
Yet Another Event-Driven Process Chain
(Extended Version)

Technical Report JM-2005-05-27
Vienna University of Economics and Business Administration

-
Jan Mendling1, Gustaf Neumann1, and Markus Nüttgens2

1 Department of Information Systems and New Media
Vienna University of Economics and Business Administration

Augasse 2-6, A-1090 Vienna, Austria {firstname.lastname}@wu-wien.ac.at
2 Chair of Information Systems

University of Hamburg
Von-Melle-Park 9, D-20146 Hamburg, Germany

nuettgens@hwp-hamburg.de

Abstract The 20 workflow patterns proposed by Van der Aalst et al.
provide a comprehensive benchmark for comparing control flow aspects
of process modelling languages. In this paper, we present a novel class
of Event-Driven Process Chains (EPCs) that is able to capture all of
these patterns. This class is called “yet another” EPC as a tribute to
YAWL that inspired this research. yEPCs extend EPCs by the introduc-
tion of the so-called empty connector; inclusion of multiple instantiation
concepts; and a cancellation construct. Furthermore, we illustrate how
yEPCs can be used to model the workflow patterns. Finally, we describe
how yEPC extensions can be represented in EPC Markup Language
(EPML).

1 Introduction

The 20 workflow patterns gathered by Van der Aalst, ter Hofstede, Kiepuszewski
and Barros [1] are well suited for analyzing different workflow languages: work-
flow researchers can refer to these control flow patterns in order to compare
different process modelling techniques. This is of special importance consider-
ing the heterogeneity of process modelling languages (see e.g. [2]). Building on
the pattern analysis and on the insight that no language provides support for
all patterns, Van der Aalst and ter Hofstede have defined a new workflow lan-
guage called YAWL [3]. YAWL takes workflow nets [4] as a starting point and
adds non-petri-nets constructs in order to support each pattern (except implicit
termination) in an intuitive manner.

Besides Petri nets, Event-Driven Process Chains (EPC) [5] are another pop-
ular technique for business process modelling. Yet, their focus is rather related
to semi-formal process documentation than formal process specification, e.g., the
SAP reference model has been defined using EPC business process models [6].

The debate on EPC semantics (see e.g. [7,8,9]) has recently inspired the defi-
nition of a mathematical framework for a formalization of EPCs in [10]. As a
consequence, we argue that workflow pattern support can also be achieved by
starting with EPCs instead of Petri nets. This paper presents an extension to
EPCs that is called yEPCs. The letter y is an abbreviation for “yet another” and
a tribute to YAWL that inspired this research. In Section 2 we introduce EPCs
and yEPCs. yEPCs introduce three extensions to EPCs that are sufficient to
provide for direct support of the 20 workflow patterns reported in [1]. As EPCs
are frequently used for business process modelling, we expect yEPC extensions
not only to be interesting for the research community, but also useful for the
modelling practice. In Section 3 we discuss in detail how workflow patterns can
be expressed with yEPCs. In particular, we highlight the non-local semantics of
the XOR join, and its implications for workflow pattern support. Finally, we dis-
cuss how EPC Markup Language (EPML) can be extended in order to capture
yEPCs syntactically (Section 4). After a survey on related work (Section 5), we
give a conclusion and an outlook on future research (Section 6).

2 Yet Another Event-Driven Process Chain (yEPC)

In [5] EPCs are introduced as a modelling concept to represent temporal and
logical dependencies in business processes. Elements of EPCs may be of function
type (active elements), event type (passive elements), or of one of the three con-
nector types AND, OR, or XOR. These objects are linked via control flow arcs.
Connectors may be split or join operators, starting either with function(s) or
event(s). OR split and XOR split are prohibited subsequent to events. This re-
striction refers to the semantics of events as passive elements which are unable to
determine the functions that should follow. In EPCs both OR Join and XOR join
have non-local semantics (cf. [8,10]). Concerning the XOR join, this implies that
it blocks when there is one incoming branch finished and another still active. For
a formal discussion of these semantics refer to Kindler [10]. Furthermore, pro-
cess interfaces and hierarchical functions (see e.g. [11,8,12]) can be used to link
different EPC models: process interfaces can be used to point from the end of a
process to a subsequent process; hierarchical functions point from a function to
a refining sub-process. A hierarchical function can be regarded as a synchronous
call to that sub-process. After the sub-process has completed, navigation con-
tinues with the next function subsequent to the hierarchical function. In BPML
such sub-processes are modelled as a call activity [13]. The process interface
can be regarded as an asynchronous spawning off of a sub-process. There is no
later synchronization when the sub-process completes. In BPML such behavior
is modelled as a spawn. For more details on EPC sub-processes refer to [8].

Figure 1 illustrates the syntax elements of Yet Another Event-Driven Pro-
cess Chain (yEPC). This extension of EPCs is motivated by incomplete workflow
pattern support of EPCs and it is inspired by YAWL [3]. yEPCs reflect three
measures that suffice to provide for direct modelling support of all workflow
patterns [1]. These measures include the introduction of the so-called empty

Event

Function

Hierarchical
Function

Process
Interface

OR-
Connector

XOR-
Connector

AND-
Connector

Empty
Connector

[min, max, required, creation]
Multiple instantiation parameters

Cancellation
area

Figure 1. yEPC Symbols

connector; an inclusion of a general multiple instantiation concept; and the in-
troduction of a cancellation concept. The EPC extensions differ from Petri net
extensions that were needed to define YAWL: Petri nets also had to be extended
with multiple instantiation and cancellation concepts, but they lacked advanced
synchronization patterns. EPCs, in contrast, miss support for state-based pat-
terns. It should be mentioned that the yEPC extensions have no impact on the
validity of existing EPC models: this means that valid EPCs according to the
definitions in [5,8] are still valid with respect to this new class of EPCs.

As mentioned above, EPCs cannot explicitly represent state-based workflow
patterns. This shortcoming can be resolved by introducing a new connector type
that we refer to as the empty connector. This connector is represented by a cycle,
just like the other connectors, but without any symbol inside. Semantically, the
empty connector represents a join or a split without imposing a rule. Consider
an event that is followed by an empty split that links to multiple functions. The
empty split allows all subsequent functions to pick up the event. As a conse-
quence, there is a run between the functions: the first function to consume the
event causes the other functions to be active no more. We will show in Section 3
that this split semantics match the deferred choice pattern. Consider the other
case of an empty join with multiple input events. The subsequent function is
activated when one of these events has been reached. This behavior matched
the multiple merge pattern. We will explain in Section 3 why such semantics are
needed as an EPC extension.

The lack of EPC support for multiple instantiation has been discussed before
(see e.g. [14]). In yEPCs we stick to multiple instantiation as defined for YAWL.
For further work on this topic, see e.g. [15,16]. YAWL defines a quadruple of pa-
rameters that control multiple instantiation. The parameters min and max define
the minimum and maximum cardinality of instances that may be created. The
required parameter specifies an integer number of instances that need to have
finished in order to complete multiple instantiation. The creation parameter
may take the values static or dynamic which specify whether further instances
may be created at run-time (dynamic) or not (static). In the context of multi-
ple instantiation, it is helpful to define sub-processes in order to model complex
blocks of activities that can be executed multiple times as a whole. Accordingly,
multiple instantiation parameters can be specified for functions as well as for
hierarchical functions and process interfaces.

START
Decide to

make
music

Learn to
play

instrument

Decided to
learn to play
instrument

Decides to
do audition

Do
audition

Audition
failed

Audition
passed

[1, 4, 3, d]

Instrument
learned

Join band
Decide to
go solo

Perform
live

Songs
written

Performed
live again

Get
recording
contract

Write Song

[1,10,10, d]

Contact
signed

Do
everything

you are told

Done
everything

Make
record

Develop as
an artist

Develop
bad habits

Rehearse
tour

Rehearsal
completed

Bad habits
developed

Developed
as artist

Do tour
Tour

finished
END

Make Music EPC

START

Choose
songs

Record
song

[1, 4, 3, d]

Songs
chosen

Songs
recorded

Send
record to
marketing

END

Make Record EPC

Performed
enough

Decided to
write songs

Decided to
perform live

Record
completed

Record
completed

Figure 2. The Make Music Process from the YAWL website in yEPC Notation

Cancellation patterns have not yet been discussed for EPCs. We adopt the
concept included in YAWL. Cancellation areas (symbolized by a lariat) may
include several functions and activities. The end of the lariat has to be connected
with a function. When this function completes, all functions and events in the
lariat are cancelled.

Figure 2 illustrates yEPCs with the Make Music process from the YAWL
website which was especially designed to capture various workflow patterns.
The process starts with a start event. The following function leads to alternative
events via an XOR split. The first alternative is to do an audition. If the artist
passes the audition, she only has to follow the instructions of the producers in
order to come up making a record. If the artist fails to pass the audition, she
may try it again or decide to take the traditional path to become a professional
musician by learning to play an instrument. The parameters of this function indi-
cate multiple instantiation: at least one and at most four instruments have to be
started learning; new instances may be created dynamically. Three instruments
have to be learned in order to complete this function. Afterwards, the artist has
to decide whether to go solo or to join a band. In either case she can perform live
repeatedly and write songs which is modelled by an OR split. Afterwards, the
artist gets a recording contract – actually, this determinism is in contrast with
reality. After signing the contract the record is made following the Make Record
subprocess. Subsequently, the tour is rehearsed and put through. In parallel, the
musician develops as an artist or develops bad habits. Finally, these concurrent
functions are synchronized by an OR join and the process is finished.

3 Workflow Pattern Analysis of EPCs

In this section we will consider the EPC control flow semantics of Kindler [10].
They basically reflect the ideas of [5,8]. These semantics have been implemented
in the simulation tool EPC Tools [17]. For yEPC extensions, the following consid-
erations have to be made. As Kindler places process folders (the EPC analogue
to tokens of Perti nets) on arcs, the empty split may be interpreted as a hyperarc
from the event before the empty split to the functions subsequent to it; the empty
join analogously as a hyperarc from multiple functions before it to its subsequent
event. For multiple instantiation and cancellation the concepts from YAWL are
adopted. In the following we illustrate how yEPCs can be used to model the
workflow patterns (WP) presented in [1]. In the following we will speak of EPCs
each time we make statement that hold for both yEPCs and EPCs. Otherwise
we will explicitly refer to yEPCs always when presenting concepts that are not
included in EPCs.

Workflow Pattern 1 (Sequence): Figure 3 shows an EPC model of workflow
pattern 1 (sequence). In EPCs each activity or task is modelled as a so-called
function. Such functions are symbolized by rounded rectangles. Functions can
be connected by so-called events symbolized as hexagons. Events represent pre-
requisites for a subsequent function, i.e., the event must have occurred before the

A B

Figure 3. EPC model for WP1

following function may be executed. Furthermore, completed functions trigger
events which may be pre-requisite for other functions. The alternation of events
and functions defines a business process which also explains the name “Event-
Driven” Process Chain (EPC). In Figure 3 function A triggers an event which
is the pre-requisite of function B defining a sequence of activities as described
by workflow pattern 1.

(b)(a)

A

B

C

D

B

C

D

E

Figure 4. EPC model for (a) WP2 with AND split and (b) WP3 with AND join

Workflow Pattern 2 (Parallel Split) and 3 (Synchronization): EPCs define a re-
striction on the number of incoming and outgoing arcs of events and functions.
Each function must have exactly one incoming and one outgoing arc, each event
at most one incoming and one outgoing arc. In order to allow for complex rout-
ing of control flow so-called connectors are introduced. A connector may have
one incoming and multiple outgoing arcs (split) or multiple incoming and one
outgoing arc (join). Figure 4 (a) illustrates the application of an AND split con-
nector to achieve control flow behavior as defined by workflow pattern 2 (parallel
split). That means after function A all the three subsequent functions B, C, and
D are activated to be executed concurrently. The connector is represented by a
circle. The and-symbol ∧ indicates its type. Connectors have no influence on the
alternation of events and functions (see e.g. [8,18]). That means, for example,
that an event is always followed by a function no matter if there are no, one,
or more connectors between them. Figure 4 (b) shows the AND connector as a
join. Each of the functions B, C, and D have to be completed before E can be
executed. The AND join synchronizes the parallel threads of execution just as
described by workflow pattern 3 (synchronization). The symbols for AND split
and AND join are the same. They can only be distinguished by the cardinality
of incoming and outgoing arcs.

(b)(a)

A

B

C

D

B

C

D

E

Figure 5. EPC model for (a) WP4 with XOR split and (b) for WP5 with XOR join

Workflow Pattern 4 (Exclusive Choice) and 5 (Simple Merge): Pattern 4 (exclu-
sive choice) describes a point in a process where a decision is made to continue
with one of multiple alternative branches. This situation can be modelled with
the XOR split connector of EPCs, compare Figure 5 (a). After function A has
completed, a decision is taken to continue with one of functions B, C, and D.
Figure 5 (b) shows the XOR join that precisely captures the semantics of pat-
tern 5. There has been a debate on the non-local semantics of the XOR join.
While Rittgen [7] and Van der Aalst [19] proposes a local interpretation, recent
research agrees upon non-local semantics (see e.g. [8,20,17]). This means that
the XOR join would only allowed to continue when one of the functions B, C,
and D has finished, and it is not possible that the other functions will ever be
executed. Accordingly, EPC’s XOR join works perfect when used in an XOR
block started with an XOR split, but may block e.g. when used after an OR
split depending on whether more than one branch has been activated. Regard-
ing this non-local semantics it is similar to a synchronizing merge (see workflow
pattern 7) but with the difference that it blocks when further process folders
may be propagated to the XOR join.

In contrast to this, pattern 5 (simple merge) defines a merge without synchro-
nization, but building on the assumption that the joined branches are mutually
exclusive. The XOR join in YAWL [3] can implement such such behavior with
local semantics: when one of parallel activities is completed the next activity af-
ter the XOR join is started. But when the assumption does not hold, i.e., when
another of the parallel activities has finished the activity after the XOR join is
activated another time, and so forth. This observation allows two conclusions.
First, there is a fundamental difference between the semantics of the XOR join
in EPCs and YAWL: the XOR join in EPCs has non-local semantics and blocks
if there are multiple paths activated; the XOR join in YAWL has local semantics
and propagates each incoming process token without ever blocking. Accordingly,
the YAWL XOR join can also be used to implement pattern 8 (multiple merge).
Second, as the XOR join in EPCs has non-local semantics, there is no mechanism
available to model workflow pattern 8 with EPCs.

Workflow Pattern 6 (Multiple Choice) and 7 (Synchronizing Merge): Figure 6
(a) gives an EPC model of workflow pattern 6 (multiple choice) using the OR

(b)(a)

A

B

C

D

B

C

D

E

Figure 6. EPC model for (a) WP6 with OR split and (b) WP7 with OR join

split connector. This connector activates multiple branches based on conditions.
The OR join connector depicted in Figure 6 (b) synchronizes multiple paths of
execution as described in workflow pattern 7 (synchronizing merge). The OR join
has both in EPCs and in YAWL non-local semantics. This means that function E
can only be executed when all concurrently activated branches have completed.
This is different to workflow pattern 3 (synchronization) where all branches have
to complete, no matter if they have been activated or not. Accordingly, the OR
join in Figure 6 needs to consider not only if functions B, C, or D have been
completed, but also if there is the chance that they can potentially be activated
in the future. If this is the case, the OR join has to wait until an execution of
these functions is no longer possible or until they have completed.

B

C

D

E

Figure 7. yEPC model for WP8

Workflow Pattern 8 (Multiple Merge): In the discussion on pattern 5 we have
already highlighted the difference between the XOR join in YAWL and EPCs. As
the XOR join in EPCs has non-local semantics, it is not suitable to implement the
multiple merge, i.e., a situation where multiple concurrent branches are joined
without synchronization. Figure 7 illustrates the empty connector to model a
multiple merge. Accordingly, its semantics are similar to those of the YAWL XOR
join. Yet, it needs to be mentioned that a design choice has to be made between
a multi-set representation as described e.g. in [8] and a simple set representation

as specified in e.g. [20]. The multi-set variant would consume further process
folders of C and D even if B had been executed and E not yet started. The
simple set semantics would block incoming folders until the execution of E had
consumed the folder on the event.

Workflow Pattern 9 (Discriminator): For this pattern, the cancellation concept
can be combined with the deferred choice to model the discriminator (workflow
pattern 9). Figure 8 shows a respective model fragment. The functions B, C,
and D may be executed concurrently. When the first of them is completed the
subsequent event is triggered. This allows function E to start. The completion
of E leads to cancellation of all functions in the cancellation area that still might
be active.

B

C

D

E

Figure 8. yEPC Model for WP9

Workflow Pattern 10 (Arbitrary Cycles): EPCs also provide for direct support
of workflow patterns 10. Arbitrary cycles (workflow pattern 10) are explicitly
allowed in EPCs. Yet, one needs to be aware that arbitrary cycles in conjunction
with uncontrolled entrances via OR join or XOR join connectors may lead to
EPC process models with so-called unclean semantics [20]. Furthermore, it is
not allowed to have cycles composed of connectors only [8].

Workflow Pattern 11 (Implicit Termination): Implicit termination is also sup-
ported by EPCs [21]. Figure 9 gives the example of an EPC process fragment
with multiple end events. EPCs do not terminate before all activities have com-
pleted or process folders are locked in non-local XOR joins or AND joins [21]. As
a consequence, the model of Figure 9 is equivalent to a model that synchronizes
these three end events with an OR join connector to only one new end event.

Workflow Pattern 12 (Multiple Instantiation without Synchronization): Figure
10 (a) shows a model fragment including a process interface. Process interfaces

A

B

C

D End 3

End 2

End 1

Figure 9. EPC Model for WP11 Implicit Termination

may be regarded as a short-hand notation for a hierarchical function that is fol-
lowed by an end event. Figure 10 (b) illustrates how workflow pattern 12 (mul-
tiple instantiation without synchronization) can be modelled using a process
interface. The parameters in square brackets indicate that the function may be
instantiated multiple times. The parameters min and max define the minimum
and maximum cardinality of instances; required specifies the amount of in-
stances to be finished to complete multiple instantiation. Furthermore, creation
specifies whether further instances may be created at run-time (dynamic) or not
(static).

(b) [min, max, required, creation](a)

A B

Figure 10. yEPC Model for WP12

Workflow Pattern 13-15 (Multiple Instantiation with Synchronization) Figure
11 (a) gives a model fragment of a simple function that may be instantiated
multiple times (indicated by the parameters in square brackets). Figure 11 (b)
shows a hierarchical function that supports multiple instantiation. In contrast to
the process interface the multiple instances are synchronized and the subsequent
event is not triggered before all instances have completed.

(a)

A

(b)[min, max, required, creation] [min, max, required, creation]

B

Figure 11. yEPC Model for WP13-15

B

A

D

C

Figure 12. yEPC Model for WP16 Deferred Choice

Workflow Pattern 16: Deferred Choice Figure 12 (a) illustrates the application of
the empty split connector to represent workflow pattern 16 (deferred choice): af-
ter function A has completed, the subsequent event is triggered. The empty split
represents that the subsequent functions may consume this event. Accordingly,
the input pre-conditions of all three functions B, C, and D are satisfied. Yet, the
first of these functions to be activated consumes the event. As a consequence,
the pre-conditions of the other functions no longer hold.

B

A mutex

C

E

pre-C

pre-B post-B

post-C

Figure 13. yEPC Model for WP 17 Interleaved Parallel Routing

Workflow Pattern 17: Interleaved Parallel Routing Empty connectors can also
be used for other state-based workflow patterns. Figure 13 shows the process
model of pattern 17 (interleaved parallel routing) following the ideas presented
in [1]. The event at the center of the model manages the sequential execution of
functions B and C in arbitrary order. It corresponds to the “mutual exclusion
place (mutex)” introduced in [1]. The AND-split after function A adds a folder
to this mutex event via an empty connector. The AND-joins before the functions
B and C consume this folder and put it back to the mutex event afterwards. Fur-
thermore, they consume the individual folders in pre-B and pre-C, respectively.
These events control that each function of B and C is executed only once. After

both have been executed, there are folders in post-B, post-C, and mutex. Accord-
ingly, E can be started. In [22] sequential split and join operators are proposed
to describe control flow behavior of workflow pattern 17. Yet, it is no clear what
the formal semantics of these operators would be when these operators are not
used pairwise.

Workflow Pattern 18: Milestone Figure 14 shows the application of empty con-
nectors for the modelling of workflow pattern 18. The event between A and
B serves as a milestone for D. This means that D can only be executed if A
has completed and B has not yet started. This model exploits the newly intro-
duced empty connector to model such behavior: if B is started before D, the
milestone is expired and D can no longer be executed. If D is started before
E, a folder is put to the subsequent event to D which implies that B and E
can then be started. Thus, the introduction of the empty connector allows for a
straight-forward modelling of workflow patterns 5 and 16 to 18.

A
Mile-
stone

B

DC E

Figure 14. yEPC Model for WP 18 Milestone

Workflow Pattern 19-20: Cancel Activity, Cancel Case Cancellation is related to
the workflow patterns 9, 19, and 20. We here adopt the concept that is used with
the YAWL workflow language. Figure 15 shows the modelling notation of the
cancellation concept. It specifies that when function B has completed, function
A and the event is cancelled. This concept can further be used to implement
workflow pattern 20, the cancellation of a whole case.

A B

Figure 15. yEPC Model for WP19

Altogether, workflow patterns 1 to 7, 10, and 11 are supported by EPCs. In
contrast yEPCs, provides additional modelling support of workflow patterns 5
(simple merge), 8 (multiple merge), 9 (discriminator), 12-15 (multiple instantia-
tion), 16 (deferred choice), 17 (interleaved parallel routing), 18 (milestone), and

19-20 (cancellation). As a consequence, business processes including control flow
behavior that is related to previously unsupported workflow patterns can now
be represented appropriately using yEPCs.

4 EPML Alignment with yEPCs

In this section, we discuss in how far the proposed yEPC extensions may have
an impact on the EPML representation. The EPC Markup Language (EPML)
is an XML-based interchange format for EPC business process models proposed
in [12]. In this section, we particularly want to identify which syntax elements
need to be added to EPML in order to represent yEPCs.

<epml>
...
<epc epcId='1' name='example'>
 <function id='1'>
 <multiple
 minimum='3'
 maximum='6'
 required='4'
 creation='static'/>
 </function>
 <arc>
 <flow source='1' target='2'/>
 </arc>
 <empty id='2'/>
 <function id='3'>
 <cancel id='1'/>
 <cancel id='3'/>
 <cancel id='6'/>
 </function>
 ...
</epc>
</epml>

Figure 16. EPML Representation of multiple instantiation and cancellation

First, the introduction of the empty connector can be easily represented in
the EPML schema. Figure 16 gives the example of an empty connector with
an id=2. The arc indicates that it follows a function with id=1. Second, there
are dedicated elements needed for multiple instantiation. Figure 16 gives an
illustration of the required EPML elements. The multiple subelement indicates
that the parent function or process interface can be instantiated multiple times.
The four attributes capture the semantics of the parameter described above and
defined in [3]. Third, the second function of Figure 16 shows how multiple cancel
elements can be attached to a function or a process interface. Each cancel element
carries an id attribute referencing the function, event, or process interface that

should be cancelled. These slight extensions show that EPML can easily aligned
with the syntactical requirements of yEPCs.

5 Related Work

The workflow patterns proposed by [1] provide a comprehensive benchmark for
comparing different process modelling languages. A short workflow pattern anal-
ysis of EPCs is also reported in [3], yet it does not discuss the non-local semantics
of EPCs XOR join. In this paper, we highlighted these semantics as a major dif-
ference between YAWL and EPCs. Accordingly, we propose the introduction of
the empty connector in order to capture workflow pattern 8 (multiple merge).
There is further research discussing notational extensions to EPCs. In Rittgen
[7] a so-called XORUND connector is proposed to partially resolve semantical
problems of the XOR join connector. Motivated by space limitations of book
pages and printouts, Keller and Teufel introduce process interfaces to link EPC
models on different pages [11]. We adopt process interfaces in this paper to model
spawning off of sub-processes. Rosemann [22] proposes the introduction of se-
quential split and join operators in order to capture the semantics of workflow
pattern 17 (interleaved parallel routing). While the informal meaning of a pair
of sequential split and join operators is clear, the formal semantics of each single
operator is far from intuitive. As a consequence, we propose a state-based rep-
resentation of interleaved parallel routing inspired by Petri nets. Furthermore,
Rosemann introduces a connector that explicitly models a decision table and a
so-called OR1 connector to mark branches that are always executed [22]. Ro-
denhagen presents multiple instantiation as a missing feature of EPCs [14]. He
proposes dedicated begin and end symbols to model that a branch of a process
may be executed multiple times. Yet, this notation does not enforce that a be-
gin symbol is followed by a matching end symbol. As a consequence, we adopt
the multiple instantiation concept of YAWL that permits multiple instantiation
only for single functions or sub-processes, but not for arbitrary branches of the
process model.

6 Conclusion and Future Work

In this paper, we have presented a novel class of EPCs that is able to capture all
20 workflow patterns as presented in [1]. We refer to this extended class of EPCs
as yEPCs, which is a tribute to YAWL [3]. Basically, yEPCs introduce three
extensions to EPCs. These are in particular the introduction of the empty con-
nector; the inclusion of a multiple instantiation concept for both simple functions
as well as for hierarchical functions and process interfaces; and the inclusion of a
cancellation concept. These extensions permit some conclusions on the relation
of Petri nets and EPCs in general. Both had to include extensions for multiple
instantiation and cancellation. In addition to this, Petri nets had to be extended
with advanced synchronization concepts in order to capture the workflow pat-
terns. On the other hand, EPCs had to be modified in order to address the

state-based workflow patterns. As a consequence, yEPCs and YAWL are quite
similar concerning their modelling primitives. The XOR join is the major differ-
ence between both. Furthermore, we have shown that these extensions can be
easily included in EPML. In future research, we aim to implement a transfor-
mation between yEPCs available in EPML format and the interchange format
of YAWL.

References

1. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow Patterns. Distributed and Parallel Databases 14 (2003) 5–51

2. Mendling, J., Nüttgens, M., Neumann, G.: A Comparison of XML Interchange For-
mats for Business Process Modelling. In: Proceedings of EMISA 2004 - Information
Systems in E-Business and E-Government. LNI (2004)

3. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow
Language. Information Systems 30 (2005) 245–275

4. van der Aalst, W.M.P.: Verification of Workflow Nets. In Azéma, P., Balbo, G.,
eds.: Application and Theory of Petri Nets 1997. Volume 1248 of Lecture Notes in
Computer Science., Springer Verlag (1997) 407–426

5. Keller, G., Nüttgens, M., Scheer, A.W.: Semantische Prozessmodellierung auf der
Grundlage “Ereignisgesteuerter Prozessketten (EPK)”. Technical Report 89, In-
stitut für Wirtschaftsinformatik Saarbrücken, Saarbrücken, Germany (1992)

6. Keller, G., Meinhardt, S.: SAP R/3 Analyzer. Business process reengineering based
on the R/3 reference model. SAP AG (1994)

7. Rittgen, P.: Quo vadis EPK in ARIS? Ansätze zu syntaktischen Erweiterungen
und einer formalen Semantik. WIRTSCHAFTSINFORMATIK 42 (2000) 27–35

8. Nüttgens, M., Rump, F.J.: Syntax und Semantik Ereignisgesteuerter Prozessketten
(EPK). In J. Desel and M. Weske, ed.: Promise 2002 - Proceedings of the GI-
Workshop, Potsdam, Germany. Volume 21 of Lecture Notes in Informatics. (2002)
64–77

9. van der Aalst, W.M.P., Desel, J., Kindler, E.: On the semantics of EPCs: A
vicious circle. In M. Nüttgens and F. J. Rump, ed.: Proc. of the 1st GI-Workshop
on Business Process Management with Event-Driven Process Chains (EPK 2002),
Trier, Germany. (2002) 71–79

10. Kindler, E.: On the semantics of EPCs: Resolving the vicious circle. In J. Desel
and B. Pernici and M. Weske, ed.: Business Process Management, 2nd Interna-
tional Conference, BPM 2004. Volume 3080 of Lecture Notes in Computer Science.,
Springer Verlag (2004) 82–97

11. Keller, G., Teufel, T.: SAP(R) R/3 Process Oriented Implementation: Iterative
Process Prototyping. Addison-Wesley (1998)

12. Mendling, J., Nüttgens, M.: EPC Markup Language (EPML) - An XML-Based
Interchange Format for Event-Driven Process Chains (EPC). Technical Report JM-
2005-03-10, Vienna University of Economics and Business Administration, Austria
(2005)

13. Arkin, A.: Business Process Modeling Language (BPML). Specification, BPMI.org
(2002)

14. Rodenhagen, J.: Ereignisgesteuerte Prozessketten - Multi-Instantiierungsfähigkeit
und referentielle Persistenz (Event-Driven Process Chains (EPC) - Multiple In-
stantiation and Referential Persistence - in German). In: Proceedings of the 1st GI

Workshop on Business Process Management with Event-Driven Process Chains.
(2002) 95–107

15. Guabtni, A., Charoy, F.: Multiple Instantiation in a Dynamic Workflow Environ-
ment. In Persson, A., Stirna, J., eds.: Advanced Information Systems Engineering,
16th International Conference, CAiSE 2004. Volume 3084 of Lecture Notes in Com-
puter Science., Springer-Verlag (2004) 175–188

16. Mendling, J., Strembeck, M., Neumann, G.: Extending BPEL4WS for Multiple
Instantiation. In Dadam, P., Reichert, M., eds.: INFORMATIK 2004 - Band 2, Pro-
ceedings of the 34th Annual Meeting of German Informatics Society (GI), Work-
shop Geschäftsprozessorientierte Architekturen (GPA 2004). Volume 51 of Lecture
Notes in Informatics., Gesellschaft für Informatik (2004) 524–529

17. Cuntz, N., Kindler, E.: On the semantics of EPCs: Efficient calculation and simu-
lation. In: Proceedings of the 3rd GI Workshop on Business Process Management
with Event-Driven Process Chains (EPK 2004). (2004) 7–26

18. Mendling, J., Nüttgens, M.: EPC Modelling based on Implicit Arc Types. In
M. Godlevsky and S. W. Liddle and H. C. Mayr, ed.: Proc. of the 2nd Interna-
tional Conference on Information Systems Technology and its Applications (ISTA),
Kharkiv, Ukraine. Volume 30 of Lecture Notes in Informatics. (2003) 131–142

19. van der Aalst, W.M.P.: Formalization and Verification of Event-driven Process
Chains. Information and Software Technology 41 (1999) 639–650

20. Kindler, E.: On the semantics of EPCs: A framework for resolving the vicious
circle (Extended Abstract). In M. Nüttgens, F. J. Rump, ed.: Proc. of the 2nd
GI-Workshop on Business Process Management with Event-Driven Process Chains
(EPK 2003), Bamberg, Germany. (2003) 7–18

21. Rump, F.J.: Geschäftsprozessmanagement auf der Basis ereignisgesteuerter
Prozessketten - Formalisierung, Analyse und Ausführung von EPKs. Teubner Ver-
lag (1999)

22. Rosemann, M.: Erstellung und Integration von Prozeßmodellen - Methodenspez-
ifische Gestaltungsempfehlungen für die Informationsmodellierung. PhD thesis,
Westfälische Wilhelms-Universität Münster (1995)

