

XML-based Reference Modelling:
Foundations of an EPC Markup Language

Jan Mendling, Markus Nüttgens

The advent of XML has forced the vendors of Business Process Modelling (BPM)
tools to include respective import and export interfaces in their packages. But in
order to leverage the benefits of XML model interchange, standardised vocabula-
ries have to be developed. This paper describes the proposal of an EPC Markup
Language from its guiding design principles to its concrete definition. We gather
findings from other XML standardisation initiatives and derive general EPML
design principles, as well as theoretical and practical XML design guidelines. A
survey on graph representation in XML languages founds the decision to model
EPC processes as edge element lists. Subsequently, the syntactical elements of
EPML describing EPC hierarchies, EPC control flow, graphical display of ob-
jects, and business perspectives on EPCs are discussed.

1 Interchanging Business Process Models

In the 1990s tools for Business Process Modelling (BPM) have grown to become a
software market segment of its own. In 2002 Gartner Research has been expecting
a consolidation which only half of the 35 major tool vendors will eventually sur-
vive [Gart02]. As a consequence, interoperability and use of standards are becom-
ing a major sales pitch. BPM tool vendors rely on XML technology to meet these
new requirements. There is a growing number of products supporting XML import
and export of business process models [MeNü03b]. In this context two levels of
XML support have to be distinguished. On the one hand, we will refer to usage of
XML as a standardized representation format of tool specific content as weak
standard support. On the other hand, the usage of XML-based interchange stan-
dards will be referred to as strong standard support.

Weak standard support describes a strategy of BPM tool vendors to provide XML
interfaces which correspond to a proprietary XML schema. This implies a greater
transparency of the data stored and a sales pitch due to XML standard support.
Concerning integration this is not a real progress. In a heterogeneous environment
of different tools all providing weak standard support, transformation programs
are still required in order to edit a model designed with tool a in tool b. There is an
advantage contributed by the common use of XML: XSLT [Clar99] provides a
scripting language for transformations that simplifies parsing of the input file,

50 Jan Mendling, Markus Nüttgens

specification of mapping rules, and assembly of the output. But this does not re-
duce heterogeneity of tools.

Strong standard support implies the existence of a standardized XML schema
which is supported by tool vendors as an import and export format. This is an
efficient situation for the user: she may use different tools for different purposes
and interchange the models via an XML file conforming to the standardized XML
schema. Such standards have been established for modelling methodologies like
the Unified Modeling Language (UML) [OMG03a] in shape of XML Metadata
Interchange (XMI) [OMG03b] and for Petri Nets with Petri Net Markup Language
(PNML) [Bisk03]. For BPM with Event-Driven Process Chains (EPC) [KeNS92]
such a specification is in progress of development. It is called EPC Markup Lan-
guage (EPML) [MeNü02; Mend03; MeNü03b; MeNü03c]. The establishment of a
standardized representation of business process models may be even more benefi-
cial than in other domains, because interchange may have two different directions:
horizontal interchange will simplify the integration of BPM tools of the same
scope. Vertical interchange can leverage the integration of simulation engines,
execution engines, and monitoring engines [WfMC02]. This is a crucial step to
finally close the engineering gap between modelling and implementation.

Today, the BPM market has adopted weak standard support providing XML inter-
faces for their tools. The development of EPML may eventually encourage BPM
tool vendors to choose a strategy of strong standard support. Meanwhile EPML
can be used as an intermediary format. With a large number of tools it is beneficial
to use such an intermediary in order to reduce the number of transformation
scripts and limit the loss of information [WHBC02]. The development of inter-
change formats for business process modelling has a significant impact on refer-
ence modelling. Once such an interchange format is standardized and accepted,
reference models can be exchanged and reused beyond system and tool bounda-
ries. This paper will discuss how an intermediary format for EPCs can be de-
signed. Section 2 addresses general XML design principles and design principles
for EPML in particular. Section 3 deals with process and graph representation in
XML. Best practices will be extracted from different graph-oriented markup lan-
guages. Section 4 will be dedicated to EPC process graph objects. In this context
EPC syntax elements and their logical relationships will be discussed. In section 5
the representation of graphical aspects are examined including coordinate system,
position and layout information. Section 6 will provide a survey on business per-
spectives, views and dimensions related to BPM in an organizational environment.
Each of the discussions in the various sections will conclude with design proposals
for EPML. Section 7 will present a summary of the findings and an outlook on
EPML.

 XML-based Reference Modelling 51

2 EPML Design Principles

The purpose of EPML is to provide a tool and platform independent XML-based
interchange format for EPCs. This mainly implies three questions: firstly, the
question arises of what shall be modelled in details. Secondly, there have to be
general guidelines on how things have to be expressed in XML. Thirdly, there is
the question of which general principles shall guide the modelling. This section
will begin the discussion with the which-principles-question and continue with the
how-question. The question concerning details will be captured in the following
sections.

2.1 EPML General Design Principles

Some of the various XML specifications of special domain vocabularies explicitly
describe their general design principles. One of them is the ASC X12 Reference
Model for XML Design (X12) [ANSI02] that describes a seven layer model for
the development of business documents. The definition of X12 was guided by four
high level design principles: alignment with other standards, simplicity, prescrip-
tiveness, and limit randomness. Alignment with other standards refers to the spe-
cific domain of business documents where other organisations including OASIS
and UN/CEFACT, World Wide Web Consortium, and OASIS UBL also develop
specifications. Simplicity is a domain independent principle. It demands features
and choices to be reduced to a reasonable minimum. Prescriptiveness is again
related to business documents. This principle recommends one to define rather
more precise and specific business documents than too few which are very gen-
eral. Limit randomness addresses certain constructs in XML schema languages
that provide multiple options and choices. These aspects shall be limited to a
minimum. XML design guidelines are affected by this principle.

The PNML approach for Petri Nets is governed by the principles flexibility, no
ambiguity, and compatibility [BCHK03]. Flexibility is an important aspect for
Petri Nets, because all kinds of currently discussed and also prospective classes of
Petri Nets shall be stored. This will be achieved with labels which can be attached
to arcs and nodes. No ambiguity refers to the problem of standardized labels.
Therefore, Petri Net Type Definitions define legal labels for particular net types.
Compatibility deals with the problem of semantically equivalent labels used by
different Petri net types. These overlapping labels shall be exchangeable.

The EPML approach reflects these different design principles. It is governed by
the principles of readability, extensibility, tool orientation, and syntactical correct-
ness [MeNü03b]. Readability expects EPML elements and attributes to have intui-
tive and telling names. This is important because EPML documents will be used
not only by applications, but also by humans who write XSLT-scripts that trans-
form between EPML and other XML vocabularies. Readability is partially related

52 Jan Mendling, Markus Nüttgens

to simplicity and limited randomness of the X12 approach. Extensibility reflects a
problem that is analogous to different types of Petri nets. An important aspect of
BPM is to provide different business perspectives and views on a process. EPML
should be capable to express arbitrary perspectives instead of only supporting a
pre-defined set. Section 6 is dedicated to this issue. Tool orientation deals with
graphical representation of EPCs. This is a crucial feature, because BPM tools
provide a GUI for developing models. EPML should be able to store various lay-
out and position information for EPC elements. Graphical Information is dis-
cussed in section 5. Finally, syntactical correctness summarizes aspects dealing
with EPC syntax elements and their interrelation. This principle is related to sec-
tions 3 and 4. The following paragraph will discuss general XML design aspects.

EPML
<EPML>

<EPC EpcId=“1“/>
<EPC EpcId=“2“/>

</EPML>

User Perspectives

Model
Visualization Syntax Check

1. Readability 2. Extensibility

4. Syntactical Correctness3. Tool-Orientation

Figure 1: EPML Design Principles

2.2 XML Design Guidelines

Basically, two general approaches towards XML design guidelines can be distin-
guished: a theoretical one building on normal forms and information content
measures like entropy; and a pragmatic one giving advise on when to use which
XML language concepts and how to name elements and attributes.

The theoretical approach builds on insights from database theory. For relational
database models concepts like functional dependency (FD), multivalue depend-
ency (MVD), and join dependency (JD) have been formally described [Bisk95]. In
order to derive schemas with good properties, decomposition algorithms have

 XML-based Reference Modelling 53

been developed to achieve different levels of normal forms. These normal forms
avoid redundancies and anomalies from operations on relational data. Analo-
gously, a normal form has been presented for XML, called (XNF) [EmMo01;
ArLi02]. In [ArLi03] an information-theoretic approach is presented that bridges
the conceptual gap between relational and XML representations. A theory is de-
veloped building on entropy measures that brings forth a concept-independent
understanding of the interrelation of redundancies and normal forms. A schema is
called well-designed when it cannot contain instance data with an element that has
less than maximum information in terms of conditional entropy [ArLi03]. From
this it can be shown that a schema which has only FDs and neither MVDs nor JD
is well-designed iff (if and only if) it is in Boyce-Codd-Normal Form. FD for
XML schemas occur when paths from the root to nodes in the XML tree depend
upon other paths. Analogously, an XML schema subject to FDs is well-designed
iff it is in XNF [ArLi03]. A violation of XNF implies redundancies in that sense
that a path may reach different nodes, but that these nodes all have the same value.
Such violations can be cured by a normalization algorithm that moves attributes
and creates new elements until XNF is achieved [ArLi03]. For XML reference
model design this implies that there should be no XPath [ClDe99] statement that
always returns a set of nodes all containing the same value. Then the XNF condi-
tion is fulfilled and the schema is well-designed.

Pragmatic approaches deal with extensibility and design leeway in XML. Docu-
ments from ISO [Kete01], SWIFT [SWIF01], MISMO [MISM02] and X12
[ANSI02] establish design rules in order to minimize ambiguity and maximize
communicability of XML schemas. Pragmatic XML design guidelines include
conventions for names; for the choice of style between elements and attributes; for
the use of special schema language features; and for namespace support. Naming
conventions refer to the choice of element and attribute names. ISO, SWIFT,
MISMO, and X12 agree on using English words for names. Names may also con-
sist of multiple words in so-called Upper Camel Case (no separating space, each
new word beginning with a capital letter) according to MISMO, SWIFT, and ISO;
abbreviations and acronyms shall be limited to a minimum. Style conventions
govern the choice between elements and attributes. X12 recommends the usage of
attributes for metadata and elements for application data [ANSI02]. In this con-
text, it is a good choice to understand identifying keys as metadata and put them
into attributes. That allows a DTD conforming usage of the ID, IDREF, and
IDREFS data types and a respective key or keyref declaration in a W3C XML
Schema [BLMM01; BiMa01]. Further, attributes are considered to provide a bet-
ter readability of content [Mert01; ANSI02]. Therefore, content that can never be
extended may also be put into attributes. Schema conventions recommend one to
use only a reduced set of the expressive power provided by an XML schema lan-
guage. X12 advises one to avoid mixed content, substitution groups, and group
redefinition from another schema; one should use only named content types and
built-in simple types, to name but a few aspects. We refer to [ANSI02] for a
broader discussion. Namespace conventions refer to the usage of namespaces in

54 Jan Mendling, Markus Nüttgens

instance documents. X12 recommends one to use explicit namespace references
only at the root level.

Theoretical and pragmatic approaches offer complementary guidelines for the
development of “good” XML schemas. The guidelines presented have contributed
to the EPML proposal. The following section continues with an analysis of proc-
ess graph representation in XML.

3 Process Graph Representation

A graph is a pair of vertices V and edges E with E being a subset of the Cartesian
product of V. Graphs can be found in various domains of computer science. For
example, Entity-Relationship-Diagrams are used as conceptual representation in
relational database design [Chen76]. Entities can be regarded as special vertices
and relationships as special edges. Another example is object-oriented software
engineering. The Unified Modeling Language (UML) [OMG03a] allows relation-
ships and inheritance hierarchies to be modelled which can be interpreted as
graphs. Graph-like structures of software programs are retrieved and rearranged in
software reengineering [FaGW03]. As business process modelling formally builds
upon directed graphs, an approach towards a XML representation for EPCs will
have to take insights from these domains into account.

In computer science various data structures for graphs are discussed, mainly with
focus on the efficient execution of graph algorithms. The three most prominent of
them are adjacency matrices, adjacency lists, and edge lists [Eber87]. A adjacency
matrix represents a directed graph with n vertices using an n × n matrix, where the
entry at (i,j) is 1 if there is an edge from vertex i to vertex j; otherwise the entry
is 0 [Blac03]. In contrast adjacency lists describe directed graphs with n vertices
using an array of n lists of vertices. A vertex j is included in list i if there is an
edge from vertex i to vertex j. Edge lists come closest to the set-oriented definition
of graphs. An edge for a vertex i to a vertex j is stored as a pair (i,j).

When such a generic graph data structure shall to be expressed in XML, adapta-
tions have to be made taking the tree-like structure of XML into consideration.
This implies that in general ID, IDREF, IDREFS data types known from Docu-
ment Type Definitions (DTD) [BPSM00] or xs:key, xs:keyref constraints from
XML Schema [BLMM01; BiMa01] have to be used to express arbitrary edges. In
order to identify best practices in expressing graphs in XML, we will have a look
at eight different XML graph representations, including

• AML, the XML format of ARIS Toolset [IDS01; IDS03a];

• The Business Process Modeling Language (BPML) proposed by BPMI.org, an
industry initiative of companies dedicated to BPM [Arki02];

 XML-based Reference Modelling 55

• The Business Process Execution Language for Web Services (BPEL4WS)
promoted by IBM, Microsoft, BEA, Siebel, and SAP [ACDG03];

• The Graph eXchange Language (GXL), a specification of the software reengi-
neering community [WiKR02];

• The Petri Net Markup Language (PNML) developed within the Petri Net com-
munity [WeKi02];

• MS Visio’s VDX format allowing XML storage of Visio diagrams [Micr03];

• XML Metadata Interchange (XMI) from Object Management Group (OMG),
the standard for exchanging UML models [OMG03b]; and

• XML Process Definition Language (XPDL), the proposal from Workflow
Management Coalition (WfMC), the XML specification for WfMC’s Inter-
face 1 – process definition interchange [WfMC02].

These XML Schemas and DTDs come from academic proposals, industry stan-
dards, or tool-specific specifications. Their graph representation philosophies can
be subdivided into three categories: block-oriented representation, adjacency sub-
element lists, edge element lists.

Block-oriented representation is used by novel business process modelling lan-
guages for Web Services like BPML or BPEL4Ws. This paradigm is inspired by
process algebra like Pi-Calculus [Miln99] which serves as their theoretical founda-
tion. Block-oriented languages provide a set of simple (in BPML) or basic (in
BPEL4WS) and complex (in BPML) or structured (in BPEL4WS) operations that
represent the control flow. There are some naming discrepancies between BPML
and BPEL4WS, but the concepts are very similar [MeMü03]. Complex operations
allow the definition of parallel execution, sequence, choices, and loops. They may
be nested, but pure block structure is not able to express arbitrary control flows.
Therefore, BPML and BPEL4WS include additional links to describe arbitrary
synchronisation paths. It is an advantage of a block-oriented representation that
code (without much nesting) is readable thanks to its sequential nature; and that
only few commands are needed to express complex behaviour, compare figure 2.
The disadvantage is that block orientation needs to mix with other concepts like
links to express certain synchronisation behaviour; and that it is not meant for
graphical presentation. Complex mappings are needed between modelling tools
and block-oriented representation, as for example described in the Business Proc-
ess Modelling Notation (BPMN) draft [Whit03]. EPML is meant for graphical
BPM tools; therefore block-oriented representation of process graphs will not be
used.

56 Jan Mendling, Markus Nüttgens

Flow

sequence

Invoke

Receive

sequence

Invoke

Receive

Arc

<flow>
<links>
 <link name="Arc"/>
</links>
<sequence>
 <invoke>
 <source
 linkName="Arc"/>
 </invoke>
 <receive/>
</sequence>
<sequence>
 <invoke>
 <target
 linkName="Arc"/>
 </invoke>
 <receive/>
</sequence>
</flow>

Figure 2: A process with two parallel paths and its abbreviated BPEL4WS syntax

Adjacency sub-element lists describe a process graph by an unordered list of nodes
each having an ID attribute. An arc is represented by a sub-element of its source
node. The arc carries an attribute which holds an ID reference to the node where it
is linking to. The adjacency sub-element list representation is used by ARIS Tool-
set’s XML export format [IDS01]. Its advantage is that you have a quick overview
on which arcs leave from a certain node. But the use of ID references reduces
readability. Another disadvantage stems from conceptual implications of this rep-
resentation style: it is not possible to express arcs that do not have at least a begin-
ning node. In BPM it may make sense to interchange process models that have not
been finished yet containing arcs without start or end node. An adjacency sub-
element list is not able to hold such information.

<node Id=”1”>
 <arc ToId=”2”/>
 <arc ToId=”3”/>
</node>
<node Id=”2”/>
<node Id=”3”/>

<node Id=”1”/>
<arc FromId=”1” ToId=”2”/>
<arc FromId=”1” ToId=”3”/>
<node=”2”/>
<node=”3”/>

Figure 3a: Adjacency sub-element list
representation. There are two arcs from
node 1, one to node 2 and one to node 3.

Figure 3b: The respective process frag-
ment in edge element list representation

Edge element lists are closely related to a set-oriented definition of graphs. Arcs
are treated as first-class objects. Specifications like GXL and PNML underline this
by attaching IDs to arcs just like to nodes. The edge element list representation is
very popular. It is used by GXL, PNML, Visio’s VDX, XMI, and XPDL. An asset
of this representation is its flexibility. Arbitrary graphs can be described, and it is

 XML-based Reference Modelling 57

even possible to store arcs that are (not yet) connected with nodes. A disadvantage
is its usage of IDs and IDREFs thatwhich makes it difficult to read for humans.

The different process representation paradigms urge one to trade off the EPML
design principles of readability and tool orientation. Readability is best supported
by block-orientation because it does not use IDs and ID references. But graphical
representation has to rely on complex mapping rules which contradicts tool orien-
tation. Edge element lists are less readable, but very flexible data structure that is
closely related to a set-oriented representation of process models. Another advan-
tage is the fact that a lot of other specifications use them. This simplifies transfor-
mations to different tools and different methodologies. Therefore, edge element
lists will be used to describe EPC process graphs in EPML.

4 Process Graph Elements and Their Relationships

In this section the EPML understanding of EPC control flow models will be pre-
sented. Business views and perspectives will be covered in section 6. As EPML
builds on the concept of EPC Schema sets [NüRu02], it is possible to store more
than one EPC model in an EPML file. First, an introduction is given to the organi-
sation of multiple EPCs in an EPML file and the relationships which span beyond
single EPC models. Afterwards, the elements of a single EPC model are explained
in their EPML syntax.

4.1 Hierarchies of EPCs in EPML

<epml> is the root element of an EPML file. Like all other elements it may have
<documentation> or <toolInfo> child elements. These may contain data
that has been added by the editor of the EPML file or tool specific data attached
by an application. These two elements are of XML Schema type anyType which
means that they may hold arbitrary nesting of XML data. It is recommended to use
only standardised Dublin Core Metadata Elements [DCMI03] for documentation
of the EPML file, and to add only such application specific data that has relevance
for the internal storage of models in a certain tool, but which does no influence the
graphical presentation of a model. General graphic settings may be defined in the
<graphicsDefault> element (see section 5). The <coordinates> element
is meant to explicate the interpretation of coordinates annotated to graphical ele-
ments of an EPC. The @xOrigin attribute may take the values “leftToRight” or
“rightToLeft”, and the @yOrigin attribute can hold “topToBottom” or “bottom-
ToTop”. It is recommended to always use the “leftToRight” and “topToBottom”
settings which most of the tools assume. Yet, there are still exceptions like MS
Visio that has its y-axis running from the bottom of the screen upward. It is rec-
ommended to transform these coordinates when storing EPC models in EPML.

58 Jan Mendling, Markus Nüttgens

Table 1: High level elements of an EPML file

EPML element Attributes and Sub-Elements

<epml> <documentation> ?
<toolInfo> ?
<graphicsDefault> ?
<coordinates>
<definitions>
<view> *
<directory> +

<definitions> <documentation> ?
<toolInfo> ?
<eventDefinition> *
<functionDefinition> *
<processInterfaceDefinition> *

<directory> @name
<documentation> ?
<toolInfo> ?
<directory> *
<epc> *

<epc> @epcId, @name
<documentation> ?
<toolInfo> ?
<event> *
<function> *
<processInterface> *
<and>, <or>, <xor> *
<arc>

In [NüRu02] an EPC Schema Set is defined as a set of hierarchical EPC Schemas.
Each of these hierarchical EPC Schemas consists of a flat EPC Schema which
may have hierarchy relations attached with functions or process interfaces. The
detailed discussion of flat EPC Schemas is left to the following paragraph; here, it
is sufficient to have a general understanding of what EPCs are. Syntactically, a
hierarchy relation connects functions or process interfaces with other EPC proc-
esses. Semantically, it refers to the call of sub-processes. <epml> also has a
<definitions> child element which is explained in conjunction with the
<directory> element. The <view> element is presented in section 6.

 XML-based Reference Modelling 59

In EPML a hierarchy of processes is organised by the help of directories. A <di-
rectory> holds a @name attribute, other directories, and/or EPC models. Each
<epc> is identified by an @epcId attribute and has a @name attribute. The
@epcId can be referenced by hierarchy relations attached to functions or process
interfaces. The EPC control flow elements will be discussed in paragraph 4.2. In a
hierarchy of EPC models there may be the problem of redundancy. An EPC proc-
ess element might be used in two or more EPC models. In such a case there should
be a place to store it once and reference it from the different models. This is pre-
cisely the aim of the <definitions> element. It serves as a container for con-
trol flow elements that are used more than once in the model hierarchy.

4.2 EPC Models in EPML Syntax

In this paragraph EPC syntax is covered. For an overview of EPC semantics re-
lated issues, we refer to [NüRu02] and [Kind03]. In [KeNS92] the EPC is intro-
duced to represent temporal and logical dependencies in business processes. Ele-
ments of EPCs may be of function type (active elements) symbolized by <func-
tion>, event type (passive elements) represented by <event>, or of one of the
three connector types AND, OR, or XOR which may be either split or join opera-
tors. The connectors are described by EPML elements <and>, <or>, and
<xor>. These objects are linked via <arc> elements to express the control flow.
Based on practical experience with the SAP Reference model, process interfaces
and hierarchical functions had been introduced as additional element types of
EPCs [KM94]. The <processInterface> is used to refer from the end of a
process to a following process. A hierarchical <function> allows to define
macro-processes with the help of sub-processes. Both kinds of relations are ex-
pressed by the help of a <toProcess> element whose @linkToEpcId repre-
sents the relation with another EPC process. Events, functions, process interfaces,
connectors and control flow arcs are the syntactical elements of a so-called flat
EPC Schema, the basic building block of an EPC Schema set [NüRu02]. They all
share an @id attribute, a <name> element, a <description> element, a
<graphics> element (described in section 5), and a <syntaxInfo> element
which may cover information concerning implicit element types. Syntax informa-
tion leverages the design principle of syntactical correctness and allows an easier
verification of EPC syntax properties. For a discussion of implicit element types
and EPC syntax properties we refer to [MeNü03a, MeNü03c].

60 Jan Mendling, Markus Nüttgens

Table 2: Control flow elements of an EPML file

EPML element Attributes and Sub-Elements

<event> @id
<name>
<description>
<reference @defRef> ?
<graphics> ?
<syntaxInfo @implicitType> ?

<function> @id
<name>
<description>
<reference @defRef> ?
<graphics> ?
<syntaxInfo @implicitType> ?
<toProcess @linkToEpcId> ?
<unitReference @unitRef @role> ?

<processInterface> @id
<name>
<description>
<reference @defRef> ?
<graphics> ?
<syntaxInfo @implicitType> ?
<toProcess @linkToEpcId> ?

<and>, <or>, <xor> @id
<name> ?
<description> ?
<graphics> ?
<syntaxInfo @implicitType> ?

<arc> @id
<name> ?
<description> ?
<flow @source @target> ?
<graphics> ?
<syntaxInfo @implicitType> ?

Some control flow objects have special elements. Potentially, the same events,
functions, and process interfaces may be used multiple times in a hierarchy of
EPCs. In order to avoid redundancy their respective XML tags may contain

 XML-based Reference Modelling 61

<reference> elements instead of <name> and <description>. Such a
reference refers to a definition of an event, a function, or a process interface that
centrally store the name and the description. Functions also may have a <unit-
Reference>. This refers to a business perspective and will be explained in sec-
tion 6. Arcs have to connect two other control flow elements according to the edge
element list representation. This is the purpose of the <flow> element. It contains
two attributes which both refer to id-attributes of other control flow elements:
@source and @target.

5 Graphical Information

Graphical Information refers to the presentation of EPC models in graphical BPM
tools. This is a topic that is not special to EPML. The Petri Net Markup Language
(PNML) has worked out and included a proposal for graphical information to be
exchanged between modelling tools [BCHK03]. This concept is also well suited
for EPML and adopted here. There are some small modifications that will be made
explicit in the discussion of the details. Similar to the <graphics> element of
control flow objects, the top level element <graphicsDefault> may contain
<fill>, <line>, and default settings, but no <position> element.

All the four attributes of the <position> element refer to the smallest rectangle
parallel to the axes that can be drawn to contain the whole polygon symbolizing
the object. The @x and @y attributes of the object describe the offset from the
origin of the coordinates system of that angle of the object that is closest to the
origin. The @width and the @height describe the length of the edges of the
container rectangle. In PNML a separate dimension element is used to represent
width and height. Arcs may have multiple position elements to describe anchor
point where the arc runs through. Position elements of arcs do not have width and
height attributes.

The <fill> element describes the appearance of the interior of an object. Arcs
do not have fill elements. The @color attribute must take a RGB value or a pre-
defined colour of Cascading Stylesheets 2 (CSS2) [BLLJ98]. In order to describe
a continuous variation of the filling colour an optional @gradient-color may
be defined. The @gradient-rotation sets the orientation of the gradient to
vertical, horizontal, or diagonal. If there is the URI of an image assigned to
@image the other attributes of fill are ignored. The <line> element defines the
outline of an object. The @shape attribute refers to how arcs are displayed: the
value “line” represents a linear connection of anchor points to form a polygon; the
value “curve” describes a quadratic Bezier curve. The element holds
@family, @style, @weight, @size, and @decoration attributes in con-
formance with CSS2. In addition to PNML, there may be a font colour defined.

62 Jan Mendling, Markus Nüttgens

@verticalAlign and @horizontalAlign specify the alignment of the
text. In PNML the align attribute corresponds to the EPML horizontalAlign attrib-
ute, and verticalAlign is covered by a PNML offset element. @rotation de-
scribes a clockwise rotation of the text similar to the concept in PNML.

Table 3: The graphics element of an EPML file

EPML element Attributes and Sub-Elements

<graphics> <position>
<fill>
<line>

<position> @x, @y, @width, @height

<fill> @color, @image, @gradient-
color, @gradient-rotation

<line> @shape, @color, @width,
@style

 @family, @style, @weight,
@size, @decoration, @color,
@verticalAlign,
@horizontalAlign, @rotation

6 Business Perspectives and Views

Business perspectives and views play an important role for the analysis and con-
ception of process models, especially for EPCs. Perspectives have proven valuable
to partition the specification of a complex system [FKNF92]. This approach has
been extended for EPCs to allow a personalised presentation of a process model
with perspectives of concern [BDFK03].

There have been many different perspectives proposed for business process mod-
elling. The Architecture of Integrated Systems (ARIS) extends the EPC with a
data-oriented, a functional, an organisational, an application-oriented, and a prod-
uct/service-oriented perspective [Sche00]. The PROMET concept differentiates
between business dimensions explicitly including organisation, data, functions,
and personnel [Öste95]. An in-depth survey of organisational entities provided in
workflow management systems is given in [RoMü98]. The link between role-

 XML-based Reference Modelling 63

based access control (RBAC) and business scenarios is analysed in [NeSt02] and a
methodology to generate role hierarchies is developed. From a delegation per-
spective [AaKV03] structure the organisational perspective of a workflow system
into a meta model including resources, organisational units, users, and roles. In
[Whit03] and [BeAN03] swim lanes and pools are recommended as a metaphor
for the graphical representation of parties involved in a process. Recently, BPM
languages like BPEL4WS contain references to WSDL descriptions [CCMW01]
of Web Services as a new category of resource perspectives. Beyond resources
there have been further perspectives proposed like e.g. risk [BrOc02], perform-
ance measurement [IDS03b] to name but a few.

Table 4: Business perspectives and views in EPML

EPML element Attributes and Sub-Elements

<view> @name
<unit> *
<unitRelation> *

<unit> @unitId
@name

<unitRelation> @relationId
@unitRef
@subUnitRef
@annotation ?

<unitReference> @unitRef
@role ?
@value ?

The DAML-S Initiative is committed to the development of a standardised busi-
ness process ontology for Web Service [DAML03]. This is a difficult task taken
into consideration the variety of possible perspectives and views. There are even
doubts whether a standardised ontology is desirable, because different domains
and different business sectors need tailor-made meta models that best fit their
specific business model [KaKü02]. These arguments have governed the decision
of letting EPML be guided by the principle of extensibility instead of standardis-
ing certain views. The <view> element is meant to be a container of entities of a
certain business perspective and their relationships. The <unit> element de-
scribes an entity within the domain of a business view by a @unitId and a
@name. The <unitRelation> expresses a hierarchical relationship between
by the help of a @unitRef and a @subUnitRef. The @annotation may be
used to detail the kind of relationship between the units. There is also a

64 Jan Mendling, Markus Nüttgens

@relationId included in order to logically distinguish different relationships
between two of the same units. Function elements of a control flow may contain a
<unitReference>. The @role and the @value attribute allow one to spec-
ify additional information concerning the relationship between the function and
the unit.

7 Outlook on EPML

Throughout this paper we have presented our proposal for an EPC Markup Lan-
guage (EPML). This approach is meant as an interchange format for EPC models.
It follows the guiding principles of readability, extensibility, tool orientation, and
syntactical correctness. Throughout the different sections, we discussed best prac-
tices from other graph and process reference models and made our design deci-
sions explicit. This included a detailed discussion of process graph representation,
EPC process graph elements and their relationships, graphical information as well
as business perspectives and views.

Yet, there is still much discussion needed within the EPC community to achieve a
consensus on EPC representation in EPML, and to leverage EPML application.
There are several issues that will be addressed in the future. Firstly, in order to
leverage the benefits of EPML as an interchange format, transformation scripts
will be developed from major BPM tools towards EPML and reverse. A second
issue is the graphical presentation. For PNML there already exists a transforma-
tion script to Scalable Vector Graphics (SVG) [FeJJ03]. A similar script will be
developed from EPML to SVG. Thirdly, an XSLT-based [Clar99] syntax checker
will be developed and continue the efforts of an XML-based syntax validation of
EPCs [MeNü03c]. Finally, there is still much research needed to come to a general
understanding of business perspectives for BPM. Methodologically, this will have
to take meta modelling and semantic web techniques into account; furthermore
related research on concrete perspectives will have to be consolidated. Admini-
stration of decentralized, loosely coupled models will be one of the topics in this
context. In this sense, the development of EPML can – beyond its principle pur-
pose as an interchange format – serve as a catalyst and a framework for the dis-
cussion of all these related topics. Up-to-date information, material, and discus-
sion on EPML can be found at http://wi.wu-wien.ac.at/Wer_sind_wir/ mend-
ling/EPML/.

 XML-based Reference Modelling 65

8 References

[AaKV03] van der Aalst, W. M. P.; Kumar, A.; Verbeek, H. M. W.: Organizational
Modeling in UML and XML in the Context of Workflow Systems. In: Pro-
ceedings of the 2003 ACM Symposium on Applied Computing (SAC),
2003, pp. 603-608.

[ArLi02] Arenas, M.; Libkin, L.: A normal form for XML documents. In: Proceed-
ings of the 21st ACM SIGACT-SIGMOD-SIGART Symposium on Princi-
ples of Database Systems (PODS’02), 2002, pp. 85-96.

[ArLi03] Arenas, M.; Libkin, L.: An Information-Theoretic Approach to Normal
Forms for Relational and XML Data. In: Proceedings of the 22nd ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems (PODS’03), 2003, pp. 15-26.

[ANSI02] ANSI (ed.): ASC X12 Reference Model for XML Design, July 2002.
http://www.x12.org/x12org/comments/X12Reference_Model_For_XML_D
esign.pdf.

[ACDG03] Andrews, T.; Curbera, F.; Dholakia, H.; Goland, Y.; Klein, J.; Leymann, F.;
Liu, K.; Roller, D.; Smith, D.; Thatte, S.; Trickovic, I.; Weerawarana, S.:
Business Process Execution Language for Web Services (BPEL4WS) Ver-
sion 1.1. BEA, IBM, Microsoft, SAP, Siebel, 2003.

[Arki02] Arkin, A.: Business Process Modeling Language (BPML). BPMI.org, 2002.

[BeAN03] Becker, J.; Algermissen, L.; Niehaves, B.: Prozessmodellierung in eGovern-
ment-Projekten mit der eEPK. In: M. Nüttgens, F. J. Rump (eds.): EPK
2003 - Geschäftsprozessmanagement mit Ereignisgesteuerten Prozessket-
ten. Proceedings of the GI-Workshop EPK 2003, pp. 31-44.

[BLMM01] Beech, D.; Lawrence, S.; Moloney, M.; Mendelsohn, N.; Thompson, H. s.
(eds.): XML Schema Part 1: Structures. World Wide Web Consortium,
Boston 2001. http://w3c.org/TR/2001/REC-xmlschema-1-20010502/.

[BDFK03] Becker, J.; Delfmann, P.; Falk, T.; Knackstedt, R.: Multiperspektivische
ereignisgesteuerte Prozessketten. In: M. Nüttgens, F. J. Rump (eds.): EPK
2003 - Geschäftsprozessmanagement mit Ereignisgesteuerten Prozessket-
ten. Proceedings of the GI-Workshop EPK 2003, pp. 45-60.

[Bisk95] Biskup, J.: Achievements of relational database schema design theory revis-
ited. In: L. Libkin, B. Thalheim (eds.): Semantics in Databases, LNCS
1358, 1998, pp. 29-54.

[BCHK03] Billington, J.; Christensen, S.; van Hee, K. E.; Kindler, E.; Kummer, O.;
Petrucci, L.; Post, R.; Stehno, C.; Weber, M.: The Petri Net Markup Lan-
guage: Concepts, Technology, and Tools. In: W. M. P.van der Aalst, E.
Best (eds.): Applications and Theory of Petri Nets 2003, 24th International
Conference, ICATPN 2003. Eindhoven 2003, pp. 483-505.

[Blac03] Black, P. E.: NIST Dictionary of Algorithms and Data Structures, 2003.
http://www.nist.gov/dads/.

66 Jan Mendling, Markus Nüttgens

[BiMa01] Biron, P. V.; Malhotra, A. (eds.): XML Schema Part 2: Datatypes. World
Wide Web Consortium, Boston 2001. http://w3c.org/TR/2001/REC-xml
schema-2-20010502/.

[BLLJ98] Bos, B.; Lie, H. W.; Lilley, C.; Jacobs, I. (eds.): Cascading Style Sheets,
level 2 – CSS2 Specification. http://w3c.org/TR/CSS2, 1998.

[BrOc02] Brabänder, E.; Ochs, H.: Analyse und Gestaltung prozessorientierter
Risikomanagementsysteme mit Ereignisgesteuerten Prozessketten. In: M.
Nüttgens, F. J. Rump (eds.): EPK 2003 - Geschäftsprozessmanagement mit
Ereignisgesteuerten Prozessketten. Proceedings of the GI-Workshop EPK
2002, pp. 17-34.

[BPSM00] Bray, T.; Paoli, J.; Sperberg-McQueen, C. M.; Maler, E. (eds.): Extensible
Markup Language (XML) 1.0 (Second Edition). World Wide Web Consor-
tium, Boston, USA, 2000. http://www.w3c.org/TR/2000/REC-xml-20001
006/.

[ClDe99] Clark, J.; DeRose, S.: XML Path Language (XPath) Version 1.0, World
Wide Web Consortium. Boston 1999. http://www.w3.org/TR/1999/REC-
xpath-19991116.

[Chen76] Chen, P.: The Entity-Relationship Model – Towards a Unitied view of Data.
ACM Transactions on Database Systems. 1 (1976) 1, pp. 9-36.

[CCMW01] Christensen, E.; Curbera, F.; Meredith, G.; Weerawarana, S.: Web Service
Description Language (WSDL) 1.1, World Wide Web Consortium. Boston
2001. http://www.w3.org/TR/wsdl.

[Clar99] Clark, J. (ed.): XSL Transformations (XSLT) Version 1.0. World Wide
Web Consortium. Boston 1999. http://w3c.org/TR/1999/REC-xslt-19991
116/.

[DAML03] The DAML Services Coalition (ed.): DAML-S: Semantic Markup for Web
Services. Whitepaper Version 0.9. http://www.daml.org/services, 2003.

[DCMI03] Dublin Core Metadata Initiative: Dublin Core Metadata Element Set, Ver-
sion 1.1: Reference Description. 2003. http://dublincore.org/documents/
2003/02/04/dces/.

[Eber87] Ebert, J.: A Versatile Data Structure for Edge-Oriented Graph Algorithms.
CACM. 30 (1987) 6, pp. 513-519.

[EmMo01] Embley, D.W.; Mok, W.Y.: Developing XML documents with guaranteed
“good” properties. In: H. s. Kunii, S. Jajodia, A. Sølvberg (eds.): Concep-
tual Modeling - ER 2001, 20th International Conference on Conceptual
Modeling, LNCS 2224, 2001, pp. 426-441.

[FeJJ03] Ferraiolo, J.; Jun, F.; Jackson, D. (eds.): Scalable Vector Graphics (SVG)
1.1 Specification. http://www.w3c.org/TR/SVG11, 2003.

 XML-based Reference Modelling 67

[FaGW03] Favre, J.-M.; Godfrey, M.; Winter, A.: First International Workshop on
Meta-Models and Schemas for Reverse Engineering - Workshop Descrip-
tion, to appear in: Proceedings Working Conference on Reverse Engineer-
ing (WCRE 2003), IEEE Computer Society, 2003.

[FKNF92] Finkelstein, A.; Kramer, J.; Nuseibeh, B.; Finkelstein, L.; Goedicke, M.:
Viewpoints: A Framework for Integrating Multiple Perspectives in System
Development. International Journal of Software Engineering and Knowl-
edge Engineering. 2 (1992) 1, pp. 31-57.

[Gart02] Gartner Research: The BPA Market Catches Another Major Updraft. Gart-
ner's Application Development & Maintenance Research Note M-16-8153,
12 June 2002.

[IDS01] IDS Scheer AG (ed.): XML-Export und-Import mit ARIS 5.0, Stand Januar
2001, Saarbrücken, 2001.

[IDS03a] IDS Scheer AG (ed.): Schnittstellen zu ARIS 6.0x / 6.1x / 6.2, Whitepaper,
Saarbrücken 2003. www.ids-scheer.de/sixcms/media.php/1049/Uebersicht+
Schnittstellen+ARIS+2003-07.pdf.

[IDS03b] IDS Scheer AG (ed.):ARIS Process Performance Manager, Whitepaper,
Saarbrücken 2003. www.ids-scheer.com/sixcms/media.php/1186/aris_ppm_
whitepaper_e_v500.pdf.

[Kete01] Ketels, K.: ISO 15022 XML Design Rules, Technical Specification, 2001.
http://xml.coverpages.org/ISO15022-XMLDesignRulesV23a.pdf.

[Kind03] Kindler, E.: On the semantics of EPCs: A framework for resolving the
vicious circle (Extended Abstract). In: M. Nüttgens, F. J. Rump (eds.): EPK
2003 - Geschäftsprozessmanagement mit Ereignisgesteuerten Prozessket-
ten. Proceedings of the GI-Workshop EPK 2003, pp. 7-18.

[KaKü02] Karagiannis, D.; Kühn, H.: Metamodelling Platforms. In: K. Bauknecht; A.
Min Tjoa; G. Quirchmayer (eds.): Proceedings of the 3rd International Con-
ference EC-Web 2002 - Dexa 2002, Aix-en-Provence, France, September
2002, LNCS 2455, p. 182-196.

[KeMe94] Keller, G.; Meinhardt, S.: SAP R/3-Analyzer: Optimierung von Geschäfts-
prozessen auf der Basis des R/3-Referenzmodells, Walldorf 1994.

[KeNS92] Keller, G.; Nüttgens, M.; Scheer, A.-W.: Semantische Prozeßmodellierung
auf der Grundlage „Ereignisgesteuerter Prozeßketten (EPK)“. In: A.-W.
Scheer (ed.): Veröffentlichungen des Instituts für Wirtschaftsinformatik,
Heft 89, Saarbrücken, 1992.

[Mert01] Mertz, D.: Subelement contents versus tag attributes. IBM DeveloperWorks
– XML Zone, Nov 2001. http://www-106.ibm.com/developerworks/xml/li-
brary/x-tipsub.html.

68 Jan Mendling, Markus Nüttgens

[Mend03] Mendling, Jan: Event-Driven-Process-Chain-Markup-Language (EPML):
Anforderungen, Konzeption und Anwendung eines XML Schemas für Er-
eignisgesteuerte Prozessketten (EPK). In: H. Höpfner, G. Saake (eds.): Pro-
ceedings of the Students Program in Conjunction with the 10th Symposium
"Datenbanksysteme für Business, Technologie und Web". Magdeburg
2003, pp. 48-50.

[Miln99] Milner, R.: Communicating and Mobile Systems: The π-Calculus. Cam-
bridge 1999.

[Micr03] Microsoft (ed.): About the XML for Visio Schema. MSDN Library, 2003.
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/devref/
HTML/XMLR_XMLBasics_818.asp

[MISM02] Mortgage Bankers Association of America (MISMO) (ed.): MISMO XML
Design Rules and Guidelines. Draft 2.0 RC3, 2002. http://www.mismo.org/
mismo/docs/drftspc/mismoengguidelines.pdf.

[MeMü03] Mendling, J.; Müller, M.: A Comparison of BPML and BPEL4Ws. In: R.
Tolksdorf, R. Eckstein (eds.): Proceedings of the 1st Conference "Berliner
XML-Tage". Berlin 2003, pp. 305-316.

[MeNü02] Mendling, J.; Nüttgens, M.: Event-Driven-Process-Chain-Markup-Lan-
guage (EPML): Anforderungen zur Definition eines XML-Schemas für Er-
eignisgesteuerte Prozessketten (EPK). In: Nüttgens, M.; Rump, F. (eds.):
EPK 2002 – Geschäftsprozessmanagement mit Ereignisgesteuerten Pro-
zessketten, Proceedings of the GI-Workshop EPK 2002, pp. 87-93.

[MeNü03a] Mendling, J.; Nüttgens, M.: EPC Modelling based on Implicit Arc Types.
In: M. Godlevsky, S. W. Liddle, H. C. Mayr (eds.): Proceedings of the 2nd
International Conference on Information Systems Technology and its Ap-
plications (ISTA), LNI Vol. P-30. Bonn 2003, pp. 131-142.

[MeNü03b] Mendling, J.; Nüttgens, M.: XML-basierte Geschäftsprozessmodellierung.
In: W. Uhr, W. Esswein, E. Schoop (eds.): Wirtschaftsinformatik
2003/Band II. Heidelberg, 2003, pp. 161-180.

[MeNü03c] Mendling, J.; Nüttgens, M.: EPC Syntax Validation with XML Schema
Languages. In: M. Nüttgens, F. J. Rump (eds.): EPK 2003 – Geschäftspro-
zessmanagement mit Ereignisgesteuerten Prozessketten. Proceedings of the
GI-Workshop EPK 2003, pp. 19-30.

[NüRu02] Nüttgens, M.; Rump, J. F.: Syntax und Semantik Ereignisgesteuerter Pro-
zessketten (EPK). In: J. Desel, M. Weske (eds.): Promise 2002 - Prozessori-
entierte Methoden und Werkzeuge für die Entwicklung von Informations-
systemen. Proceedings GI-Workshop und Fachgruppentreffen (Potsdam,
Oktober 2002), LNI Vol. P-21. Bonn 2002, pp. 64-77.

[NeSt02] Neumann, G.; Strembeck, M.: A scenario-driven role engineering process
for functional RBAC roles. In: 7th ACM Symposium on Access Control
Models and Technologies (SACMAT 2002), pp. 33-42.

 XML-based Reference Modelling 69

[OMG03a] Object Management Group (ed.).: Unified Modeling Language (UML)
Specification, Marc 2003, Version 1.5, 2003.

[OMG03b] Object Management Group (ed.): XML Metadata Interchange (XMI)
Specification, May 2003, Version 2.0, 2003.

[Öste95] Österle, H.: Business Engineering. Prozess- und Systementwicklung, Band
1, Entwurfstechniken. Berlin 1995.

[RoMü98] Rosemann, M.; zur Mühlen, M.: Evaluation of Workflow Management
Systems - A Meta Model Approach. Australian Journal of Information
Systems 6 (1998) 1, pp. 103-116.

[Sche00] Scheer, A.-W.: ARIS business process modelling, Berlin et al., 2000.

[SWIF01] SWIFT (ed.): SWIFTStandards XML Design Rules Version 2.3, Technical
Specification, 2001. http://xml.coverpages.org/EBTWG-SWIFTStandards-
XML200110.pdf.

[WfMC02] Workflow Management Coalition (ed.): Workflow Process Definition
Interface – XML Process Definition Language, Document Number WFMC-
TC-1025, October 25, 2002, Version 1.0. Lighthouse Point 2002.

[Whit03] White, S.A: Business Process Modeling Notation – Working Draft 1.0,
Aug. 25, 2003. BPMI.org, 2003.

[WüHB02] Wüstner, E.; Hotzel, T.; Buxmann, P.: Converting Business Documents: A
Classification of Problems and Solutions using XML/XSLT. In: Proceed-
ings of the 4th International Workshop on Advanced Issues of E-Commerce
and Web-based Systems (WECWIS 2002).

[WeKi02] M. Weber, E. Kindler: The Petri Net Markup Language. In: H. Ehrig, W.
Reisig, G. Rozenberg, and H. Weber (eds.): Petri Net Technology for
Communication Based Systems. LNCS 2472, 2002.

[WiKR02] Winter, A.; Kullbach, B.; Riediger, V.: An Overview of the GXL Graph
Exchange Language. In: s. Diehl (ed.): Software Visualization - Interna-
tional Seminar Dagstuhl Castle, LNCS 2269, 2001.

