
Forms for Relational and XML Data. In Proceedings of the 22nd ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems (PODS’03), pages 15–26.

Beech D, Lawrence S, Moloney M, Mendelsohn N, Thompson, HS (2001)
XML Schema Part 1: Structures. W3C Recommendation 02 May, World
Wide Web Consortium.

Billington J, Christensen S, van Hee KE, Kindler E, Kummer O, Petrucci
L, Post R, Stehno C, Weber M (2003). The Petri Net Markup Language:
Concepts, Technology, and Tools. In van der Aalst WMP, Best E, eds.,
Applications and Theory of Petri Nets 2003, 24th International Confer-

18 Jan Mendling, Markus Nüttgens

ence, ICATPN 2003, Eindhoven, The Netherlands, Vol. 2679 of Lecture
Notes in Computer Science, pages 483–505.

Biskup J (1998) Achievements of relational database schema design theory
revisited. In Libkin L, Thalheim B, eds., Semantics in Databases, Vol.
1358 of Lecture Notes in Computer Science, pages 29–54.

Biron PV, Malhorta, A (2001) XML Schema Part 2: Datatypes. W3C
Recommendation 02 May, World Wide Web Consortium.

Boehm BW (1976) Software Engineering IEEE Transactions on Computers,
25(12):1226–1241.

Bos B, Lie HW, Lilley C, Jacobs I (1998) Cascading Style Sheets, Level 2.
W3C Recommendation 12-May-1998, World Wide Web Consortium.

Chen R, Scheer AW (1994) Modellierung von Prozessketten mittels Petri-
Netz-Theorie, Technical Report 107, Institut für Wirtschaftsinformatik,
Saarbrücken, Germany.

Christensen E, Curbera F, Meredith G, Weerawarana S (2001). Web Service
Description Language (WSDL) 1.1, W3C Note.

Clark J (1999) XSL Transformations (XSLT) Version 1.0. W3C Recom-
mendation 16 November, World Wide Web Consortium.

Clark J, DeRose S (1999) XML Path Language (XPath) Version 1.0. W3C
Recommendation 16 November, World Wide Web Consortium.

Cuntz N, Kindler E (2004) On the semantics of EPCs: Efficient calculation
and simulation. In Nüttgens M, Rump FJ, ed., Proc. of the 3rd GI-
Workshop on Business Process Management with Event-Driven Process
Chains (EPK 2004), Luxembourg, Luxembourg, pages 7–26.

Dehnert J (2002) Making EPCs fit for Workflow Management. In Nüttgens
M, Rump FJ, eds., Proc. of the 1st GI-Workshop on Business Process
Management with Event-Driven Process Chains (EPK 2002), Trier, Ger-
many, pages 51–69.

Delphi Group (2003) BPM 2003 – Market Milestone Report, Delphi Group
White Paper.

Embley DW, Mok WY (2001) Developing XML documents with guaranteed
“good” properties. In Kunii HS, Jajodia S, Sølvberg, A, eds., Concep-
tual Modeling - ER 2001, Proc. of the 20th International Conference on
Conceptual Modeling, Vol. 2224 of Lecture Notes in Computer Science,
pages 426–441.

Ferraiolo J, Jun F, Jackson D (2003) Scalable Vector Graphics (SVG) 1.1.
W3C Recommendation 14 January 2003, World Wide Web Consortium.

Finkelstein A, Kramer J, Nuseibeh B, Finkelstein L, Goedicke M (1992)
Viewpoints: A Framework for Integrating Multiple Perspectives in Sys-
tem Development. International Journal of Software Engineering and
Knowledge Engineering, 2(1):31–57.

Gartner Research (2002) The BPA Market Catches Another Major Updraft,
Gartner’s Application Development & Maintenance Research, 12 June,
Note M-16-8153.

IDS Scheer AG (2001) XML-Export und -Import mit ARIS 5.0, Whitepaper
January 2001.

EPC Markup Language (EPML) 19

ISO - International Organization for Standardization (2001). XML Design
Rules. ISO 15022 Technical Specification.

Karagiannis D, Kühn H (2002) Metamodelling Platforms. Invited Paper. In
Bauknecht K, Min Tjoa A, Quirchmayer, G, eds., Proceedings of the 3rd
International Conference EC-Web 2002 - Dexa 2002, Aix-en-Provence,
France, Vol. 2455 of Lecture Notes in Computer Science, pages 182–196.

Keller G, Nüttgens M, Scheer AW (1992). Semantische Prozessmodellierung
auf der Grundlage “Ereignisgesteuerter Prozessketten (EPK)”, Technical
Report 89, Institut für Wirtschaftsinformatik, Saarbrücken, Germany.

Keller G, Meinhardt S (1994) SAP R/3 Analyzer. Business process reengi-
neering based on the R/3 reference model. SAP AG.

Keller G, Teufel T (1998). SAP(R) R/3 Process Oriented Implementation:
Iterative Process Prototyping. Addison-Wesley.

Kindler E (2003) On the semantics of EPCs: A framework for resolving the
vicious circle (Extended Abstract). In Nüttgens M, Rump FJ, eds., Proc.
of the 2nd GI-Workshop on Business Process Management with Event-
Driven Process Chains (EPK 2003), Bamberg, Germany, pages 7–18.

Langner P, Schneider C, Wehler J (1998) Petri Net Based Certification of
Event driven Process Chains. In Desel J, Silva M, eds., Application and
Theory of Petri Nets, Vol. 1420 of Lecture Notes in Computer Science,
pages 286–305.

Mendling J, Brabenetz, A, Neumann G (2004a) EPML2SVG - Generating
Websites from EPML Processes. In Nüttgens M, Rump FJ, ed., Proc.
of the 3rd GI-Workshop on Business Process Management with Event-
Driven Process Chains (EPK 2004), Luxembourg, pages 55–64.

Mendling J, Nüttgens M (2002) Event-Driven-Process-Chain-Markup-
Language (EPML): Anforderungen zur Definition eines XML-Schemas
für Ereignisgesteuerte Prozessketten (EPK). In Nüttgens M, Rump FJ,
eds., Proc. of the 1st GI-Workshop on Business Process Management with
Event-Driven Process Chains (EPK 2002), Trier, Germany, pages 87–93.

Mendling J, Nüttgens M (2003a) EPC Modelling based on Implicit Arc
Types. In Godlevsky M, Liddle SW, Mayr HC, eds., Proc. of the 2nd In-
ternational Conference on Information Systems Technology and its Appli-
cations (ISTA), Kharkiv, Ukraine, Vol. 30 of Lecture Notes in Informatics,
pages 131–142.

Mendling J, Nüttgens M (2003b) EPC Syntax Validation with XML
Schema Languages. In Nüttgens M, Rump FJ, eds., Proc. of the 2nd
GI-Workshop on Business Process Management with Event-Driven Pro-
cess Chains (EPK 2003), Bamberg, Germany, pages 19–30.

Mendling J, Nüttgens M (2003c) XML-basierte Geschäftsprozessmodel-
lierung. In Uhr W, Esswein W, Schoop E, eds., Proc. of Wirtschaftsin-
formatik 2003 / Band II, Dresden, Germany, pages 161 –180.

Mendling J, Nüttgens M (2004) XML-based Reference Modelling: Foun-
dations of an EPC Markup Language. In Becker J, ed., Referenzmod-
ellierung - Proceedings of the 8th GI-Workshop on Reference Modelling,
MKWI Essen, Germany, pages 51–71.

20 Jan Mendling, Markus Nüttgens

Mendling J, Neumann G, Nüttgens M (2004b) Transformation of ARIS
Markup Language to EPML. In Nüttgens M, Rump FJ, ed., Proc. of the
3rd GI-Workshop on Business Process Management with Event-Driven
Process Chains (EPK 2004), Luxembourg, pages 27–38.

Neumann G, Strembeck M (2002) A Scenario-driveen Role Engineering
Process for Functional RBAC Roles. In Proc. of the 7th ACM Symposium
on Access Control Models and Technologies (SACMAT), Monterey, USA,
June 2002.

Nüttgens M, Mendling J (2003) XML4BPM 2004 - Proceedings of the 1st
GI-Workshop of XML Interchange Formats for Business Process Man-
agement, Marburg, Germany.

Nüttgens M, Rump FJ (2002) Syntax und Semantik Ereignisgesteuerter
Prozessketten (EPK). In Desel J, Weske M, eds., Promise 2002 - Proceed-
ings of the GI-Workshop, Potsdam, Germany, Vol. 21 of Lecture Notes
in Informatics, pages 64–77.

OMG Object Management Group (2003) XML Metadata Interchange
(XMI), Specification, Version 2.0.

Österle H (1995) Business Engineering. Springer Verlag.
OWL Services Coalition (2004). OWL-S: Semantic Markup for Web Ser-

vices. Whitepaper Version 1.0.
Rittgen P (2000) Paving the Road to Business Process Automation. In Proc.

of the European Conference on Information Systems (ECIS), Vienna,
Austria, pages 313–319.

Rump FJ (1999) Geschäftsprozessmanagement auf der Basis ereignisges-
teuerter Prozessketten - Formalisierung, Analyse und Ausführung von
EPKs. Teubner Verlag.

Rosemann M, zur Mühlen M (1997) Evaluation of Workflow Management
Systems - a Meta Model Approach. In Siau K, Wand Y, Parsons J, eds.,
Proc. of the 2nd CAiSE/IFIP 8.1 International Workshop on Evaluation
of Modeling Methods in Systems Analysis and Design (EMMSAD’97),
Barcelona, Spain, June 1997.

Scheer AW (2000) ARIS Business Process Modelling. Springer Verlag.
SWIFT (2001) SWIFT Standards XML Design Rules Version 2.3, Technical

Specification.
Weber M, Kindler E (2002) The Petri Net Markup Language. In Ehrig H,

Reisig W, Rozenberg G, Weber H, eds., Petri Net Technology for Commu-
nication Based Systems, Vol. 2472 of Lecture Notes in Computer Science,
pages 124–144.

WfMC Workflow Management Coalition (2002). Workflow Process Defini-
tion Interface – XML Process Definition Language, Document Number
WFMC-TC-1025, October 25, 2002, Version 1.0.

White SA (2004) Business Process Modeling Notation. Version 1.0. BPMI.
Wüstner E, Hotzel T, Buxmann P (2002). Converting Business Documents:

A Classification of Problems and Solutions using XML/XSLT. In Pro-
ceedings of the 4th International Workshop on Advanced Issues of E-
Commerce and Web-based Systems (WECWIS), pages 61–68.

