
Mendling, Jan; Nüttgens, Markus: EPC Modelling based on Implicit Arc Types. In: Godlevsky, Mikhail;
Liddle, Stephen W.; Mayr, Heinrich C. (Eds.): Information Systems Technology and its Applications, Interna-

tional Conference ISTA'2003, June 19-21, 2003, Kharkiv, Ukraine, Proceedings. LNI 30 GI 2003, ISBN 3-
88579-359-8, pp. 131 – 142.

EPC Modelling based on Implicit Arc Types

Jan Mendling, Markus Nüttgens

Universität Trier
Wirtschaftsinformatik II,

Postfach 3825, D-54286 Trier
mendling@web.de, markus@nuettgens.de

Abstract: Event Driven Process Chains (EPC) are commonly used for the model-
ling of business processes. As modelling is decentralised to personnel not familiar
with the formal aspects of this method, syntax checks are needed to avoid invalid
models. This paper presents the concept of implicit element and arc types. It can be
used both to support modellers in the process of building models and to check en-
tire models. It is especially helpful to avoid closure calculation for connector type
consistency constraints.

1. EPC and Business Process Modelling

1.1. Modelling with EPC between Intuition and Validity

Event Driven Process Chains (EPC) have been developed to model business processes
on a conceptual level [KNS92]. Both in academics as integral part of the ARIS concept
[Sc00] and in practice with SAP AG using them for their SAP reference model [Ke99],
they have reached a wide-spread use. A major advantage of EPCs is their ability to ex-
press processes in an intuitive way. Thus, they are very often used for the documentation
and management of business processes.

Despite their popularity and intuition, the syntax of EPCs has to meet a variety of valid-
ity rules concerning the sequence of different elements. This turns out to be a problem
when organizations decentralize and delegate their business process modelling activities
to the departments concerned. On the one hand, the personnel involved might be little
experienced in assessing the formal validity of the models they produce. One the other
hand, models have to be valid in order to be reused in workflow management systems.
As a consequence two questions arise: Firstly, which concepts can be used to guide the
modeller during the process of modelling to avoid syntactically invalid modelling. Sec-
ondly, how can the validity of a given EPC model checked in an efficient way. This
paper addresses these two problems and presents a concept called “implicit arc types” as
a solution.

1.2. EPC Syntax Related Work

Most of the formal contributions on EPCs have been focused on semantics, especially on
the semantics of OR connectors. The translation of EPC process models to Petri Nets
plays an important role in this context. Examples of this research can be found in
Chen/Scheer [CS94], Rodenhagen [Ro97], Langner/Schneider/Wehler [LSW98], van der
Aalst [Aa99], Rittgen [Ri00], and Dehnert [De02]. A major point of discussion is the
“non-locality” of join-connectors [ADK02]. This paper will present a syntax related
work based on the formal syntax definition of EPCs in [NR02]. Therefore we give a
brief survey of syntax related work before presenting definitions in the second section.

In Keller/Nüttgens/Scheer the EPC is introduced [KNS92] to represent temporal and
logical dependencies in business processes. Elements of EPCs may be of function type
(active elements), event type (passive elements), or of one of the three connector types
AND, OR, or XOR. These objects are linked via control flow arcs. Connectors may be
split or join operators, starting either with function(s) or event(s). These four combina-
tions are discussed for the three connectors resulting in twelve possibilities. Split OR and
Split XOR are prohibited after events, due to the latter being unable to decide which
following functions to choose. Based on practical experience with the SAP Reference
model, process interfaces and hierarchical functions are introduced as additional element
types of EPCs [KM94]. These two elements permit to link different EPC models: proc-
ess interfaces can be used to refer from the end of a process to a following process, hier-
archical functions allow to define macro-processes with the help of sub-processes. Keller
[Ke99] and Rump [99] provide a formal approach defining the EPC syntax. Based on
this, Nüttgens/Rump [NR02] distinguish the concepts of a flat EPC Schema and a hierar-
chical EPC Schema. A flat EPC Schema is defined as a directed and coherent graph with
cardinality and type constraints. A hierarchical EPC Schema is a set of flat or hierarchi-
cal EPC Schemata. Hierarchical EPC Schemata consist of flat EPC Schemata and a
hierarchy relation linking either a function or a process interface to another EPC
Schema. Fig. 1 shows a hierarchical EPC Schema consisting of two processes, which are
linked via a hierarchical relation attached to the process interface “To Design Process”.

Type consistency of consecutive connectors poses a major problem for these definitions,
because the EPC graph has to be traversed to find and check all non-connector ancestors
and descendant elements. In section two we will introduce explicit and implicit element
and arc types, and define EPCs with the help of them. The advantages of such a defini-
tion are presented in section three, where it is described how formally valid business
process modelling with EPCs can be granted.

Design Process

From
Requirements
 Engineering

Can be
fulfilled

Design

Design
finished

Cannot be
fulfilled

Can be
fulfilled

To Design
Process

Start

List
requirements

Requirements Engineering

Event

Function

Process Interface

Connectors

Control Flow Arc

EPC Symbols

Fig. 1. EPC example of a simple requirements engineering process. The connector represents an
“exclusive or”. After “Can be fulfilled” a process interface links to the design process.

2. EPC Syntax Objects

2.1. Explicit and Implicit Element Types

The distinction of explicit and implicit element types is rooted in two different perspec-
tives on business process modelling, the perspective of the modeller and the perspective
of verification. The task of the modeller is to compose a structure from a given set of
symbols that is able to represent concepts of the domain in a pragmatic and abbreviated
way. This set of symbols modelling is provided by a business process modelling tool.
Such EPC symbols usually refer to the original definition of Keller/Nüttgens/Scheer
[KNS92] distinguishing event type E, function type F, process interface P, connector
AND, connector OR, and connector XOR. We refer to them as explicit element types
EXPL being mutually disjoint:

EXPL = E ∪ F ∪ P ∪ AND ∪ OR ∪ XOR. (1)

Implicit element types relate to the perspective of syntactical verification. They represent
disjoint specialisations of corresponding explicit element types. Each implicit element
type captures a specific constellation in which an explicit element type may occur. Each
of these implicit roles implies different restrictions on the set of allowed ancestors and
descendants, and their cardinality. Fig. 2 presents explicit and corresponding implicit
element types: Events E may be Start Events ES, Inner Event EInt or End Event EE. For
process interfaces P can be used as start and end symbols. Connectors can be either joins

or splits. When they have (transitive) event ancestors, their (transitive) descendants have
to be functions. When they have (transitive) function ancestors, their (transitive) descen-
dants have to be events. For OR- and XOR-connectors Event-Function-Splits are forbid-
den [KNS92].

Explicit Element Type Implicit Element Types
Event E Start Event ES

Inner Event EInt
End Event EE

Function F Function F
Process Interface P Start ProcessInterface PS

End ProcessInterface PE
Connector AND Event-Function-Split ANDEFS

Event-Function-Join ANDEFJ
Function-Event-Split ANDFES
Function-Event-Join ANDFEJ

Connector OR Event-Function-Join OREFJ
Function-Event-Split ORFES
Function-Event-Join ORFEJ

Connector XOR Event-Function-Join XOREFJ
Function-Event-Split XORFES
Function-Event-Join XORFEJ

Fig. 2. Explicit and corresponding implicit element types.

2.2. Explicit and Implicit Arc Types

Analogously to the distinction between explicit and implicit element types, we define
implicit arc types as a partition of the control flow arc (explicit arc type) [Me03]. Im-
plicit arc types are subsets of the product of implicit element types. Fig. 3 presents which
arcs are allowed from and to implicit element types. The 16x16 matrix shows 100 im-
plicit arc types which are permitted. The distribution of them in this matrix suggests the
distinction between two different groups of implicit arcs. We will refer to them as Func-
tion-Event-Arcs FEA and Event-Function-Arcs EFA. In order to define these two kinds
of arcs, a grouping of implicit element types into Event-Types (from), Function-Types
(from), Event-Types (to), and Function-Types (to) is needed:

Event Types (from) ETfrom = ES ∪ EInt ∪ ANDEFS ∪ ANDEFJ ∪
 OREFJ ∪ XOREFJ ,

(2)

Function Types (from) FTfrom = F ∪ PS ∪ ANDFES ∪ ANDFEJ ∪ ORFES ∪
 ORFEJ ∪ XORFES ∪ XORFEJ ,

(3)

Event Types (to) ETto = EInt ∪ EE ∪ ANDEFS ∪ ANDEFJ ∪ OREFJ ∪ XOREFJ , (4)

Function Types (to) FTto = F ∪ PE ∪ ANDEFS ∪ ANDEFJ ∪ OREFJ ∪ XOREFJ . (5)

We can then define these two different implicit arc type groups as

FEA ⊆ (FTfrom x ETto) , (6)

EFA ⊆ (ETfrom x FTto) , (7)

TO
(above)

(left)
FROM E

S

E
In

t

E
E

F P S

P E

A
N

D
E

FS

A
N

D
E

FJ

A
N

D
FE

S

A
N

D
FE

J

O
R

E
FJ

O
R

FE
S

O
R

FE
J

X
O

R
E

FJ

X
O

R
FE

S

X
O

R
FE

J

ES → → → → → →
EInt → → → → → →
EE
F → → → → → → → →
PS → → → → → → → →
PE
ANDEFS → → → → → →
ANDEFJ → → → → → →
ANDFES → → → → → → → →
ANDFEJ → → → → → → → →
OREFJ → → → → → →
ORFES → → → → → → → →
ORFEJ → → → → → → → →
XOREFJ → → → → → →
XORFES → → → → → → → →
XORFEJ → → → → → → → →

Fig. 3. Implicit arc types are a subset of the product of implicit element types. The arcs in the grey
cells are Function-Event-Arcs; those arcs in the white cells are Event-Function-Arcs.

In the following, the definition of implicit arc type groups will be used in a redefinition
of EPCs. The advantages of such a definition are presented in section four.

3. EPC Syntax Properties

3.1. Syntactical Constraints of Flat EPCs

Before presenting the syntactical properties of flat EPCs we still need some more defini-
tions. Apart from cardinality which is defined in a different way by using implicit arc
types, we follow Nüttgens/Rump [NR02]. The antisymmetry constraint is added, just
like the constraint of the graph having to be simple which cannot be controlled by cardi-
nality constraints on connectors.

Let ES, EInt, EE, F, PS, PE, ANDEFS, ANDEFJ, ANDFES, ANDFEJ, OREFJ, ORFES, ORFEJ,
XOREFJ, XORFES, XORFEJ be sets of elements of the respective element types. Then a set
of vertices V is

V = ES ∪ EInt ∪EE ∪ F ∪ PS ∪ PE ∪ ANDEFS ∪ ANDEFJ ∪ ANDFES ∪ ANDFEJ
∪ OREFJ ∪ ORFES ∪ ORFEJ ∪ XOREFJ ∪ XORFES ∪ XORFEJ

(8)

with all the elements of the union being mutually disjoint. Referring to the definitions (6)
and (7) a set of arcs A is defined as

A = FEA ∪ EFA. (9)

The precondition of a vertex is made up by the set of ancestor arcs written as

→v := {(x,v) ∈ A} with v,x ∈ V . (10)

The postcondition of a vertex is defined as the set of descending arcs:

v→ := {(v,x) ∈ A} with v,x ∈ V . (11)

A cycle set C is a set of vertices building a cycle:

C ⊆ V = {v1,v2,v3,..,vn} with v1→ = →v2, v2→ = →v3, … , vn→ = →v1 (12)

Then, a flat EPC Schema EPCflat = (V,A) has the following flat EPC properties:

1. EPCflat is a directed graph.
2. EPCflat is a simple graph forbidding reflexive arcs or multiple arcs between

two vertices.
3. EPCflat is a coherent graph.
4. EPCflat is an antisymmetric graph.
5. Concerning cycles: ∀ Ci ⊆ V: Ci ∩ (EInt ∪ F) ≠ ∅.
6. The set of Events E = ES ∪ EInt ∪EE ≠ ∅.
7. The set of Functions F ≠ ∅.

Concerning vertices there are the following cardinality constraints:

1. Start vertices: ∀ v ∈ ES ∪ PS: →v = ∅ and |v→| = 1.
2. End vertices: ∀ v ∈ ES ∪ PS: |→v| = 1 and v→ = ∅.
3. Inner Events: ∀ v ∈ EInt: |→v| = 1 and |v→| = 1.
4. Functions: ∀ v ∈ F: |→v| = 1 and |v→| = 1.
5. Splits: ∀ v ∈ ANDEFS ∪ ANDFES ∪ ORFES ∪ XORFES: |→v| = 1 and |v→| > 1.
6. Joins: ∀ v ∈ ANDEFJ ∪ ANDFEJ ∪ OREFJ ∪ ORFEJ ∪ XOREFJ ∪ XORFEJ:

|→v| > 1 and |v→| = 1.

Concerning vertex types the following type consistency constraints apply:

1. Start Events: ∀ v ∈ ES: v→ ⊆ EFA.
2. Inner Events: ∀ v ∈ EInt: →v ⊆ FEA and v→ ⊆ EFA.
3. End Events: ∀ v ∈ EE: →v ⊆ FEA.
4. Start ProcessInterface: ∀ v ∈ PS: v→ ⊆ FEA.
5. End ProcessInterface: ∀ v ∈ PE: →v ⊆ EFA.
6. Function: ∀ v ∈ F: →v ⊆ EFA and v→ ⊆ FEA.
7. Event-Function-Connects: ∀ v ∈ ANDEFS ∪ ANDEFJ ∪ OREFJ ∪ XOREFJ:

→v ∈ EFA and v→ ∈ EFA.
8. Function-Event-Connects: ∀ v ∈ ANDFES ∪ ANDFEJ ∪ ORFES ∪ ORFEJ ∪

XORFES ∪ XORFEJ: →v ∈ FEA and v→ ∈ FEA.

3.2. Syntactical Constraints of Hierarchical EPCs

Let v ∈ V be a vertex, xi ∈ NC = (ES ∪ EInt ∪ EE ∪ F ∪ PS ∪ PE) and ci ∈ C = V – (ES
∪ EInt ∪ EE ∪ F ∪ PS ∪ PE) a connector, then the non-connector ancestor border NCABv
of v is a set of all vertices, which are transitive ancestors of v only via connectors:

NCABv = {x1, …, xn}: ∀xi ∈ NC: ∃ni ∈ N and cij ∈ C: xi→ = →ci1,
ci1→ = →ci2,…, cini→ = →v

(14)

and the non-connector descendant border NCDBv of v is defined as:

NCDBv = {x1, …, xn}: ∀xi ∈ NC: ∃ni ∈ N and cij ∈ C: v→ = →ci1,
ci1→ = →ci2,…, cini→ = → xi

(15)

Let EPCSet be a set of EPC Schemata

EPCSet = {S1, … , Sn}, (16)

then a hierarchical EPC Schema EPChier is defined as

EPChier = (V,A,H) (17)

with H being a hierarchy relation linking a ProcessInterface or a function to another EPC
Schema:

H ⊆ (F ∪ PE) x EPCSet with (F ∪ PE) ⊆ V (18)

An EPC Schema Set is an EPCSet for which holds:

EPCSchema = {S1, … , Sn} (19)

fulfilling the condition:

∀ Si ∈ EPCSchema: Si = (Vi,Ai,Hi) with Hi ⊆ (Fi ∪ PEi) x EPCSchema . (20)

Let HCS ⊆ EPCSchema then HCS is called the hierarchical closure on S with

HCS = {S1,…,Sn |∀Si ∃ni: (Hi1 ∈ S ∧ Schi1 ∈ Hi1) ∧ (Hi2 ∈ Schi1 ∧ Schi2 ∈ Hi2)
∧ … ∧ (Hini ∈ Schini-1 ∧ Schin ∈ Hin) ∧ (Schi1,…,Schini ∈ EPCSchema)}

(21)

A hierarchical EPC Schema has to meet the following hierarchy requirements:

1. ∀ Si ∈ EPCSchema: Si meets the conditions for a flat EPC Schema.
2. Cardinality Hi: ∀ v ∈ PEi: | {A∈EPCSchema | (v,A) ∈ Hi} | = 1.
3. Cardinality Hi: ∀ v ∈ Fi: | {A∈EPCSchema | (v,A) ∈ Hi} | ≤ 1.
4. Pre-Event-Consistency: ∀ v ∈ Fi: (v,Si) ∈ Hi: NCABv = {ei | ei ∈ ES ∧ Si}
5. Post-Event-Consistency: ∀ v ∈ Fi: (v,Si) ∈ Hi: NCDBv = {ei | ei ∈ EE ∧ Si}
6. Pre-Event-Consistency: ∀ v ∈ PEi: (v,Si) ∈ Hi: NCABv = {e | e, ps ∈ Si ∧ ps ∈

PS ∧ e ∈ EInt ∧ →e = ps→}. Due to our restriction on PS |NCABv|= 1.
7. Post-Event-Consistency: ∀ v ∈ PEi: (v,Si) ∈ Hi: NCDBv = {e | e, pe ∈ Si ∧ pe

∈ PE ∧ e ∈ EInt ∧ e→ = →pe}. Due to our restriction on PE |NCDBv|= 1.
8. Recursion prohibited: ∀ Si ∈ EPCSchema: Si ∉ HCSi.

3.3. Syntactical Constraints of Arcs

In section four EPC syntax checks are discussed. We will refer to the EPC syntactical
constraints as Flat 1-8 for flat EPC Schema properties, Card 1-6 for cardinality con-
straints, Type 1-8 for type consistency constraints, and Hier 1-8 for hierarchy constraints.
Here, we still need to mention constraints on arcs. Relating to our definition (2) - (5) of
the different arc types, this seems redundant. But when it comes to model checking,
implicit arc type groups will be a label on the respective arc which does not have to be
consistent or valid. In that context there is a need to check if the types of the referenced
vertices match the implicit arc type. Thus, we add Arc 1-2 to check arc consistency:

1. ∀ (x,y)∈ FEA: x ∈ FTfrom and y ∈ ETto.
2. ∀ (x,y)∈ EFA: x ∈ ETfrom and y ∈ FTto.

4. Using Implicit Arc Types for Validity Checks

4.1. Problems without Implicit Types

Type Consistency of connectors has been a problem of former EPC definitions without
implicit elements and arc types. When there is a path of successive connectors as in
Fig. 4, transitive non-connector ancestor border NCABv and descendant border NCDBv
have to be determined. This involves costly traversing of the EPC graph. In the follow-
ing paragraph, we describe how implicit element and arc types can lead to a better per-
formance. In that context we distinguish guided modelling and model checking.

Event 2 Event 3 Event 4

Function 2 Function 3 Function 4

Event 1 Event 5

Function 1 Function 5

Fig. 4. In order to check Type Consistency of the grey XOR-connector the transitive non-
connector ancestors and transitive non-connector descendants have to be determined.

4.2. Guided Modelling using Implicit Types

Guided Modelling describes strategies to support the modeller in the process of building
models in order to grant syntactically valid models. The definitions 6 and 7 concerning
the two different implicit arc type groups can be used to determine conflicts when there
is a new arc added to the model. It is assumed that the modeller uses symbols corre-
sponding to explicit EPC element types. In order to take advantage of implicit types, we
need a set of possible implicit element or arc types, referred to as ∏, attached to every
instance of an explicit EPC symbol. Modelling includes four elementary operations: the
insertion of an explicit element and the insertion of an explicit control flow arc to the
model; and the deletion of an element or an arc. Changes can be interpreted as a se-
quence of a deletion and an addition. In the following, we concentrate on insertions,
because deletions work similar in the opposite way.

When there is an element inserted into the model, ∏ is instantiated with all of its implicit
element types. The insertion of an arc affects the sets of possible implicit types of the
start vertex of the arc ∏S; of the end vertex of the arc ∏E; and of the arc itself ∏arc. In a
first step, ∏arc is determined by comparing ∏E and ∏S with the definitions of the two
implicit arc type groups:

∏E ∩ ETfrom ≠ ∅ ∧ ∏S ∩ FTto ≠ ∅ ⇒ EFA ∈ ∏arc. (22)

∏E ∩ FTfrom ≠ ∅ ∧ ∏S ∩ ETto ≠ ∅ ⇒ FEA ∈ ∏arc.

If there is ∏Arc = {} after this first steps, the new arc is not valid, because type consis-
tency is no longer granted. This invalid arc should then be deleted and a report be pro-
vided for the modeller. If ∏Arc ≠ {}, then ∏E and ∏S need to be updated as a second step
according to these rules:

If ∏Arc = {EFA, FEA}: ∏E‘ = ∏E ∧ ∏S‘ = ∏S (23)

If ∏Arc = {EFA}: ∏E‘ = ∏E ∩ ETfrom ∧ ∏S‘ = ∏S ∩ FTto

If ∏Arc = {FEA}: ∏E‘ = ∏E ∩ FTfrom ∧ ∏S‘ = ∏S ∩ ETto

If ∏Arc = {}: ∏E‘ = ∏E ∧ ∏S‘ = ∏S.

As a third step, these recalculations must cascade from the updated vertices, because
inconsistencies may appear transitively via connectors. Cycles do not pose a problem for
termination, because ∏ is a finite set of maximum 16 elements. Each step can only in-
volve a reduction of elements leading at least to a termination in terms of an empty set.
This three-step algorithm helps to transform an EPC model from one type consistent
state to another type consistent state. The operations from definition 22 and 23 may
therefore be considered as an EPC model transaction granting validity.

4.3. Model Checking using Implicit Types

The case of guided modelling demands extra features to be added to the business process
modelling tool. The model checking approach does not require such capabilities. It takes
a model composed of explicit element and arc type symbols as an input and determines
the implicit type for each symbol. The use of implicit types avoids the calculation of the
non-connector ancestor border NCABv and descendant border NCDBv for each connector.

The algorithm takes a list of symbols as an input, with each symbol being of one of the
explicit element or arc types. The order of the symbols is arbitrary. It works in two steps.
The first step is the hypothesis step: by checking the cardinality of the ancestors and
descendants, the implicit types of Functions, Events and ProcessInterfaces are deter-
mined, and join connectors are distinguished from split connectors. If an unexpected
constellation appears the implicit type is set to “invalid”. For arcs and connectors, we do
not calculate the non-connector ancestor border, but follow only one path until we reach
a non-connector element. If this is an Event, the arc is set to the implicit type EFA and

the connector to a EventFunctionJoin or –Split. This hypothesis generated by only look-
ing at one (transitive) ancestor can have two consequences: firstly, the hypothesis is
correct, or the there is a type inconsistency. It is not possible that another hypothesis is
correct.

The second step is the confirmation step. The generated list of symbols labelled with
implicit types is taken as an input. Now, for all elements and arcs type consistency can
be checked only by looking at the ancestor and descendant arc for implicit element types
or the start and the end vertex for implicit arc types. An expansion of vertices is no
longer needed.

5. Conclusion and Future Work

This paper has addressed the validity of EPC business process models. As process mod-
elling becomes more and more decentralised in organisations, non-professional model-
lers need tools to assist them to produce high quality models in terms of syntactical va-
lidity. The concept of implicit element and arc types gives a transparent answer to the
question of valid EPC syntax. Validity of connectors can be check only by looking at the
implicit arc type group of the ancestor and descendant arcs. Additionally, the implicit
complexity of EPCs as a modelling technique is revealed. Nevertheless, pre- and post-
event-consistency and the recursion prohibition (Hier 4-8) of hierarchical EPC Schemas
still need closures to be calculated in order to check validity. The next step will be an
XSLT based syntax check for models stored in EPC Markup Language (EPML)
[MN02].

References

[ADK02] van der Aalst, W.; Desel, J.; Kindler, E.: On the semantics of EPCs: A vicious circle,
in: Nüttgens, M.; Rump, F.J. (eds.): Geschäftsprozessmanagement mit Ereignis-
gesteuerten Prozessketten - EPK 2002, Proceedings of the GI-Workshop EPK 2002,
Trier, 2002, pp. 71-79.

[Aa99] van der Aalst, W.M.P.: Formalization and Verification of Event-driven Process
Chains, in: Information and Software Technology 41(1999)10, pp. 639-650.

[CS94] Chen, R.; Scheer, A.-W.: Modellierung von Prozessketten mittels Petri-Netz-Theorie,
in: Scheer, A.-W. (ed.): Publications of the Institut für Wirtschaftsinformatik,
No. 107, Saarbrücken 1994.

[De02] Dehnert, J.: Making EPC´s fit for Workflow Management, in: Nüttgens, M.; Rump,
F.J. (eds.): Geschäftsprozessmanagement mit Ereignisgesteuerten Prozessketten -
EPK 2002, Proceedings of the GI-Workshop EPK 2002, Trier, 2002, pp. 51-69.

[Ke99] Keller, G. & Partner: SAP/ R3 prozeßorientiert anwenden. Iteratives Prozeß-
Prototyping mit Ereignisgesteuerten Prozeßketten und Knowledge Maps, Bonn et al.
1999.

[KM94] Keller, G.; Meinhardt, S.: DV-gestützte Beratung bei der SAP-Softwareeinführung,
in: HMD 31(1994)175, pp. 74-88.

[KNS92] Keller, G.; Nüttgens, M.; Scheer, A.-W.: Semantische Prozeßmodellierung auf der
Grundlage „Ereignisgesteuerter Prozeßketten (EPK)“. In: Scheer, A.-W. (Hrsg.): Ver-
öffentlichungen des Instituts für Wirtschaftsinformatik, Heft 89, Saarbrücken, 1992.

[LSW98] Langner, P.; Schneider, C.; Wehler, J.: Petri Net Based Certification of Event driven
Process Chains, in: Desel, J.; Silva, M. (eds.): Application and Theory of Petri Nets
1998, LNCS Vol. 1420, Springer, Berlin et. al. 1998, pp. 286-305.

[Me03] Mendling, J.: Event-Driven-Process-Chain-Markup-Language (EPML): Anforderun-
gen, Konzeption und Anwendung eines XML-Schemas für Ereignisgesteuerte Pro-
zessketten (EPK), in: Höpfner, H.; Saake, G.: Proceedings of the Student Program of
the 10th Conference “Database Systems for Business, Technology and Web”, GI Sec-
tion Databases and Information Systems, Leipzig, 25.02.2003, Madgeburg, 2003,
pp. 48-50.

[MN02] Mendling, J.; Nüttgens, N.: Event-Driven-Process-Chain-Markup-Language (EPML):
Anforderungen zur Definition eines XML-Schemas für Ereignisgesteuerte Prozessket-
ten (EPK), Proceedings of the GI-Workshop EPK 2002, Trier, 2002, pp. 87-93.

[NR02] Nüttgens, M.; Rump, F.: Syntax und Semantik Ereignisgesteuerter Prozessketten
(EPK), in: Prozessorientierte Methoden und Werkzeuge für die Entwicklung von In-
formationssystemen (Promise’2002), Hasso-Plattner-Institut für Softwaresystemtech-
nik an der Universität Potsdam, 9.-11. Oktober 2002, Potsdam 2002.

[Ri00] Rittgen, P.: Paving the Road to Business Process Automation, European Conference
on Information Systems (ECIS) 2000, Vienna, Austria, July 3 - 5, 2000, pp. 313-319.

[Ro97] Rodenhagen, J.: Darstellung ereignisgesteuerter Prozeßketten (EPK) mit Hilfe von
Petrinetzen, Diplomarbeit Universität Hamburg Fachbereich Informatik (Prof. Valk),
Hamburg 1997.

[Ru99] Rump, F.: Geschäftsprozeßmanagement auf der Basis ereignisgesteuerter Prozeßket-
ten - Formalisierung, Analyse und Ausführung von EPKs, Teubner, Stuttgart et al.
1999.

[Sc00] Scheer, A.-W.: ARIS – Business Process Modeling, 3rd edition, Springer, Berlin et.
al. 2000.

