Markus Niuttgens, Jan Mendling (eds.)

XML4BPM 2004

XML Interchange Formats
for Business Process Management

1* Workshop of German Informatics Society e.V. (GI)
in conjunction with the 7" GI Conference “Modellierung 2004

March 25, 2004 in Marburg (Germany)

Proceedings

Organizer

This workshop is organized by the GI Working Group “Business Process Management
with Event-Driven Process Chains (EPC)” within the GI Special Interest Group WI-
MoblIS (FB-WI) in conjunction with the 7" GI Conference “Modellierung 2004,

Dr. Markus Niittgens
Email: markus@nuettgens.de

Dipl.-Wirt.-Inf. Dipl.-Kfm. Jan Mendling
Email: jan.mendling@wu-wien.ac.at

XML4BPM 2004 / XML Interchange Formats for Business Process Management. Eds.:
Markus Niittgens, Jan Mendling — Marburg 2004.

© Gesellschaft fiir Informatik, Bonn 2004
The use of registered names, trademarks, etc. in this publication does not imply, even in

the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Preface

This proceedings volume contains the papers presented at the 1% GI workshop XML
Interchange Formats for Business Process Management (XML4BPM 2004) which is
held in conjunction with the 7™ GI Conference “Modellierung 2004 taking place in
Marburg (Germany) from March 24 to 26, 2004. The workshop aims to discuss recent
topics concerning XML based domain and interchange formats for Business Process
Management on a broad conceptual and technical basis and in dialogue between research
and industry.

Beyond the presentation of the state-of-the-art the workshop covers the concepts behind
interchange formats designed in research and industry and identifies perspectives for
integration and future research. The topics in detail include the following:

Interchange Formats for Event-Driven Process Chains (EPC),
Interchange Formats for Petri Nets,

Interchange Formats for UML,

Interchange Formats for Graphs,

Interchange Formats for Web Service Compositions,
Interchange Formats for Business Process Collaborations.

This proceedings volume includes six carefully selected papers presented at the
workshop that illustrate the concepts behind BPEL4WS, XMI, PNML, EPML, ebXML
BPSS and GXL. Papers could be submitted by invitation only in order to acquire high
quality and up-to-date contributions from research and industry and to provide a forum
for interested persons especially from German speaking countries.

The papers focus on the concepts and touch aspects including methodical and conceptual
background, design principles, meta-models, application scenarios, tool support,
available functionality as well as experiences, problems, open issues and future
directions.

We thank the authors, the members of the program committee, and the local organization
team of the GI Conference “Modellierung 2004” for their contributions to the realization
of this workshop.

Saarbriicken and Wien, March 2004 Markus Niittgens
Jan Mendling

Program Committee

Christian Huemer, University of Vienna, Austria

Mario Jeckle, University of Applied Sciences Furtwangen, Germany
Ekkart Kindler, University of Paderborn, Germany

Frank Leymann, IBM Software Group, Boblingen, Germany

Jan Mendling, Vienna University of Economics and BA, Austria
Markus Niittgens, University of Saarland, Germany (Chair)

Andreas Winter, University of Koblenz, Germany

Organization

Jan Mendling, Vienna University of Economics and BA, Austria
Markus Niittgens, University of Saarland, Germany

Table of Contents

Frank Leymann, Dieter Roller

Modeling Business Processes with BPELAWS............oooiiiiiiiiiieeee e 7
Mario Jeckle

OMG's XML Metadata Interchange Format XMIccccooviiiiiiiiiiiiiieiieeceeeee 25
Ekkart Kindler

Using the Petri Net Markup Language for Exchanging Business Proceses?

Potential and LIMItationscoooieriiiiiiiiiiiiiieieeiee ettt 43

Jan Mendling, Markus Niittgens
Exchanging EPC Business Process Models with EPMLc.cccccoiiiiiiiiiiiicieces 61

Birgit Hofreiter, Christian Huemer
ebXML Business Processes — Defined both in UMM and BPSS ..., &1

Andreas Winter und Carlo Simon
Exchanging Business Process Models with GXLccccccoiiiiiiiiiniiiiieceieeeeeeeeee 103

Modeling Business Processes with BPEL4WS

Frank Leymann, Dieter Roller

IBM Software Group
Schonaicher Strasse 220
71032 Boblingen
leyl(@de.ibm.com
rol@de.ibm.com

Abstract: Business Process Execution Language for Web Services (BPEL4WS)
allows defining both, business processes that make use of Web services, and
business processes that externalize their functionality as Web services. This short
paper introduces the basic language elements of BPEL4WS using a simple
example. The concepts underlying the language are briefly explained: Establishing
bilateral partnerships, correlating messages and processes, defining the order of the
activities of a business process, event handling, handling exceptions via long-
running transactions, the resulting programming model, and the usage of
BPEL4WS in pure B2B scenarios.

1 Introduction

Web services are components, which are based on the industry standards WSDL [1],
UDDI [2], and SOAP [3]. They enable to connect different components even across
organizational boundaries in a platform and language independent manner [4].

None of these standards for Web services however provides for the definition of the
business semantics of Web services, the Web services are isolated and opaque. Braking
isolation means to connect Web services and specify how collections of Web services
are jointly used to realize more complex functionality — typically a business process. A
“business process” specifies the potential execution order of operations from a collection
of Web services, the data shared between these Web services, which partners are
involved and how they are involved in the business process, joint exception handling for
collections of Web services etc. In particular, the capability of support for long-running
transactions between Web services increases consistency and reliability for Web services
applications. Breaking opaqueness of Web services means specifying usage constraints
of operations of a collection of Web services and their joint behavior — this is obviously
very similar to specifying business processes.

Business Process Execution Language for Web Services [5] (BPEL4WS or BPEL for
short) allows specifying business processes and how they relate to Web services. This
includes specifying how a business process makes use of Web services to achieve its
goal, and it includes specifying Web services that are provided by a business process.
Business processes specified in BPEL are fully executable and they are portable between
BPEL conformant environments. A BPEL business process interoperates with the Web
services of its partners, whether these Web services are realized based on BPEL or not.
Finally, BPEL supports the specification of business protocols between partners and
views on complex internal business processes.

BPEL combines WSFL [6] and XLANG [7], superseding the corresponding
specifications. The first version BPEL4WS V. 1.0. has been published in August 2002, a
second version BPEL4WS V. 1.1. in May 2003 as input for the standardization within
OASIS. The appropriate technical committee [8] is working since the time of submission
and has given itself the charter to complete a first version of the standard by middle of
2004.

2 A First Look

The simple business process sketched in the figure helps illustrating the basic elements
of BPEL. A travel agent specifies a business process that supports the travel agent in
managing airline ticket requests that are requested from customer by sending in an
itinerary. After the itinerary has been received, the airline is contacted with an
appropriate ticket request. Then the process waits until the airline sends the tickets.

send itinerary o airline

intinerary

request tickets

y
4 S
[. T
\ \ contact e

airline
((ﬂﬂ

customer

v send ticketg,/
receive
tickets

ticket order process

For simplicity of the business process, it is assumed that the tickets will be picked up by
the customer. BPEL does not specify the graphical representation of business processes;
appropriate methods for visually representing business processes are currently being
developed; one of them is Business Process Modeling Notation (BPMN) [9].

This simple process is defined via BPEL as shown in lines 1 to 46. The travel agent
gives the business process the name ticketOrder (line 1). The different tasks include
the receiving of the itinerary (lines 23 to 29), passing the customer’s itinerary to an
airline requesting corresponding tickets (lines 30 to 37), and finally receiving the
requested tickets from the airline (lines 38 to 44). For simplicity of the business process,
it is assumed that the tickets will be picked up by the customer in person.

The set of relationships with partners that the agent’s process maintains are defined in
lines 2 to 11: Lines 3 to 6 introduce the relationship with the partner “customer”, and
lines 7 to 10 introduce the relationship with the partner “airline”. A partner link
identifies a relationship between a process and a partner and specifies the Web services
mutually used by the partner or process, respectively (see section 3 for more details).

The messages that are persisted by the process are called “variables” (line 12 to 17).
Variables are WSDL messages that are typically received from or sent to partners (see
section 5 for more details). For example, the process stores an itineraryMessage as
an itinerary variable. The itineraryMessage is received from the customer (line
23) when the customer uses the sendItinerary operation of the processes itinerary
port type (lines 25 and 26). This message is stored into the it inerary variable (line 27)
once received. When the process passes on the itinerary message to the airline
(line 30) by using the requestTicket operation of the ticketOrder port type (lines
32 and 33) offered by the airline, this message is a copy of the itinerary variable (line
34).

The usage of an operation in a business process is called an “activity” (see section 5 for
more details). To define the order in which the activities have to be performed, the
ticketOrder process structures its activities as a £low (line 18): A flow is a directed
graph with the activities as nodes and so-called links as edges connecting the activities.
The 1links required to define the flow between different ticketOrder process’
activities are specified in lines 19 to 22. The activities then specify whether they are the
source or the target of one or more links defined via a link. For example, the receive
activity of line 23 is the source of the order-to-airline link (line 20) with the
invoke activity of line 30 being the target (line 35).

1 <process name="ticketOrder">

2 <partnerLinks>

3 <partnerLink name="customer"

4 partnerLinkType="agentLink"
5 myRole="agentService"

6 partnerRole="customer”/>

7 <partnerLink name="airline"

8 partnerLinkType="buyerLink"
9 myRole="ticketRequester"

10
11

12
13
14
15
16
17

18

19
20
21
22

23
24
25
26
27
28
29

30
31
32
33
34
35
36
37

38
39
40
41
42
43
44

45

partnerRole="ticketService"/>
</partnerLinks>

<variables>
<variable name="itinerary"
messageType="itineraryMessage"/>
<variable name="tickets"
messageType="ticketsMessage"/>
</variables>

<flow>

<links>
<link name="order-to-airline"/>
<link name="airline-to-agent"/>
</links>

<receive name="processlItinerary”,
partnerLink="customer"
portType="itineraryPT"
operation="gendItinerary"
variable="itinerary"
<source linkName"order-to-airline"/>
</receives

<invoke name="contactAirline”,
partnerLink="airline"
portType="ticketOrderPT"
operation="requestTickets"
variable="itinerary"s>
<target linkName"order-to-airline"/>
<source linkName"airline-to-agent"/>
</invoke>

<receive name="receiveTickets”,
partnerLink="airline"
portType="itineraryPT"
operation="gendTicketsg"
variable="tickets"
<target linkName'"airline-to-agent"/>
</receive>

</flow>

46 </process>

10

The interactions between the partners in the travel agents process are different for the
interactions with the customer and the interactions with the airline. In the case of the
customer, the customer uses the sendItinerary operation on the itineraryPT port
type provided by the process; this request is then processed by the <receives> activity
in line 23. No response is being sent back to the customer. In the case of the airline, the
process uses the requestsTickets operation on the ticketOrderPT port type
offered by the airline to send a request to the airline (lines 30 to 37). The airline sends its
response back by using the sendTickets operation on the itineraryPT port type,
which is processed by the process via the appropriate <receives activity (lines 38 to
44).

3 Partners

As already shown in the travel agent example, business processes that involve Web
services often interact with different partners. Partners are connected to a process in a
bilateral manner called “partner link type”. A partner link type specifies two port types
that are mutually provided and required by the two connected partners; 1.e. each partner
provides one of the port types. These port types are referred to as “roles”. Here is the
definition for the partner link type between the process and the airline:

47 <partnerLinkType name="buyerLink">

48 <role name="ticketRequester">

49 <portType name="itineraryPT"/>
50 </role>

51 <role name="ticketService">

52 <portType name="ticketOrderPT"/>
53 </role>

54 </partnerLinkType>

11

The partner link type buyerLink consists of two roles. The role ticketRequester
(line 48 to 50) provides a port of port type itineraryPT (line 49), and the role
ticketService (lines 51 to 53) provides a port of port type ticketOrderPT (line 52).
The port types are defined somewhere else in appropriate WSDL definitions. When
defining a partner within a business process a reference to the partner link type
underlying the corresponding bilateral relation between the process and the partner is
made (see lines 3 and 7). For example, the airline partner link in the travel agent
process refers to the buyerLink partner link type defined in lines 47 to 54. A partner
link definition further specifies which role of the underlying partner link type the process
itself accepts (“myRole”) and which role has to be accepted by the partner
(“partnerRole”). Accepting a role comes with the obligation to provide the
corresponding Web services, i.e. to provide an implementation of the port types of the
role. The Web services that are expected by the process from the partner are referenced
by the partnerRole attribute (e.g. line 10) and the Web services provided by the
process and that the partner can rely on and use are referred to by the myRole attribute
(e.g. line 9).

In other words, the process defines via the myRole construct the Web service that
represents itself to the outside world; the partnerRole construct allows specifying
the dependencies of a business process on Web services provided by the outside, i.e. the
Web services the business process require and will use.

Multiple partners that implement the same partner link type can be defined in a business
process by defining each partner via a separate partner link as shown in the following
BPEL fragment.

55 <partnerLink name="airlinel"

56 partnerLinkType="buyerLink"
57 myRole="ticketRequester"

58 partnerRole="ticketService"/>
59 <partnerLink name="airline2"

60 partnerLinkType="buyerLink"
61 myRole="ticketRequester"

62 partnerRole="ticketService"/>

This would allow the travel agent process to communicate with two different airlines at
the same time using the same operations and port types.

12

4 Variables, Properties, and Correlations

Business processes specified via BPEL prescribe the exchange of messages between
Web services. These messages are WSDL messages of operations of the port types
associated with the roles of the partner links established between the process and its
partners. Some of the messages exchanged may be included in the so-called “business
context” of the business process. This context is a collection of WSDL messages called
“variables” that represent data that is important for the correct execution of the business
process, e.g. for routing decisions to be made or for the construction of messages to be
sent.

For example, line 27 specifies that the message received from the customer via the
sendItinerary operation of the process’ itineraryPT port type has to be copied
to the itinerary variable. And line 34 specifies that the message sent to the
airline’s ticketOrderPT port type as input of the requestTickets operation
stems from the itinerary variable.

Often, the business context is stored persistently to avoid loss of the context, thus,
ensuring the correct execution of a business process even in case of planned or
unplanned system outages. As the likelihood of such outages increases with the lifetime
of a business process, and business processes are typically lasting for long time periods,
it is a good practice to make the context persistent.

When messages are exchanged between business partners they typically carry some data
that is used to correlate a message with the appropriate business process. For example,
the ticketsMessage may carry an orderNumber that is used by the travel agent
and the airline to identify the purchase of tickets for a submitted itinerary of a specific
customer; that means it allows the travel agent and the airline to correlate a received
message with a particular business process. This kind of correlation data is referred to as
“property” in BPEL. Very often the same property is used within different messages as
data to be used for correlation. For this purpose, BPEL supports the definition of
properties as separate entities. The following BPEL fragment defines the
orderNumber as a property:

63 <property name="orderNumber" type="xsd:int"/>

Because a property is used by different messages as correlation data, a mechanism is
needed that allows identifying the appropriate field within the message that represents
this property. In BPEL, this mechanism is called “aliasing”. The following example
shows how the orderNumber property (line 64) is defined to be the orderID field of
the orderInfo part of the ticketsMessage.

64 <propertyAlias propertyName="orderNumber"

65 messageType="ticketsMessage"
66 part="orderInfo"
67 query="/orderID"/>

13

5 Activities

Activities are the actions that are being carried out within a business process. The travel
agent process already showed some of the activities that can be used within a business
process, such as <receives, <invokes>, or <flow>.

An important action in a business process is to simply wait for a message to be received
from a partner. This kind of action is specified via a <receive> activity. It identifies
the partner from which the message is to be received, as well as the port type and
operation provided by the process used by the partner to pass the message (lines 23 to
27).

A more powerful mechanism is provided by the <pick> activity. This kind of activity
specifies a whole set of messages that can be received from the same or different
partners. Whenever one of the specified messages is received, the <pick> activity is
completed, and processing of the business process continues. Additionally, one may
specify that processing should continue if no message is received in a given time. The
following BPEL snippet replaces the <receive> activity (lines 38 to 44) that waits for
the response from the airline with a <pick> activity.

68 <picks>

69 <onMessage partnerLink="buyerLink"

70 portType="itineraryPT”

71 operation="sendTickets”

72 variable="tickets”>

73 <empty/>

74 </onMessage>

75 <onAlarm for="P1DT” >

76 <invoke partnerLink="customer”

77 portType="travelPT”

78 operation="answerRequest”
79 variable="unableToHonorRequest” />
80 </onAlarm>

81 <target linkName="airline-to-agent”/>
82 </picks>

The <onMessage> element (line 69) is used to define receiving a particular message
from a partner via a port type and operation that the process provides. Thus the structure
of the <onMessage> specification is the same as for a <receives> activity; the only
difference is the mandatory specification of an enclosed activity hat is being carried out
when the message has been received. As there is nothing to do when the airline
responds, the <empty> activity has been chosen.

14

The <onAlarms> element (line 75) is used to specify that the activity should wait for
some time or until a specified period in time has been reached. If none of the specified
messages has been received when the alarm goes off, the enclosed activity is being
carried out. The example specifies that the alarm should go off one day after the <pick>
activity has started. If this happens, the customer is informed, that the travel agent is
unable to handle the customer request.

The start activities of a business process must be <receive> or <picks> activities.
Flagging them with createInstance="yes" (lines 87 and 93) indicates that an
instance of the specified business process should be created if none exists already. The
following illustrates this behavior using a business process that needs to accept the
requests from two different partners. The sequence in which the appropriate messages
arrive is unclear.

83 <receive partnerLink="hotel",

84 portType="roomPT",

85 operation="sendBooking",
86 variable="stayInfo"

87 createInstance="yes"/>
88

89 <receive partnerLink="rentalCar",
20 portType="carPT",

91 operation="sendBooking",
92 variable="rentalInfo"

93 createInstance="yes"/>

Regardless which message arrives first, a process instance is created. After the initial
message the business process waits for the second one. For example, if the first message
is received from a hotel partner, a process instance is created and then the business
process waits for the message to arrive from a rentalCar partner.

This approach eliminates the need to have explicit life cycle commands, for example a
command to create a process instance. Having no explicit life cycle commands makes
life very easy for the requestors of Web services that represent business processes: There
is no need to know whether a process instance has already been created or not. As a
result, requestors can interact with Web services representing business processes as with
any other Web service.

As already pointed out earlier, the travel agent process does not send a response back to
the customer; however in most practical cases a response must be returned. As illustrated
in the following example, the <reply> activity is used to specify a synchronous
response to the request corresponding to a <receives activity.

94 <receive partnerLink="customer",
95 portType="itineraryPT",

15

96 operation="sendItinerary",

97 variable="itinerary"

98 createInstance="yes"/>

929

100 <reply partnerLink="customer",
101 portType="travelPT",

102 operation="sendTickets",
103 variable="tickets"/>

In this example, the process provides an in-out operation: The input message of this
operation is consumed by the <receives activity, and the output message of this
operation is produced via the <reply> activity.

If the response to the original request is to be sent asynchronously, the response is
delivered via the invocation of a Web service provided by the requester. Consequently,
the <invoke> activity is used within the process that produces the asynchronous
response. The original requester will use a <receives> activity to consume the response
delivered by the <invoke> activity.

Furthermore, the <invokes> activity can be used within a process to synchronously
invoke an in-out operation of a Web service provided by a partner. As shown in the
following example, the <invokes activity needs to identify an input as well as an output
variable.

104 <invoke partnerLink="airline"

105 portType="ticketOrderPT"
106 operation="requestTickets"
107 inputVariable="itinerary"
108 outputVariable="tickets” />

All activities discussed so far (except <picks), are called “simple activities” indicating
that they have no structure and do not allow to enclose other activities. Other simple
activities, called “command” activities for obvious reasons, are: <wait> that indicates
that the business process should wait for a specified time period or until a specified point
in time has been reached, <empty> which has no action associated and serves as a
means to specify that nothing should be done or to synchronize parallel processing
within the process, <terminate> to indicate the business process should be terminated
immediately, <throws> to signal the occurrence of an error, <assign> to copy fields
from variables into other variables, and <compensate> to undo the effects of already
completed activities (see section 7).

16

The travel agent process showed the usage of <flow>, one of the two most important
structured activities. It allows defining sets of activities (including other flow activities)
that are wired together via <links>s, providing for the potential parallel execution of
parts of the flow. Each link may be associated with a transition condition, which is a
Boolean expression using values in the different variables of the process. When the
business process is being carried out, a particular link is being followed when the
associated transition condition evaluates to true.

Other structured activities are: <sequence> that causes the enclosed activities to be
carried out in the order they are listed, <switch> to have one path selected out of many
paths using selection criteria that references values in containers, and <while> that
causes the enclosed activities to be carried out as long as the condition associated with
the while-activity evaluates to true.

6 Scopes

In the previous section, <flow> has been identified as one of the most important
structured activities. The other one is <scope> which allows building groups of activities
and assign certain characteristics to the group of activities. There are no limitations to
the type of activities that are enclosed in a scope. The process by default is a scope. A
scope has the following characteristics:

109 <scope variableAccessSerializable="yes|no”>
110

111 <variabless>

112 e

113 </variables>

114

115 <faultHandlerss>

116 . .

117 </faultHandlers>

118

119 <compensationHandlers>
120 . ..

121 </compensationHandlers>
122

123 <eventHandlers>

124 . ..

125 </eventHandlers>

126

127 activity

128

129 </scope>

17

The <variableAccessSerializables> property controls how two parallel scopes
access variables that are defined outside the individual scopes. When set to yes, access to
the variables are serialized. This means when the first scope accesses such a variable that
is accessed by both scopes, processing of the second scope is suspended until the first
scope has completed processing of the last variable that is accessed by both scopes.

Scopes can have their local variables identified via the <variables> element. Only
activities within the scope have access to those variables. If a variable with the same
name exists in an outer scope, the local variable is used when the name of the variable is
used inside the scope.

BPEL processes interact with WSDL ports and such ports may send fault messages back
to the process. Furthermore, a process itself might detect erroneous situations that result
in internal faults. BPEL provides mechanisms that allow trying to recover from such
faulty situations. Central to these mechanisms are so-called “fault handlers” that can
catch and deal with faults. They are identified via the <faultHandlers> element. A
more detailed discussion is provided in the following section 7.

In the process of correcting faults, previously completed activities or set of activities
need to be undone. This is the purpose of compensation handlers identified via the
<compensationHandlerss> element. A compensation handler can contain any kind of
activity (simple or structured).

When BPEL processes are being carried out, the individual activities interact with
partners only at appropriately defined activities. However, in many cases it is important
that requests from partners can be accepted at any time or when attached to a scope just
as long as the process is running within the scope. This is defined by establishing event
handlers, identified via the <eventHandlers> clement. Event handlers are further
discussed in section 8.

As identified via activity in line 127, a scope can contain a single activity; which may be
either simple or structured. If structured, the activity may contain another <scopes>
activity as shown in the following example; thus scopes may be nested.

130 <scope>

131 <flow>

132 <scope>
133 ...
134 </scope>
135 . ..

136 </flow>

137 </scope>

18

7 Fault and Compensation Handlers

A fault handler (lines 138 to 145) defines the set of faults it attempts to handle via a
corresponding set of <catch> elements (line 139). Within such an element any kind of
activity (simple or structured) may be nested. This activity will be performed when the
corresponding fault occurs. In the example below, the fault handler catches a
noSeatsAvailable fault returned by an airline partner. When this fault occurs a
corresponding rejection message is sent to the customer via the nested <invoke>
activity (lines 140 to 143).

138 <faultHandlers>

139 <catch faultName="noSeatsAvailable">
140 <invoke partnerLink="customer"

141 portType="sendItinerary"
142 operation="sendRejection"
143 inputVariable="rejection"/>
144 </catch>

145 </faultHandlers>

When a fault occurs within a scope, the regular processing within the scope is
interrupted and the signaled fault is passed to the catching fault handler. The activity
nested within this fault handler tries to correct the situation such that regular processing
can continue outside the scope or alternate ways to complete the process can be taken.

All of this might require undoing actions that have already been completed within the
scope. For example, if the tickets required for a trip are not available, already made
reservations for hotel rooms or rental cars must be canceled. The actions required to
undo already completed activities are defined via compensation handlers. That means, a
fault handler of a scope may make use of compensation handlers to undo actions
performed within this scope. It does so via a <compensates> activity. The
<compensate> activity may reference a particular scope (inside the scope that faulted)
which causes the compensation handler of the scope to be carried out. If no scope is
specified, the appropriate compensation handlers are invoked in the reverse order of
execution of the scopes. If the exceptional situation cannot be corrected, the fault handler
will re-throw the fault or signal the occurrence of another fault, which will be finally
caught by a fault handler of another enclosing scope.

19

Thus, BPEL allows via its scope mechanism the definition of sets of activities that can
be collectively undone in erroneous situations. I.e. such a set of activities is some sort of
unit of work, some sort of transaction: Activities that are performed within a scope either
all complete or are all compensated [10]. In contrast to this, the well-known “traditional”
transactions (like database transactions) are implemented based on locks, i.e. allocating
resources to a particular transaction for the duration of the transaction. This takes for
granted that transactions are short-lived units of work such that locks can be release fast.
Because BPEL scopes are typically long running locking resources doesn’t work in
practice but one has to use compensation actions instead. This allows releasing locks
once an enclosed activity completes, but one has to run compensation logic to undo
already completed actions. The resulting units of work or transactions are referred to as
“long running transactions”.

Long running transactions in BPEL are centered on scopes, and scopes can be nested.
There is an agreement protocol between a scope and its parent scope to determine the
outcome of the long running transaction represented by a scope. The corresponding
protocol has been described in WS-Transaction [12]. While BPEL long-running
transactions are currently assuming that a scope and all its nested scopes are contained
within a single process and are hosted by a single BPEL engine, the agreement protocol
in WS-Transaction does not assume this. Thus, a future extension of BPEL may support
long running transactions that are distributed across processes and even across BPEL
engines.

WS-Transaction also specifies protocols for coordinating distributed atomic transactions.
A future extension of BPEL may support distributed atomic transactions consisting of
activities of a single process or even of different processes.

8 Event Handlers

The purpose of event handlers is to carry out some processing that is not part of the main
part of the business process. An event handler is activated when the control flow enters
the scope the event handler is attached to or if the event handler is associated with the
process, when the process is started. An event handler is deactivated when the control
flow leaves the scope the event handler is attached to or when the process finishes in
case the event handler is associated with the process.

The event handlers shown in the following example are attached to the process is used to
terminate the process if either an appropriate message is being received from the
customer or the process is running already for two days.

146 <eventHandlerss>

147 <onMessage partnerLink="customer”
148 portType="itineraryPT”

149 operation="cancel”

150 variable="cancelMessage” >

151 <reply partnerLink="customer”

152 portType="itineraryPT”

20

153 operation="cancel”

154 variable="cancelAcceptedMessage” />

155 <terminate/>

156 </onMessage>

157 <onAlarm for="P1DT” >

158 <invoke partnerLink="customer”

159 portType="travel PT”

160 operation="request”

161 variable="unableToHonorRequest” />
162 <terminate/>

163 </onAlarm>

164 </eventHandlers>

The first event handler, identified via the <onMessage> element (line 147) is carried out
when a cancel request is received from the customer as operation cancel on port type
itineraryPT, which is defined as an in-out operation. When the request is received,
the customer is informed via an appropriate <reply> operation on the receiving port
type and operation indicating that the request has been received and is being processed.
The <terminates> activity causes the termination of the process.

Such a message-based event handler is being carried out, whenever a message is
received. If a message arrives when the event handler is being carried out, a new
instance of the event handler is created.

The second event handler, identified via the <onAlarm> element (line 157) is carried out
when the process has been executing for a day. In this case, the customer is informed
that the request can not be processed and the process is terminated.

9 Process-based Applications

Applications created with BPEL are so-called “process-based applications” [13], [14].
This kind of application structure split an application into two strictly separated layers:
The top layer, the business process, is written in BPEL and represents the flow logic of
the application, whereas the bottom layer, the Web services, represents the function logic
of the application.

This structure has several advantages over more conventional approaches: (1) the
underlying business process as well as the invoked Web services can be changed without
any impact on the other Web services within the application or on the Web services that
the business process represents, (2) the application can be developed and tested in two
separate stages: the business process is developed and tested independent from the
development and test of the individual Web services. This approach provides for great
flexibility in changing the application. These advantages have been recognized by the
UML community too; especially, mappings from UML to BPEL and corresponding
relations to model driven architecture (MDA) are on their way [15].

21

Applications written in BPEL have another major advantage over conventional
approaches as they allow tailoring the ready application to the needs and circumstances
of a particular environment without touching the application itself. This is achieved by
separating the definition of the partners that a business process deals with from the
characteristics of the actually involved partners. Within BPEL, one specifies only the
port types and operations the different partners are expected to provide.

When such a business process is being carried out, the information about the actual ports
or Web services that a concrete partner chosen provides, need to be available. The
information about the Web services or ports is collectively subsumed in BPEL under the
notion of a “service reference”. Concrete mechanisms of providing service references for
the different partners within BPEL have been deliberately left out of the specification
(aside from a few exceptions). One of the exceptions deals with the situation that a
requestor provides the provider with its own service reference so that the provider can
respond back to the requestor.

The typical approach for providing service references is to provide this information
when the business process is installed (“deployed”) in the form of a deployment
descriptor. Assigning a service reference to a partner comes in many flavors. In the
simplest approach a partner would be assigned a service reference containing fixed
information. When the business process is being carried out, this fixed service reference
is used to invoke the Web service. In the most complex case, the deployment
information could just point to some mechanism, that when the business process is being
carried out, determines the appropriate service reference, and possibly invokes the
selected Web service right away. This mechanism could, for example, go to UDDI, get
all the detail information about potential service providers, and then based on that
information selects the most appropriate service provider.

Applications created based on BPEL are portable between environments supporting
BPEL and Web services: The BPEL processes can be executed by any BPEL engine,
and during their execution a BPEL engine will interact with the Web services that are
discovered based on the deployment information.

Besides using BPEL for specifying executable processes, BPEL can be used for
specifying “business protocols”. A business protocol specifies the potential sequencing
of messages exchanged by one particular partner with its other partners to achieve a
business goal. L.e. a business protocol defines the ordering in which a particular partner
sends messages to and expects messages from its partners based on actual business
context. An example for business protocols is the RosettaNet PIPs (see [16]).

Typically, the messages exchanged result from performing activities within internal
business processes. Thus, a business protocol may be perceived as a view on a private
business process: Internal details like access to backend systems, complete structure of
the messages making up the context, complex data manipulation steps, business rules
determining branch selection etc are omitted from such a view.

22

In BPEL the language for specifying business protocols is a subset of the language used
for specifying executable processes. This enables to specify an internal executable
process together with its views within the same language. It supports an outside-in
approach starting with a view and extending it into an internal process, as well as an
inside-out approach starting with an internal process projecting it onto its views.

In general, a business protocol (or view, respectively) is not executable: For example, the
messages making up the context may be a simple projection of the real internal context
messages, it may not be completely specified how messages are contructed that are sent
to a partner, branching conditions may not be defined precisely in terms of the data
making up the visible context of the business protocol. This is resulting from the fact that
a business protocol hides internal details and complexity by will.

Because a business protocol may neither be executable nor deterministic but still
expressed as a process, BPEL refers to it as “abstract process”: It abstracts away
complex details of an internal executable process. In this sense, abstract processes may
be perceived as simple or easy to comprehend processes. And while an abstract process
1s not guaranteed to be executable, abstract process can be easily specified in a manner
such that they are in fact executable! This allows beginning with simple variants of a
process and refining them iteratively into the final complex business process.

Finally, an abstract process may be used to easily specify constraints on the usage
patterns of a collection of port types: The port types to be constrained are the port types
provided by the abstract process, and the operations that are to be constrained are used
within activities of the abstract process.

10 Summary

BPEL supports the specification of a broad spectrum of business processes: From fully
executable complex business processes over more simple business protocols to usage
constraints of Web services. It provides a long-running transaction model that allows
increasing consistency and reliability of Web services applications. Correlation
mechanisms are supported that allow identifying stateful instances of business processes
based on business properties. Partners and Web services can be dynamically bound
based on service references

References

[1] W3C, Web Services Definition Language (WSDL) 1.1.
http://www.w3.org/TR/wsd.html

[2] OASIS, Universal Description, Discovery &.Integration. http://www.oasis-
open.org/committees/uddi-spec/doc/tespecs.htm#uddiv3

[3] W3C, SOAP Version 1.2. http://www.w3.0org/TR/SOAP12

[4] F. Leymann, Web Services: Distributed Applications without Limits, Proc. BTW'03

(Leipzig, Germany, February 26-28, 2003), Springer 2003.

23

[3]

[6]
[7]
(8]
[]
[10]

[11]

[12]

[13]
[14]

[15]

[16]

BEA Systems, IBM Corporation, Microsoft Corporation., SAP AG, Siebel Systems.
Business Process Execution Language for Web Services.
http://www.ibm.com/developerworks/webservices/library/ws-bpel

F. Leymann, Web Services Flow Language (WSFL 1.0), IBM Corporation.
http://www-4.ibm.com/software/solutions/Webservices/pdf/W SFL.pdf

S. Thatte, XLANG, Microsoft Corporation.
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c

OASIS Web Services Business Process Execution Language TC.
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel.
BPMlI.org, Business Process Modeling Notation, http://www.bpmi.org

F. Leymann, Supporting business transactions via partial backward recovery in
workflow management systems, Proc. BTW'95 (Dresden, Germany, March 22-24,
1995), Springer 1995.

BEA Systems, IBM Corporation, Microsoft Corporation. Web Services Coordination
(WS-Coordination).
http://www.ibm.com/developerworks/webservices/library/ws-coor.

BEA Systems, IBM Corporation, Microsoft Corporation. Web Services Transaction
(WS-Transaction).
http://www.ibm.com/developerworks/webservices/library/ws-transpec.

F. Leymann and D. Roller, Workflow-based applications, IBM Systems Journal
Vol.26 No. 1., 1997.

F. Leymann and D. Roller, Production Workflow: Concepts and Techniques, Prentice
Hall, 2000.

T. Gardner, UML Modeling of Automated Business Processes with a Mapping to
BPEL4WS,
http://www.cs.ucl.ac.uk/staff/g.piccinelli/eoows/documents/paper-gardner.pdf
RosettaNet.

http://www.rosettanet.org

24

OMG’s XML Metadata Interchange Format XMI

Mario Jeckle
University of Applied Sciences Furtwangen
mario@jeckle.de

Abstract: Interest in interchange of models and and data conforming to models attracts
increasing interest in these days. Especially since incremental and iterative develop-
ment processes enter the mainstream market chained modeling tools are common in
many current projects. Additionally, users are challenged by new developments like
generative approaches or OMG’s Model Driven Architecture.

In order to cope with the existing and always increasing heterogeneity among the tools
deployed vendor neutral interchange formats have turned into a desideratum.

There are some techniques to transfer data and/or models available on the market. But
none of them combines a fixed standard’s-based approach with the inherent flexibility
to support arbitrary models in a uniform way.

This paper provides a brief overview of all concepts found in OMG’s XML META-
DATA INTERCHANGE Format XMI which strives to support exchange of existing me-
tamodel data as well as the creation of XMI compliant schemata for new metamodels.

1 Methodological and Conceptual Background

The basic idea of the XML METADATA INTERCHANGE format (abbreviated XMI the-
reafter) is it to provide a sound methodological framework for serializing instances of
arbitrary models. This framework should be rich enough to support models organized on
various meta layers and thus be capable of encoding the structure of whole languages re-
presented by their respective metamodel, arbitrary models represented as instances of the
metamodel they adhere to as well as values serving as incarnations of a concrete model.
This section provides an introduction into the background of the XMI format by reviewing
the basic concepts of a four-layer metamodel architecture which forms the grounding of
the dominant META OBJECT FACILITY established as a unifying metamodel of various
languages standardized by the OBJECT MANAGEMENT GROUP (OMG), such as the UNI-
FIED MODELING LANGUAGE (UML). Additionally, the seminal idea of XMI’s schema
production principles is introduced. This deterministic formalism allows the preservation
of the same methodological principles throughout the deployment of XMI on the various
meta levels.

The reminder of this paper is structured as follows. First the methodological framework
is introduced. It is represented by OMG’s standardized four layer metamodel architecture
which relates modeling using the UNIFIED MODELING LANGUAGE, metamodeling using
the META OBJECT FACILITIES, and stream-based interchange based on XML using the
XML METADATA INTERCHANGE format.

25

Section two introduces XMI’s basic principles. This includes in detail the transformation
algorithm which defines how to generate XML schema representations of arbitrary (meta)
models. Additionally, related XML standards such as XML Namespaces, XML Links, and
XML Schema are sketched.

Section three provides some deployment scenarios of the XMI approach. This includes a
discussion of XMI’s role interchanging complete and incomplete models and metadata.
Within section four a brief survey of available support offered by commercial CASE tools
is given. Also the idea of deploying XMI as native storage format is discussed.

The final section summarizes some experiences in deploying XMI in projects in research
and industry. In detail, results of applying XMI’s schema production rules for generating
custom schemata are discussed. Additionally, an outlook to the UML 2.0 compliant future
version of XMI is provided.

1.1 Metamodeling and its Architectures

One of the most prevalent challenges in the design process of a model interchange format
is the support of model instances of various abstraction levels. Models may occur in dif-
ferent flavors of abstraction ranging from meta metamodels describing aspects of a whole
modeling language like its static structure or the process deployed to create models to
instantiable user level models which abstract concrete data instances. As a result, a real
interchange format has to support all these various abstraction levels.

Intuitively, there is no limit of abstraction levels since abstraction is a term commonly
referred to in order to describe a surjective one-to-one relation from a real entity to its
abstracted (since this is a cognitive process executed by humans it highly depends on the
modelers’s perception of reality) counterpart. As long as a modeler is able to abstract an
element further s/he formally adds an additional meta layer to the model hierarchy.

For reasons of uniformity the OMG has decided to limit the layers of consecutively
stacked models strictly to four. The resulting architecture is shown in figure 1.

26

MOF::EMOF

<<XML Document>>
_ _<instanceOf>>__ o <sserializes> _______ | ____| < MOF Model
| | |
|) ! ‘
! ! ! <<conformsTo>> !
I I
! v v v
n | <<XML Schema>>
I
Vi o . MOF : XMILanguage
(Meta)' Model Class:Class | <<generatedFrom>> |
(n>2) K A
I

<<conformsTo>> |

|
InfrastructureLibrary::Core::Basic <<XML Document>>

h

L

I

I

. I
<<instanceOf>>,
I

I

|

I

|

<<serializes>>

- ______<ssseriahizes>> | |
2 T
Class : Class (from MOF) <<conformsTo>> v
Meta Model . <<generatedFrom>> | | XML Schema>>
/?\ UML : XMILanguage
I
<<instanceOf>> |)
: <<serializes>> <<conformsTo>> :
1 e <<XML Document>>
M Person : Class 1 UML Model
Model

_________________________________ <<XML Schema>>

<<instanceOf>> customXMI : XMILanguage

,‘4\ A <<generatedFrom>>
I
|
I
I
I

<<conformsTo>> 'f\

iali << >>
John Doe : Person — e __ <<serializes>> | _ __ ?ﬂéﬁg;ﬁ?{mﬁ}

0

Instance Data

Figure 1: OMG’s Four Layer Metamodel Architecture

Restricting the meta layers enables the fixed ascription of an abstraction semantics (i.e. a
role adopted by a model layer) to every model within the architecture.

Thus the bottom layer containing concrete data holding objects and association instances
representing their interconnections (in UML terms: /inks) is termed the instance layer.
Every element of this layer can be directly (more formally: surjectively but not necessa-
rily injectively) mapped onto an element of the model layer instantiating the concrete ob-
ject. This interrelation of the two layers represents the classical type-instance-dichotomy
[UMO]1, p. 3-14]. For reasons of brevity, the name of the model layer is shortened to M !,
where the exponent informally denotes the number of occurrences of the letter m (which
stands for model) within the layer’s name. Corollary this also clarifies why the instance
layer which lacks any occurrences of ms is abbreviated as M Y.

The abstraction at the model level, which is normally referred to using the term class, both
serves as a concrete instance as well as an abstraction of another instance. The relationship
between the model level and the metamodel level abstraction re-factors the type-instance-
dichotomy found at the subjacent architecture layer.

The abstraction is often termed #ype. The connection between a type and its concrete in-
stantiation is represented by an arrow decorated directed edge labeled instanceOf, de-
parting from the concrete instance.

This continuous abstraction process is illustrated in figure 1 by introducing John Doe
as a concrete object typed by the class Person which in turn is an instance of the type

27

entitled Class which is predefined by UML’s metamodel.

So far, all types and instances are part of a single language framework which is defined but
not limited to the UNIFIED MODELING LANGUAGE in figure 1.

By further abstracting the concept class as defined by UML, we enter the meta metamo-
del layer abbreviated to M?3. Since this layer serves as a uniform abstraction of UML and
other modeling languages and metamodels (e.g. [IOUT01]) it is addressed by a separate
specification titled META OBJECT FACILITY (MOF).

1.2 OMG’s Meta Object Facility

The META OBJECT FACILITY [Ob02a] serves as a top level abstraction of various me-
tamodels defined by the OMG. Essentially, MOF is built by abstracting all concepts ex-
pressed by different OMG metamodels, e.g. UML, CWM. Furthermore, MOF serves as
a termination of an otherwise infinite model stack. This is done by defining all concepts
set out by MOF on the concepts defined by the model itself. As a result MOF bootstraps
itself and hence terminates the model hierarchy. Formally, MOF is typed by itself as well
as it is a valid abstraction of itself.

As shown in figure 1, the class class originated by MOF is part of package MOF : : EMOF
which contains MOF’s concepts essential for defining metamodels. By definition the pre-
fix meta which should precede all concepts defined by the meta metamodel is omitted for
brevity [Ob02a, p. 2-5].

Conceptually MOF is organized as a separate model layer which is comprised of the de-
scription of the structure and semantics of meta-metadata. Technically, MOF and the me-
tamodel layer use similar concepts. In detail, the essence of the definitions of the concept
class available in MOF [Ob02a, p. 4] as well as in UML [UMO03, p. 6] does not differ.
Although the concepts do not match 1:1, the cores of both models are isomorphic and
largely share the same concepts w.r.t. the underlying semantics and the naming. This is
especially true for MOFs strict subset termed essential MOF (EMOF) from which the
concept class shown in figure 1 originated.

The apparently large conceptual overlap between the metamodel and its metamodel (i.e.
the meta metamodel) suggests to consider the organization of the meta metamodel as a
subset of the concepts found in the metamodel provided that the metamodel offers enough
expressive power to act as a meta metamodel also. On the one hand this would ease the
understanding of the metamodel architecture since the concepts found present in the M3
or higher are identical to concepts found in the modeling language, i.e. the M? layer. On
the other hand, the selection of a metamodel is crucial. In detail the model has to provi-
de concepts which are mature and semantically rich enough to be propagated to the meta
meta-layer without losing expressive power. Otherwise this would brake the abstraction
relationship to other metamodels.

Concerning the future development of the four layer metamodel architecture the task force
dealing with MOF and UML at the OMG has decided to consolidate and merge the ab-
stract kernel of the UNIFIED MODELING LANGUAGE titled UML Infrastructure and the

28

next generation of the MOF-based meta metamodel by factoring out constructs abstract
enough to be re-deployed as meta metamodel from the UML and propagate them to the
MOF.

As a consequence of this, the four layer metamodel architecture will be effectively trans-
formed into a hybrid architecture providing four layers of abstraction for all metamodels
except for the the seminal UML’s one which will reside in a three layer metamodel archi-
tecture.

1.3 XML Metadata Interchange

XMI is designed to serve as an interchange format for arbitrary (meta) models. Further-
more, XMI should future proof itself by being capable of also supporting metamodels yet
unknown at the time of XM1I’s definition. Closely related to this is the requirement to offer
continuing support by providing compatible encodings for the metamodels changing over
time which were initially addressed by the specification. Furthermore, an introduction of
interchange formats specific to one version of an existing metamodel would establish a
strong dependence of XMI from all metamodel specifications. Changes to these meta-
models would in turn imply changes to the interchange format in most cases. Thus XMI
would become partly obsolete once a metamodel (specification) is changed.

In order to achieve the highest possible degree of independence the XMI specification
does not prescribe concrete schemata supported metamodels. Instead of doing so, XMI
sets out a process for automatically generating schemata for arbitrary (meta) models.

OMG’s XMI standard defines schema production rules which formulate an algorithm to
transfer MOF-based (meta) models into XMI-compliant XML grammars which are formu-
lated as instances of the XML SCHEMA vocabulary. The schema production rules can be
applied to various models or metamodels as long as they adhere to the structuring princip-
les set out by MOF. As a consequence, the schema production algorithm may be deployed
on every model level ranging from pure data models defined as UML class diagrams to
meta metamodels. Note that in the context of XM[the terms model and metamodel become
interchangeable, likewise do data and metadata. The various possibilities to create sche-
mata originating from a model are shown in figure 1 by classes connecting to the models
by dependency relationships stereotyped with generatedFrom.

XMI is MOF-based since it would be virtually impossible to define meaningful produc-
tion rules that would work on arbitrary models not sharing common characteristics. The
approach taken by emphasizing the role of MOF was chosen to provide the commonality
among models, allowing the metamodel information to be represented uniformly.

Besides the challenge to define the actual rules driving the process of schema creation
which are described by sections 2.3 and 2.2 the schema serialization syntax is crucial to
the approach. Since the syntax influences the patterns of interaction with the interchange
format and thus promotes or even balks the adoption it could in turn leverage its adoption.
The term interaction pattern should refer to the complexity introduced by adding interfaces
to existing tools which are capable of importing and exporting the new interchange format.

29

For reasons of interoperability and market proliferation XM1’s group of authors has deci-
ded to base the interchange format on the well-known and widely adopted W 3 C-standard-
ized EXTENSIBLE MARKUP LANGUAGE (XML).

The usage of XML through the XMI specification is two-fold. In essence, the deployment
of XML creates the two main constituting parts of XMI.

XML DTD/Schema Production Rules' are describing the rules for producing XML
Document Type Definitions (DTD) or XML Schema definitions for XMI encoded
metadata.’

XML Document Production Rules are describing the rules for encoding metadata
into an XML compatible format.’

According to the schemata generated by the schema production principles XMI/XML
allows the storage of instances compliant to the metamodel serving as input of schema
production. These instances are encoded as XML instance files conforming to the respec-
tive XML SCHEMA instance which was derived from the metamodel. By doing so, the
XML instances are valid w.r.t. the XML schema which was automatically derived from
the metamodel. Thus in turn, provided that the schema production principles governing
the generation preserve the structural expressiveness, the XML instances may only store
data objects which conform to the metamodel.

1.4 Usage of XMI for Interchange of Business Process Management Data

XMI can be used in two distinct ways to support the interchange of business process ma-
nagement data. First, the XMI format capable of storing arbitrary UML models may be
used to encode process management related data which is modeled in a UML compliant
manner.

Second, XMI’s schema production principles may be applied to arbitrary (MOF com-
pliant) metamodels. This allows the creation of XMI compliant languages for business
process management models which are not UML compliant inherently.

Furthermore, provided that a unified business process management metamodel is accepted
by an organization XMI may also be deployed to generate an XML vocabulary capable of
expressing instances conforming to the business process metamodel. This can be valua-
ble in environments (e.g., a data warehouse storing process descriptions) where process
descriptions adhering to diverse metamodels have to be managed

Thus XMI may be used to store business process management data as well as metadata
related to these instance data.

T All releases of the first version of the specification [UIC 98, UFI 99, Ob02b] use DTDs. This will be
changed by the upcoming XMI 2.0 version [Ob03b] which will drop the DTD support in favor of using XML
Schema [BLM 01, BMO01] for describing structure and content of XMI compliant schemata.

2¢c.f. [Ob02b, p. 1-1]

3¢.f. [Ob02b, p. 1-1]

30

2 Deriving XMI Languages from Models

After the introduction of the technical background and the sketch of the basic technical
decision to base XMI on XML, this section will provide a more detailed view of the usa-
ge of XML techniques by XMI.

Also, an introduction to the basic primitives generated when encoding MOF-based meta-
data by XMI is given. Finally, the inherent structuring elements present in all schemata
which are independent from the source metamodel and generated by deploying XMI’s
schema production rules are introduced.

2.1 Characteristics of the Language Family

By the use of XML to encode the (meta) models as XML Schema files resp. the (meta)
model instances as XML instance files, some elements of the XML technology can be
exploited. The reasons for this are two-fold. First, the interoperability of the resulting
XML files can be increased by re-using existing approaches and techniques. Second, XML
technology provides standardized solutions to classical challenges arising in vocabulary
design, such as the unique identification of the vocabulary elements.

In detail, XMI exploits the following XML techniques:

XML Namespaces provide a simple method for qualifying element and attribute
names used in XML documents by associating them with namespaces identified by
URI references.*

Thus, XML namespaces provide the basis for XML-based content syndication and
re-use of existing vocabulary and data within new contexts without bearing the dan-
ger of conflicting terminology. This also allows usage of XMI fragments within
other XML-based languages, but this is beyond the scope of this paper.

XML Links allow elements to be inserted into XML documents in order to create
and describe links between resources. They use XML syntax to create structures that
can describe links similar to the simple unidirectional hyperlinks of today’s HTML,
as well as more sophisticated links.’

Thus, XML Links provide the basis for avoiding redundancy within the XML seria-
lization of model data by replacing possible error prone redundant occurencies by
references to one single occurrence.

XML Schema is a XML schema language® which describe the structure and cons-
traints to the contents of XML documents, including those which exploit the XML
namespace facility. The schema language, which is itself represented in XML and
uses namespaces, substantially reconstructs and considerably extends the capabili-
ties found in XML document type definitions. It also supports definition of dataty-

4¢c.f. [BHL99]
S¢c.f. [DMO00]
®Unfortunately, W3C has decided to use the generic name to denote one specific schema language.

31

pes. These types are to be used in XML Schema as well as other XML specifications.
The datatype language, which is itself represented in XML, also provides a super-
set of the capabilities found in XML document type definitions for specifying data
types on elements and attributes.’

2.2 XMI Production Rules

Schema production principles are the main cornerstone in striving for independence from
the currently addressed (meta) models MOF and UML and in widening the field applica-
tion to yet unconsidered (and even yet unknown) models. The main ideas for generating
XML schemata from static metamodels expressed using MOF’s language primitives de-
picted as UML class diagrams are sketched by this subsection. Afterwards a subset of three
basic production rules is discussed. The description of all production rules set out by XMI
can be found in the normative documents.

In essence, XMI defines rules to produce XML schema instances from the following basic
primitives. This basic primitives are applicable to UML-compliant models as well as to
MOF-compliant ones without change.

Note: since XMI version 2.0 will re-factor the production principles this description is ba-
sed on the available draft [Ob03b] of this upcoming release of the standard. This collection
requires some familiarity with the XML techniques and specification introduced in section
2.1.

Class Every class within the metamodel is decomposed into three parts: attributes®,
associations’, and compositions!’. A class is represented by an XML element, with
an enclosed additional XML element for each attribute, association, and composi-
tion. The XML element for the class includes the inherited attributes, associations,
and compositions directly since XMI does not utilize XSD’s inheritance mecha-
nism.!!

For example, the representation of the class person depicted by figure 1 which
does not define any attributes, associations, or containment relationships would be
serialized to (simplified form):

<xsd:element name="person" type="person"/>
<xsd:complexType name="person"s>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
</xsd:choice>
</xsd:complexType>

7adapted from [BLM 01, BM01]
8i.e., slots for containing values within objects instantiating classes
%i.e., associating classes
19i ¢., a special kind of association narrowing the semantics to a physical containment relationship between a
whole and its constituting parts
"'This was chosen since XSD does solely support single inheritance, but MOF and even UML provide support
for multiple inheritance.

32

Attribute

If attributes present in the metamodel are typed by primitive types or enumerations,
then by default XML attributes are declared for them as well as XML elements. The
reasons for this encoding choice are including: the values to be exchanged may be
very large values and thus unsuitable for XML attributes, and may have poor control
of whitespace processing with options which apply only on element content.
Assume the class person depicted by figure 1 defines an attribute name typed by
the primitive type string. The simplified schema fragment produced would be as
follows:

<xsd:element name="person" type="person'"/>
<xsd:complexType name="person'">
<xsd:choice>
<xsd:element name="name" type="xsd:string"
nillable="true"/>
</xsd:choice>
</xsd:complexType>

For multi-valued attributes, no XML attributes are declared; each value 1s encoded
as an XML element.

Assume gender is an attribute with enumerated values, the type used for the de-
claration of the XML element and the XML attribute corresponding to the attribute
of the class within the metamodel is as follows:

<xsd:simpleType name="gender">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="male"/>
<xsd:enumeration value="female"/>
</xsd:restriction>
</xsd:simpleType>

Complex typed attributes, i.e. attributes typed with a class present in the model are
handled like associations.

Association Each association is represented in an XML element and/or an XML
attribute. The element is declared in the content of the complexType for the class
that owns the reference. This declaration enables any object to be serialized. The
attribute declaration which is also included in the complexType declaration serves
for referencing the element.

Assume the class person depicted by figure 1 defines an association to one or
more objects of class company. Vice versa, the association is also marked with the
multiplicity of 1: *, i.e. a company object may also be linked with one or more
objects of the person. The simplified schema schema resulting would look like:

33

<xsd:element name="person" type="person'"/>
<xsd:complexType name="person'"s>
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:element ref="company"/>
</xsd:choice>
</xsd:complexType>

2.3 Structure of XMI Languages

Besides all variations introduced by schemata derived from arbitrary metamodels XM1I’s
syntactical infrastructure remains the same for all generated schemata which form the fa-
mily of XMI languages.

This section provides a sketch of the infrastructure elements offered by XMI present in all
generated models. These elements of the language are the prerequisite of interoperability
since they guarantee the structural uniformity of all XMI vocabularies in addition to the
uniform production principles.

XMI Header

Every XMI language, regardless of the metamodel it is derived from, defines the fixed
start element XMI. This XML element serves as root element of all XML elements ge-
nerated model specific according to the production rules introduced by section 2.2. In
order to define a fixed XML schema instance which offers the flexibility to be deploy-
ed with schemata generated for arbitrary metamodels, the content model of the element
XMT is set to any with no namespace restriction. This allows, by default, elements of any
namespace to be placed as child element of the root element. Additionally, the attribute
processContents set to strict requires the schema processor to validate the em-
bedded content against its respective schema which guarantees the validity of the whole
XMI document.

Furthermore, the heading element defines some attributes capable of storing descriptive
meta information about the XMI stream serialized. In detail, the concrete metamodel and
the version of the XMI specification the XML file is conforming to can be expressed.

<xsd:complexType name="XMI">
<xsd:choice minOccurs="0" maxOccurs="unbounded">
<xsd:any processContents="strict"/>
</xsd:choice>

<xsd:attribute name="version" type="xsd:string"
use="required" fixed="2.0"
form="qualified"/>
</xsd:complexType>

34

Extension Specification

Opposed to the strictly validated content of the XMI element which constitutes the se-
rialization of the metamodel data the element extension allows arbitrary user driven
extension be placed within the XMI stream which are serialized purely for tool specific
processing.

One use case for introducing these inherently proprietary structures is the intention to
store model related data which cannot be covered by instantiating the model’s metamodel.
Graphical model information like placement and coloring are a well-known example for
this since this data cannot be expressed by UML’s metamodel prior to version 2.0.

Documentation

Of purely descriptive nature and without any relevance to the encoded metamodel instan-
ce are values place inside documentation elements within the serialized XMI file. For
reasons of identifying the tool which initially created the serialization file the element
documentation predefines slots for expressing interpreted textual data about the ex-
porter, the concrete version of the tool deployed, and also notices to the human reader of
the file.

Linking Attributes

As introduced in section 2.2 every element of a XMI file which represents a metamodel
instance can be serialized either defining or referencing by usage of the predefined linking
mechanisms based on XML LINKS.

Every XML element produced from a class within the metamodel is equipped with linking
facilities. This is done without introducing redundancy on the meta layer simultaneously
which would be the case if multiple definitions of identical linking attributes are generated.
Therefore, a set of XML attributes (LinkAttribs) is predefined which is referenced
from all XML element declarations.

By doing so every XML element produced from a metamodel class offers linking facilities
in a uniform way.

<xsd:attributeGroup name="LinkAttribs">
<xsd:attribute name="href" type="xsd:string"
use="optional"/>
<xsd:attribute name="idref" type="xsd:IDREF"
use="optional" form="qualified"/>
</xsd:attributeGroup>

Identifying attributes
As a prerequisite of general linking XMI defines anchor attributes that links can refer to.
These attributes are organized within the re-usage group titled IdentityAttribs.

Like the linking attributes discussed before this set of attributes is also referenced by all
XML elements produced from classes defined by the metamodel the XMI compliant XML
schema is derived from.

35

<xsd:attributeGroup name="IdentityAttribs"s>
<xsd:attribute name="label" type="xsd:string"
use="optional" form="qualified"/>
<xsd:attribute name="uuid" type="xsd:string"
use="optional" form="qualified"/>
</xsd:attributeGroup>

Incomplete Metadata

Besides the transfer of complete XML serializations of metamodel instances (i.e., concre-
te models), XMI also supports the encoding of arbitrary parts of a model. Serializations
of these type are termed transfer of incomplete meta data by the specification since the
resulting stream does necessarily represent a valid instance of the metamodel.

Serialization of incomplete meta data is therefore not intended to be used by modeling
tools for storing models but can be deployed for integrating heterogeneous tools. Since
XMI defines three kinds of incomplete meta data this variant of XMI is suitable for coup-
ling tools without relying on a published API.

Add named elements embrace XMI content which is merged with existing content
into a new model. The model fragment embraced by add has to conform to the
schema a.k.a. metamodel of the including content.

Replace named elements embrace XMI content which replaces existing content.
This is done by replacing model elements by those bearing the same identifying
attributes as the ones conveyed in the model fragment.

Delete named elements embrace XMI content which deletes existing content from
the model. This is done by deleting model elements bearing the same identifying
attributes as the ones conveyed in the model fragment.

This three elements could be sent over a network connection as fully legal XML document
(e.g., using Web services). CASE tools implementing this will in turn offer an interopera-
ble API for coupling.

3 Deployment Scenarios

This section summarizes usage scenarios which are already common in XMI deployment
or which may be promising for the future.

3.1 (Meta) Model Interchange

The native usage of XMI is the Interchange of XMI serialized models. As figure 1 shows,
instances of every layer of OMG’s four layer metamodel architecture may be expressed

36

by XMI compliant XML streams. Especially, concerning interchange scenarios involving
heterogeneous tool-sets XMI has established itself as the only existing vendor neutral stan-
dard providing interoperability.

Furthermore, XMI encoded models are used for tool external storage within revision con-
trol systems. As a byproduct of the chosen XML serialization, tools operating on clear text
input such as the well-known diff may be used to verify consistency of models produced
by drawing tools.

3.2 Transfer of Incomplete Model Data

The same is true regarding dynamic tool integration scenarios like those present in incre-
mental and iterative processes as commonly found in agile development. These patterns
of development inherently require a tighter level of integration as could be accomplished
by integration mechanisms transferring whole models. Since XMI’s fragment interchange
allows to virtually cut the hot spot of recently changed model elements it is best-suited for
this kind of processes.

Moreover, the approach to transfer model fragments instead of complete models conserves
bandwidth and avoids whole models be locked by a tool during synchronization.

3.3 Model Driven Architecture

Perhaps the most important application of model interchange in general is formed by the
so called MODEL DRIVEN ARCHITECTURE (MDA) which was introduced by OMG in
2001. MDA serves merely as a philosophy and an umbrella standard and does not actually
introduce new technical ideas by itself. In essence the MDA is made up of a suite of
standards including (among others) UML, MOF, and XMI. [Si01, Ob01]

MDA enhances the metamodel architecture depicted by figure 1 by splitting a model resi-
ding on a single model layer above the M° level into two distinct kinds of models. These
models are termed either platform-specific models (PSM) or platform-independent models
(PIM). In terms of MDA PIM denotes a view of a system from the platform independent
viewpoint. A PIM exhibits a specified level of platform independence so as to be suitable
for use with a number of different platforms of similar type.'? In contrast, a PSM denotes
a view of a system from the platform specific viewpoint. The PSM combines the specifi-
cations in a PIM with the details that specify how that system uses a particular platform.!?
In order to achieve this combination within the MDA models of the two kinds mentioned
are interconnected by relationships stating that the PSM is generated from a PIM ideally
without manual interaction.

Putting MDA into practice requires either modeling tools capable of describing and hand-

12¢.f. [Ob03a, p. 2-6]
3¢.f. [Ob03a, p. 2-6]

37

ling both models and model transformations or tool chains where specific tools interact.
Especially the latter requires sufficient interfaces eligible to transfer whole models wi-
thout loss of information. XMI naturally fits into this scenario since PIM as well as PSM
are in most cases expressed using the UNIFIED MODELING LANGUAGE or a customized
version.'* Also, due to the applicability of XMI’s schema production rules to arbitrary
MOF-based!> metamodels XMI can serve as a connecting element between any PIM and
PSM incarnations.

4 Tool Support

This section briefly summarizes the current state of tools supporting XMI. It should be
noted that all tools solely support usage of fixed formats for storing model information.
In detail, XMI solely capable of storing UML models. There is currently no tool (neither
commercial nor in the academic field) available which fully implements XMI’s schema
generation production rules.

4.1 Import/Export Interfaces

Most of the UML-supporting CASE and drawing tools currently dominating the market'®
support XMI for exporting UML models and also for importing them back into the tool.

Unfortunately, no overview of the deployment of XMI-based vocabularies produced from
MOF-compliant but non UML compliant metamodels can be given since vendors do not
provide these information.

In detail both RATIONAL ROSE/XDE!7 (recently acquired by IBM) and TOGETHER'®
(recently acquired by BORLAND) support saving and reading back UML models as XMI-
compliant streams. Since the standardization of UML 2.0, which will add capabilities for
interchanging the visual representation of a model also, is not finalized yet both tools do
not allow to encode diagrams in an interoperable manner. For instance RATIONAL ROSE
deploys XMI’s extension mechanism sketched in section 2.2 to encode data expressing the
graphical placement of model elements.

The general situation shows that approximately 25 percent of the UML supporting tools
available on the market currently offer XMI reading and writing capabilities. Up-to-date
details of various UML tools and their specific level of support offered for XMI are availa-
ble at http://www. jeckle.de/umltools.html.

14The process of customization by extending the predefined modeling primitives is termed profiling within the
context of UML. Consequentially, the resulting customized UML is termed to be a UML profile.

I5Note: This forms a prerequisite of the applicability of XMI’s schema production rules. Hence, only MOF-
compliant metamodels can be used a source of the generation process.

16 A analysis of current market shared can be found in: [Ri02].

17http ://www-306.1bm.com/software/awdtools/developer/rosexde/

Bhttp://www.borland.com/together/index.html

38

Slow mass market adoption of XMI may be due to the limitations of XMI documented in
section 5.1 and 5.3.

4.2 Native Format Support

Besides the support of XMI by additional filters added to an existing tool XMI may also
serve as native internal format. Specifically XML schemata produced from M? level me-
tamodels could be deployed in this way. Given a sufficient in-memory representation of
XML structures, XMI can also be used as a repository storing all model information at
runtime.

Furthermore, data structures for accessing the stored data may be generated directly from
the language’s metamodel. By doing so a virtual XMI API is established which allows
direct operation on the stored model data.

The only commercially available tool currently adhering to this approach is POSEIDON!’
which also offers an early access implementation of the upcoming diagram interchange
facilities which will be introduced by UML 2.0’s metamodel.

4.3 Meta CASE Tools

In addition to the XMI support by a given tool offering fixed functionalities XMI-based
formats can be deployed for encoding custom models which are not directly supported
by available tools. A promising application is formed by meta CASE tools which are in
essence drawing tools enriched by a rule enforcing component.

Instead of hand craft tool support and developing proprietary storage formats for custom
languages (i.e. metamodel) meta CASE tools like METAEDIT+? could be used. Tools
of this type often offer direct support for reading and writing XML compliant data repre-
senting metamodel instances (i.e., concrete models) which are stored in the tool’s on-line
repository.

S Experiences and Future Work

Finally, we want to provide some documentation of existing experiences and practical
problems arising in today’s application of XMI. Additionally, an outlook of further deve-
lopments of the XMI standard is given.

19http ://www.gentleware.com
Ohttp://www.metacase.com

39

5.1 XMD’s Inherent Heterogeneity Problem

The flexible nature of XMI’s schema production rules outlined in section 2.2 inherently
introduces an heterogeneity problem concerning the serialization of data instances confor-
ming to a given metamodel. In detail, the schema production rule chosen for the transfor-
mation of associations connecting metamodel classes preserves the general net-compliant
structure in the inherently strictly hierarchical (i.e. tree-oriented) structures of XML sche-
ma.

On the one hand, this offers an XMI export filter the possibility to traverse the metamodel
instances in an arbitrary manner provided that it is compliant to the metamodel.

On the other hand, even if the resulting stream of serialized instances is compliant to the
XML schema describing the metamodel instances, it may differ vastly from other seriali-
zations of the same model.

It is clearly a point of hindrance in market adoption that the OMG standard does not defi-
ne or even recommend a default encoding. The notion of default encoding should refer to
predefined paths for fully traversing a given networked model. Due to the lack of these pre-
defined paths any traversal are standard compliant but lead to fairly distinct lexical results.
Such an encoding style should include recommended paths which should be followed to
access model data.

Also complete abandonment of serialized hierarchical structures would be a valid option
for the benefit of interoperability. A flattened structure could serve as equivalent alterna-
tive. This would not lower expressiveness since all structures could still be expressed by
using XMI’s predefined linking mechanisms outlined in section 2.3.

5.2 Schema Production for Custom Languages

Deployment of XMI’s schema production rules is currently not widely adopted but as evi-
dence [Je01b] has shown implementation of the schema production algorithm is feasible.

Additionally, industry projects [JeO1a] successfully demonstrated the usage of MOF-com-
pliant metamodels generate XMI-compliant XML representations for data interchange.

5.3 Interchange of Visual Models

The revised metamodel introduced by UML 2.0 will add support for storing data descri-
bing the visual representation of a metamodel instance, i.e. a UML model. Consequential-
ly, the altered metamodel will result in an update to the XMI serialization of UML created
by the schema production rules described in section 2.2. In detail, also the parts of the
metamodel which describe the structure of the visual model representation are subject to
production rules just like any other metamodel entity.

Besides, the obvious capability of interchanging model data combined with its visual re-

40

presentation the inclusion of graphical meta data offers to process the visual information
separately. An example of such an approach is the generation of Web presentable vector
graphics directly from UML models described by [BIMF02].

References

[BHL99]

[BIMF02]

[BLM 01]

[BMO1]

[DMO00]

[IOU 01]

[JeOla]

[JeO1b]

[0b01]

[Ob02a]

[Ob02b]

[Ob03a]

Bray, T., Hollander, D., und Layman, A. (Hrsg.): Namespaces in XML. World
Wide Web Consortium. Boston, USA. Januar 1999. W3C Recommendation. URL:
www . w3 .0rg/TR/REC-xml -names.

Boger, M., Jeckle, M., Miiller, S., und Fransson, J.: Diagram Interchange for UML. In:
Jézéquel, J., HuBmann, H., und Cook, S. (Hrsg.), Proceedings of the 5th International
Conference on the Unified Modeling Language. S. 398—411. Oktober 2002. Lecture
Notes in Computer Science 2460.

Beech, D., Lawrence, S., Maloney, M., Mendelsohn, N., und Thomp-
son, H. S. (Hrsg.): XML Schema Part 1: Structures. World Wide
Web Consortium. Boston, USA. 2001. W3C Recommendation. URL:
http://www.w3.0rg/TR/2001/REC-xmlschema-1-20010502/.

Biron, P. V. und Malhotra, A. (Hrsg.): XML Schema Part 2: Datatypes. World
Wide Web Consortium. Boston, USA. 2001. W3C Recommendation. URL:
http://www.w3.0rg/TR/2001/REC-xmlschema-2-20010502/.

DeRose, S., Maler, E., und Orchard, D. (Hrsg.): XML Linking Language (XLink) Ver-
sion 1.0. World Wide Web Consortium. Boston, USA. 2000. W3C Recommendation.
URL: http://www.w3.0rg/TR/2001/REC-x1ink-20010627/.

International Business Machines Corporation, Oracle Corporation, Unisys Corporation,
UBS AG, NCR Corporation, Genesis Development Corporation, Hyperion Solutions
Corporation, und Dimension EDI: Common Warehouse Metamodel (CWM) Specifi-
cation. Object Management Group. Framingham, USA. 2001. OMG Document
ad/2001-02-01.

Jeckle, M.: Practical usage of W3C’s XML-Schema and a process for generating
schema structures from UML models. In: Proceedings of the Second International
Conference on Advances in Infrastructure for E-Business, Science, and Education on
the Internet. August 2001. Rome, Italy, 6.-11. August, 2001.

Jeckle, M.: Using XSLT to derive schemata from UML. In: Rahtz, S. und Pawson, D.
(Hrsg.), Proceedings of the International Conference on XSLT. S. 51-102. April 2001.
Oxford, UK.

Object Management Group (Hrsg.): Model Driven Architecture. Framingham, USA.
Juli 2001. OMG Document ormsc/2001-07-01.

Object Management Group (Hrsg.): Meta Object Facility (MOF) Specification. Object
Management Group. Framingham, MA, USA. April 2002. Version 1.4.

Object Management Group (Hrsg.): XML Metadata Interchange (XMI). Object Man-
agement Group. Framingham, MA, USA. Januar 2002. Version 1.2.

Object Management Group (Hrsg.): MDA Guide. Object Management Group. Fram-
ingham, USA. 2003. Version 1.0.1, OMG docuemnt omg/2003-06-01.

41

[Ob03b]

[Ri02]

[Si01]

[UFI 99]

[UIC 98]

[UMO1]

[UMO3]

Object Management Group (Hrsg.): XML Metadata Interchange (XMI) Specification.
Object Management Group. 2003. OMG Document formal/2003-05-02.

Rikki Kirzner: Worldwide Analysis, Modeling, and Design Tools Forecast and Analysis
2002-2006. IDC. 2002. IDC document no. 24809.

Siegel, J. Developing in OMG’s Model-Driven Architecture. Object Management
Group. November 2001. White Paper, Revision 2.6.

Unisys Corporation, Fujitsu, International Business Machines Corporation, Softeam,
Cooperative Research Centre for Distributed Systems Technology, Recerca Informat-
ica, Oracle Corporation, DaimlerChrysler AG, und Platinum Technology, Inc.: XML
Metadata Interchange (XMI) Version 1.1. Object Management Group. 1999. OMG
Document ad/1999-10-02.

Unisys Corporation, IBM, Cooperative Research Centre for Distributed Systems Tech-
nology, Oracle Corporation, Platinum Technology, Inc., Fujitsu, Softeam, Recerca In-
formatica, und DaimlerChrysler: XML Metadata Interchange (XMI). Proposal to the
OMG OA&DTF RFP 3: Stream-based Model Interchange Format (SMIF). Object Man-
agement Group. Framingham, MA, USA. 1998. OMG Dokument ad/98-10-05.

UML Partners: OMG Unified Modeling Language Specification. Framingham, MA,
USA. Februar 2001. Version 1.4, OMG Dokument ad/2001-02-14.

UML 2 Partners: Unified Modeling Language: Superstructure. Object Management

Group. Framingham, MA, USA. April 2003. 31d Revised Submission. OMG Dokument
ad/2003-04-01.

42

Using the Petri Net Markup Language
for Exchanging Business Processes
— Potential and Limitations —

Ekkart Kindler

Software Engineering Group
Computer Science Department
University of Paderborn
D-33095 Paderborn
Germany
kindler@upb.de

Abstract The Petri Net Markup Language (PNML) is an XML-based
interchange format for Petri nets. Its focus is on universality and flexi-
bility, which is achieved by a technique for defining new Petri net types
through Petri Net Type Definitions (PNTDs).

Many business process modelling techniques are based on Petri nets.
Since PNML provides a means for defining Petri net types, it might
be a worthwhile project to define a PNTD for business process models,
which supports the exchange of business process models among different
BPM tools.

In this paper, we discuss the potential and the limitations of PNML
for exchanging business processes. Moreover, we discuss some lessons
learned from the standardization of PNML, which could be helpful for
the standardization of interchange formats for business process models
in general.

1 Introduction

The Petri Net Markup Language (PNML) is a widely accepted XML-based inter-
change format for Petri nets [JKW00a, WKO03b, BCvH"03], which is currently
standardized as ISO/IEC 15909-2. The main problem with devising a standard
interchange format for Petri nets is the multitude of existing versions and variants
of Petri nets — almost every tool uses a slightly different version of Petri nets, and
new versions and variants of Petri nets are invented every year. In order to tackle
this problem, PNML provides interfaces for defining new features and new types of
Petri nets: the Features Definition Interface and the Type Definition Interface.

43

There is an even greater variety of formalisms and notations for business process
modelling. Therefore, devising an interchange format for business process models
is a much more challenging task. This task, however, is beyond the scope of this
paper. But, there are many notations for business models that are based on Petri
nets or have an underlying Petri net semantics. Thus, it might be a worthwhile
task to devise a Petri Net Type Definition (PNTD) for PNML that supports the
exchange of Petri net based business process models.

In this paper, we outline how such a PNTD for PNML could look like! and how the
corresponding interchange format could be used, and we discuss the potential and
the limitations of such an approach. In addition, we will summarize our experiences
and the lessons learned during the standardization of PNML, which could be helpful
for the standardization of exchange formats for business process models.

The paper is structured as follows: We first give an overview on the principles and
the concepts of PNML and, in particular, present its meta model, its XML-syntax,
and its Type Definition Interface. Then, we will discuss how PNML could be used
for exchanging business processes. In the end, we discuss the lessons learned during
the (ongoing) standardization of PNML.

2 PNML

As mentioned in the introduction, PNML was designed to support all kinds, ver-
sions, and variants of Petri nets. In order to achieve this flexibility, PNML is split
into several parts and is equipped with interfaces for defining new features and new
types of Petri nets.

2.1 Overview

The different parts of PNML and their relationships are shown in Fig. 1. The meta
model defines the basic structure of a PNML file; the Type Definition Interface
allows the definition of new Petri net types that restrict the legal files of the meta
model; and the Feature Definition Interface allows the definition of new features for
Petri nets. These three parts are fixed once and for all. Another part of PNML, the
Conventions Document, evolves. It contains the definition of a set of standard fea-
tures of Petri nets, which are defined according to the feature definition interface.
Moreover, there will be several Standard Petri Net Types, using some features from
the Conventions Document and possibly others. New features and new types can
be added to the Conventions Document and to the standard types when they are of
common interest. Due to their evolving nature, these documents are best published

I'We will not present a concrete definition of this format here in order to avoid the publication
of a premature definition, which could easily result in a failure of the complete idea (see Sect. 4.3
for details).

44

Petri Net Petri Net Petri Net PNML
Document Document Document Documents
F Petri Net
eatures PNML
Definition Type Types &
D Definition oo
Ocumentg\‘ Features
-] I L
Feature Definition Interface | | Type Definition Interface
PNML
Technology
Meta Model

Figure 1: Overview of the parts of PNML

and maintained via a web site. Up to now, only the technological aspects of these
documents are defined. The precise process of maintaining these documents, and
when and how to update them is not yet fixed. But, it will be in close coordination
with the Steering Committee of the annual International Conference on the Appli-
cation and Theory of Petri nets, which is the major scientific event in the field of
Petri nets.

2.2 Meta model

Figure 2 shows that part of the meta model of PNML in UML notation, which is
relevant in our context. For the full meta model, we refer to [BCvH103]. We will
explain the meta model below.

2.2.1 Petri nets and objects

A document that meets the requirements of PNML is called a Petri net document; it
may contain several Petri nets. Each Petri net consists of objects, which, basically,
represent the graph structure of the Petri net. Each object within a Petri net
document has a unique identifier, which can be used to refer to this object. In

45

% 0
PetriNetDoc O— PetriNet .| ToolInfo
id tool
type version
*
L. P
*| Object +| Label
id value
graphics

L

Attribute Annotation
graphics
1 source
Node Arc
Z> | target
Place Transition

Figure 2: The PNML meta model

basic PNML ? an object is a place, a transition or an arc. For convenience, a place
or a transition is called a node.

2.2.2 Labels

In order to assign further meaning to an object, each object may have labels. Typi-
cally, a label represents the name of a node, the initial marking of a place, the guard
of a transition, or the inscription of an arc. In addition, the Petri net itself may
have some labels. For example, the declarations of functions and variables that
are used in the arc inscriptions could be labels of a high-level Petri net. The legal
labels and the legal combinations of labels are defined by the Petri net type. The
type of a Petri net is defined by a reference to a unique Petri Net Type Definition
(PNTD), which will be discussed in Sect. 2.4.

It turned out that two kinds of labels should be distinguished: annotations and
attributes. But this distinction is not relevant for this paper, so we do not discuss
this issue here (see [WK03b, BCvH" 03] for details).

2Basic PNML refers to the version of PNML without any structuring mechanism, which is the
version discussed here. In more evolved versions, a net may consist of pages and modules, too.

46

2.2.3 Graphical information

Each object and each annotation is equipped with graphical information. For a
node, this information includes its position; for an arc, it includes a list of positions
that define intermediate points of the arc; for an annotation, it includes its relative
position with respect to the corresponding object. Additionally, there can be in-
formation concerning the size, colour, and shape of a node or an arc, or concerning
the colour, font, and font size of a label. Another graphical information can be an
image for displaying a node.

2.2.4 Tool specific information

For some tools, it might be necessary to store tool specific information, which is
not supposed to be used by other tools. In order to store this information, each
object and each label may be equipped with tool specific information. Its format
depends on the tool and is not specified by PNML. PNML provides a mechanism
for clearly marking tool specific information along with the name and the version
of the tool that added this information. Therefore, other tools can easily ignore it,
and adding tool specific information will never compromise a PNML file.

2.2.5 Pages and modules

More advanced versions of PNML provide mechanisms for structuring Petri nets.
In structured PNML, a single Petri net can be drawn on several pages. In modular
PNML, there is a concept for defining and instantiating modules, which can be used
for constructing systems in a modular and hierarchical way. For more details on
structured and modular PNML, we refer to [WK03b, BCvH"03]. The interesting
aspect of the page and module concept is that they are completely independent of
the Petri net type. They can be used with any type. This way, PNML implements
a module concept for any version of Petri nets — even when these versions do not
have these concept on their own.

2.3 XML representation

The PNML meta model is translated into XML syntax in a straightforward manner.
Technically, the syntax of PNML is defined by a RELAX NG grammar [Relax], which
can be found on the PNML web site [PNML].

47

Class

XML element

XML Attributes

PetriNetDoc <pnml>
PetriNet <net> id: ID
type: anyURI
Place <place> id: ID
Transition <transition> id: ID
Arc <arc> id: ID
source: IDRef (Node)
target: IDRef (Node)
Toollnfo <toolspecific> tool: string
version: string
Graphics <graphics>

Table 1: Translation of the PNML meta model into PNML elements

2.3.1 PNML elements

Here, we present the XML syntax in a more compact way: Basically, each concrete
class® of the PNML meta model is translated into an XML element. This translation
along with the attributes and their data types is given in Tab. 1. These XML
elements are the keywords of PNML and are called PNML elements for short. For
each PNML element, the aggregations of the meta model define in which elements
it may occur as a child element. Note that we have omitted the class Graphics
from the meta model in Fig. 2 so as not to clutter the diagram. The classes with
associated graphical information are instead indicated by an attribute “graphics”.

The data type ID in Tab. 1 defines the declaration of an identifier, which must
be unique within the PNML file. The data type IDRef defines references to these
identifiers.

2.3.2 Labels

There are no PNML elements for labels because the meta model does not define any
concrete label. Concrete labels are defined by the Petri net types. An XML element
that is not defined in the meta model (i. e. not occurring in Tab. 1) is considered as
a label of the PNML element in which it occurs. For example, an <initialMarking>
element could be a label for a place, which represents its initial marking. Likewise
<name> could represent the name of an object, and <inscription> could represent
an arc inscription. A legal element for a label may consist of further elements. The
value of a label appears as a string in a <text> element. Furthermore, the value
may be represented as an XML tree in a <structure> element. An optional PNML
<graphics> element defines its graphical appearance, and further optional PNML
<toolspecific> elements may add tool specific information to the label.

3A class in a UML diagram is concrete if its name is not displayed in italics.

48

Parent element class Sub-elements of <graphics>

Node <position> (required)
<dimension>
<fill>
<line>

Arc <position> (zero or more)
<line>

Annotation <offset> (required)
<fill>
<line>

Table 2: Elements in the <graphics> element depending of the parent element

2.3.3 Graphics

PNML elements and labels include graphical information. The structure of the
PNML <graphics> element depends on the element in which it appears. Table 2
shows the elements which may occur in the substructure of a <graphics> element.

The <position> element defines an absolute position and is required for each node,
whereas the <offset> element defines a relative position and is required for each
annotation. The other sub-elements of <graphics> are optional. For an arc, the
(possibly empty) sequence of <position> elements defines its intermediate points.
Each absolute or relative position refers to Cartesian coordinates (z,y). As for
most graphical tools, the z-axis runs from left to right and the y-axis from top
to bottom. More details on the effect of the graphical features can be found in
[BCvHT03].

2.3.4 Example

In order to illustrate the structure of a PNML file, we consider the simple example
net shown in Fig. 3. Listing 1 shows the corresponding PNML code.

It is a straightforward translation, where we have labels for the names of objects,
for the initial markings, and for arc inscriptions. Note that we assume that the
dashed outline of the transition results [rom the tool specilic information <hidden>
from an imaginary tool PNjall. This appearance is not defined in PNML; it comes
from the particular (imaginary) tool.

49

Figure 3: A simple P/T-system

Listing 1: PNML code of the example net in Fig. 3

<pnml xmlns="http://www.exzample.orqg/pnml">
<net id="n1" type="http://www.ezample.org/pnml/PTNet">

10

15

20

25

30

35

40

<name>

<text>An example P/T-net</text>

</name>
<place id="p1">
<graphics>
<position x="20" y="20"/>
</graphics>
<name>
<text>ready</text>

<graphics>
<offset x="-10" y="-8"/>

</graphics>
</name>
<initijialMarking>
<text>3</text>
</initialMarking>
</place>
<transition id="t1">
<graphics>
<position x="60" y="20"/>
</graphics>

<toolspecific tool="PN4all" version="0.1">

<hidden/>

</toolspecific>
</transition>

<arc id="al" source="pl" target="t1">

<graphics>
<position x="30" y="5"/>
<position x="60" y="5"/>

</graphics>

<inscription>
<text>2</text>

<graphics>
<offset x="15" y="-2"/>

</graphics>
</inscription>
</arc>
</net>
</pnml>

50

10

2.4 Petri Net Type Definition

Next, we discuss the definition of a Petri net type. In order to define a type, we
need to define labels first.

2.4.1 Label definition

Listing 2 shows the RELAX NG definition of the label <initialMarking>, which
represents the initial marking of a place of a P/T-system (cf. List. 1). Its value (in
a <text> element) should be a natural number, which is formalized by referring to
the corresponding data type nonNegativeInteger of the data type system of XML
Schema [XSch]. Note that the optional graphical and tool specific information do
not occur in this label definition; this is not necessary, because these standard
elements for annotations in the meta model of PNML are included from the def-
inition of the standard annotation content. Such label definitions can either be
given explicitly for each Petri net type, or they can be included in the Conventions
Document, such that Petri net type definitions can refer to these definitions.

Listing 2: Label definition

<define name="PTMarking"
xmlns:pnml="http://www. informatik. hu-berlin.de/top/pnml">
<element name="initzalMarking'>
<interleave>
<element name="tezxt'">
<data type='"nonNegativelnteger"
datatypeLibrary="http://www.w3. orqg/2001/XMLSchema-datatypes"/>
</element>
<ref name="pnml:StandardAnnotationContent"/>
</interleave>
</element>
</define>

2.4.2 Petri Net Type Definitions (PNTDs)

Listing 3 shows the Petri Net Type Delinition (PNTD) for P/T-Systems as a RE-
LAX NG grammar. Firstly, it includes both the definitions from the meta model of
PNML (pnml.rng) and the definitions from the Conventions Document (conv.rng),
which, in particular, contains the definition from List. 2, a similar definition for arc
inscriptions of P/T-systems, and a definition for names.

Secondly, the PNTD defines the legal labels for the whole net and the different
objects of the net. In our example, the net and the places may have an annotation
for names. Furthermore, the places are equipped with an initial marking and the

51

10

15

20

Listing 3: PNTD for P/T-Systems

<grammar ns="http://www.ezample.orqg/pnml"
xmlns="http://relazng.org/ns/structure/1.0"
xmlns:conv="http://www. informatik. hu-berlin.de/top/pnml/conuv">

<include href="http://www.informatik.hu-berlin.de/top/pnml/pnml.rng"/>
<include href="http://www.informatik.hu-berlin.de/top/pnml/conv.rng"/>
<define name="NetType" combine="replace">

<text>http://www.example.org/pnml/PTNet</text>
</define>
<define name="Net" combine="interleave'>

<optional><ref name="conv:Name"/></optional>
</define>
<define name="Place" combine="interleave'>

<interleave>

<optional><ref name="conv:PTMarking"/></optional>
<optional><ref name="conv:Name"/></optional>

</interleave>
</define>
<define name="Arc" combine="interleave'>

<optional><ref name="conv:PTArcInscription’”/></optional>
</define>

</grammar>

arcs are equipped with an inscription. Note that all labels are optional here. The
labels are associated with the net objects by giving a reference to the corresponding
definitions in the Conventions Document. Technically, the definition extends the
original definition of the net, places and arcs of the RELAX NG grammar for PNML.

2.5 Related work

Of course, there are XML-based formats and other technologies that could be used
for interchanging Petri nets. For example, XMI [OMGO03] could be used for ‘map-
ping’ PNML’s meta model to XML, or GXL [HWS00] could be used for exchanging
Petri nets as a graphs.

Besides the fact that all these formats and technologies were developed concur-
rently, there are some reasons for having a dedicated format for Petri nets. One
reason for not using GXL is that PNML can exploit some features that are specific to
Petri nets. For example, this applies to the module concept of PNML, which is very
specific to Petri nets. One reason for not using XMI is that PNML should be easily
usable without being familiar to and without necessarily using XMI technology.

A more detailed discussion of the principles governing the design of PNML can be

found in [JKWO00b, BCvHT 03, WKO03b].

52

3 Business process modelling

In the previous section, we have introduced the basic principles and concepts of
PNML. Next, we will discuss in which way PNML could be used as an interchange
format for business processes. To this end, we briefly rephrase our understanding
of business processes and business process models, which resembles that of the
Workflow Management Coalition [Hol95, WFM99].

3.1 Business processes and their models

A business process consist of a set of activities (or tasks) that are executed in some
enterprise or administration according to some rules in order to achieve certain
goals. The execution of an activity may require an agent or some resources and
some information.

A business process model more or less exactly captures the rules according to which
a specific class of business processes is executed and, in particular, defines which
activities are to be performed, in which order they are to be performed, by which
agents and resources they are to be performed, and in which way information or
documents are used and propagated among activities.

It turned out that business processes have different aspects that can be modelled
independently of each other. The behavioural aspect models the order in which the
different activities must be executed, the organizational aspect models the agents
and resources of an enterprise and how they are associated with certain activities,
and the informational aspect models the information used in the process, how
the information is represented, and how the information is propagated among the
activities.

Actually, there are even more aspects, in particular, when it comes to the automatic
execution of business processes by a workflow management system. Also timing
aspects may be very important for doing performance analysis and business process
re-engineering. But, we do not go into the details of these aspects here.

By using the term business process modelling, people refer to quite different things.
Some refer to the modelling of the behavioural aspect only (which is typical for
people from the Petri net community), whereas others refer to all aspects mentioned
above; some people even refer to the models executed by a workflow management
system — in that case they are usually called workflow models [LR99, Hol95].

Likewise, the degree of rigor of business process models varies. For some people,
they are just informal and even incomplete sketches that help giving a rough un-
derstanding of an enterprise’s or administration’s business processes. For others,
they are completely formal such that precise analysis or even execution is possible.

There is no harm in the different notions or perceptions of business process mod-
elling. All of them have their benefits and their uses with respect to certain ob-

53

jectives. But, when it comes to interchange formats for business process models,
we need to be aware of the different perceptions of business process modelling
and the different objectives. To us it is not clear at all, whether there can be or
there should be a single interchange format serving all purposes and perceptions in
business process modelling.

3.2 Petri nets

Petri nets are well-known for being a formal and rigorous modelling technique.
Therefore, Petri nets are well-suited for rigorous business process modelling. Clas-
sical Petri nets such as Place/Transition-Systems (P /T-Systems) cannot distinguish
between different kinds of token (there are black tokens only) and there is no means
for modelling data. This is the reason why Petri nets are usually used for mod-
elling the behavioural aspect of business processes only. Maybe, the best known
approach is the one by van der Aalst, in which he proposes a special kind of un-
marked P/T-Systems with a single input place and a single output place, called
workflow nets [vdA97, vdAvHO02|. Sometimes, however, Petri nets are considered

to lack modelling power. Van der Aalst himself proposes some extensions called
YAWL [vdAtHO02].

Classical Petri nets are also good for analysis and planning of resource assignment
to tasks and for business processes in particular. When using timed or stochastic
versions, Petri nets can also be used for doing performance analysis: And these
techniques turn out to be quite effective. But, this does not necessarily mean
that Petri nets are good for modelling the organizational aspects of business pro-
cesses. In fact, they are not good at all*. When it comes to realistic processes
and organizational models, the corresponding Petri net become quite complex and
inscrutable. So it would be much better to use a more appropriate notation for
modelling the organization and the relation of its resources to the activities. Then
we could automatically translate this model to a Petri net, which can be used for
automatic analysis. In order to make this approach work, an interchange format
for the organization aspect of business processes must have a clean and simple meta
model and a mechanism for associating the resources of the organizational model
with the activities in the behavioural model. This notation could and should be
independent of the particular modelling formalism for the behavioural aspect.

In classical Petri nets, the information aspect of a business process cannot be
modelled. But, there are different versions of high-level Petri nets that allow us
to model information and data. Actually, the information model could be defined
in almost any notation; then, a high-level Petri net could be used for modelling
the propagation of the information, resp. data or documents between different
activities. Again, (high-level) Petri nets may not be good at modelling the structure

4Too often, the distinction between being a good modelling notation and providing a good
analysis techniques is not clearly made. This might be the source of many misunderstandings in
discussions on appropriate and inappropriate modelling and analysis techniques.

54

of the data or in defining the information model — most of them use a notation
that is not specific to Petri nets at all. But, Petri nets are good at modelling how
information is propagated between different activities, once the information model
is defined.

3.3 PNML for business process models

As indicated in the previous section already, there are several ways in which PNML
could be used as an interchange format for business process models.

3.3.1 Workflow nets

First, PNML could be used as an interchange format for the behavioural aspect of
business processes only. To this end, we could define a PNTD for workflow nets as
defined by van der Aalst [vdAvHO02]. This PNTD would essentially be the PNTD
for P/T-Systems without the labels representing the initial marking; additionally,
there would be a distinguished start and end place.

The corresponding PNTD is very simple. But, we do not give a PNTD for workflow
nets, here. With this PNTD, PNML could be used for exchanging workflow nets.

3.3.2 Resources

Of course, we can easily extend the PNTD for workflow nets with some labels that
define the needed resources for each activity (resp. the transition representing it).
The syntax of these labels, however, will depend on the modelling notation for the
organizational model resp. its underlying meta model. Once the meta model resp.
the interface for referring to an organization model is fixed, it should be an easy
task to define the syntax of the resource labels.

3.3.3 Information propagation

Similarly, we could easily devise a PNTD for high-level Petri nets in order to model
the propagation of information between different activities. The concrete syntax of
the arc-labels would depend on the meta model resp. its interface of the information
aspect.

3.3.4 Extensions

For particular purposes, we could easily extend the format with all necessary fea-
tures that are available in the Conventions Document of PNML. For example, we
could use labels for timed Petri nets or for stochastic Petri nets in order to represent
timing information.

55

3.3.5 Interfaces

In essence, a PNTD for defining business processes would be a definition of work-
flow nets, equipped with some additional information. For defining the concrete
labels for the informational aspect and for the organizational aspect, however, it
would be necessary to define interfaces resp. meta models for these aspects first.
These interfaces, however, could and should be completely independent of Petri
nets or any other model for the behavioural aspect. Therefore, discussing and fix-
ing models for these aspects is more important than devising a PNTD for workflow
nets. Once the meta models resp. interfaces for the other aspects are defined, it
is straightforward to define a PNTD for the behavioural aspect of business process
models.

4 Lessons learned with PNML

The discussion of XML-based interchange formats for Petri nets started about four
years ago. And the standardization process is not finished yet; in fact, the official
standardization as ISO/IEC 15909-2 has just begun. So, we are still learning some
lessons on the standardization of PNML.

Nevertheless, we report on some of the lessons learned to date in the hope that
they might be helpful in the standardization of an interchange format for business
processes. But, we are aware that the standardization of business processes is a
much more difficult issue.

4.1 Organization

The standardization of an XML-based® interchange format for Petri nets was
started in 2000 with an workshop at the annual International Conference on Appli-
cation and Theory of Petri Nets [BBK*00]. This and all subsequent activities and
events were closely coordinated with the Steering Committee of the International
Conference on Application and Theory of Petri Nets. Though there have been
concrete proposals for exchange formats for Petri nets at the first workshop, the
focus of this workshop and the discussions were on the principles and objectives of
such an interchange format and on ideas how to deal with the variety of different
Petri net types. At this workshop, we agreed that a standard interchange format
would be helpful even if not all information can be interchanged among different
tools. A format that would help to interchange the basic structure of a net among
different tools would be helpful in many cases.

5Actually, there have been other interchange formats for particular versions of Petri nets long
before that. For example, there was the Abstract Petri Net Notation (APNN) [BKK95].

56

After the first workshop in 2000, we had more or less informal meetings every year
during the annual International Conference on Application and Theory of Petri
Nets, which were open to everybody. Finally, these meetings resulted in a joint pa-
per on PNML [BCvH 03], which will be the basis for the standard ISO/TEC 15909-2.

The lesson learned from this is that it is important to have a common understanding
of the objectives and the purposes of an interchange format before making proposals
for such a format.

4.2 Principles

During the first workshop, it became clear that dealing with the variety of different
versions and dialects of Petri nets would be one of the main issues in a new standard.
Therefore, openness and extensibility of the format were the main principles driving
the design of PNML.

PNML provides extensibility in several ways. One way is the features and type
concepts, which allows us to define new labels for Petri nets and new Petri net
types. It will be an ongoing activity to update and to maintain the standard
features and the standard Petri net types. But, everybody is free to define an own
Petri net type — other tools will be able to understand at least that part that refers
to standard features.

Another way for providing extensibility is tool specific information. Every tool is
allowed to store its private information for the different objects within a Petri net.
This way, all information that is not covered by PNML can be stored in a PNML
file, and tools are not forced to have their private format in addition to PNML. A
tool can store any information necessary within a PNML [ile. On the one hand, this
is an important feature for tool providers to support PNML. On the other hand, it
is also a dangerous feature: If different tools store important information as tool
specific information only, this information cannot be used by other tools anymore.
Therefore, we discourage the use of tool specific information wherever possible and
we try to make sure that there are standard features and standard Petri net types
for all important features and Petri net types available.

A similar problem might occur concerning graphics. Initially, we had only very
few graphical features in PNML and considered all other graphical information
to be tool specific. But, we realized that this way most graphical information
might go to tool specific information and, therefore, would be lost for other tools.
Therefore, we now aim at providing a way to represent all graphical features that
are well-established in Petri net tools within PNML itself. Only very special or
fancy graphical features cannot be expressed in PNML. This way, PNML not only
guarantees the same appearance of a Petri net in different tools, we can even provide

6In fact, many people are still not aware of the much richer graphical features of the current
version of PNML because they had a look to now outdated versions only. This is another argument
for not starting with a half-baked definition.

57

a standard transformation of PNML files to SVG [FJe03]. Actually, we define the
graphical appearance of a PNML file by an XSLT transformation to SVG, which
was first proposed in [Ste02].

4.3 Tools

Fortunately, many tool providers started to implement PNML, once the first dralt
of PNML was published. Maybe, this was the most important factor to the success
of PNML. But, one problem was that the first papers focused on the concepts
of PNML and were incomplete in some technical issues’. Therefore, there have
been different variants and versions of PNML before we came up with a complete
version. Moreover, we had to change the definition of some constructs in order
to get a clearer design of PNML. Though these could be considered to be minor

changes only, the tools using PNML already ran into problem.

The lesson learned from this is that already the first draft should be worked out in
full technical detail and a validation tool should be available right from the begin-
ning. This can help avoiding frustration of tool providers, who are so important
for the success of a standard. This is the reason why we do not provide a concrete
definition of a PNTD for business process models here.

5 Conclusion

In this paper, we have given an overview on PNML, and we discussed how PNML
could be used for exchanging business process models.

The idea boils down to providing a Petri Net Type Definition (PNTD) for the
behavioural aspect of business process models. Other aspects could be incorporated
into this model too. But, we do not propose to use Petri nets for modelling the
informational or the organizational aspect of a business process. Rather, we would
like to use some more appropriate formalism, which provides a clear interface such
that Petri net models can refer to these models in order to associate resources with
activities and to model the propagation of data based on these models.

In a nutshell, we propose to start with a standardization of the interfaces of the
meta models for the different aspects of business process models, rather than to
start with a format for business processes themselves. Once, these interfaces are
defined, devising a PNTD for the behavioural aspect of business processes will be
easy.

"We must admit that our own tool, the Petri Net Kernel [WK03a], implemented PNML slightly
different from its specification.

58

Acknowledgments

Some parts of this papers are taken from the PNML paper [BCvH"03] with only
minor modifications. I would like to thank all co-authors of that paper for their
permission to use these parts and for their encouragement to carry on. In particular,
I would like to thank Michael Weber and Renier Post for their comments and
suggestions on an earlier version of this paper. Moreover, I would like to thank the
anonymous reviewers for their comments and questions, which helped to improve
the presentation of this material.

References

[BBK'00]

[BCvHT 03]

[BKK95]
[FJe03]
[Hol95]

[HWS00]

[TKWO00a]

[JKWOOb]
[LR9Y]
[OMG03]
[PNML]
[Relax]

[Ste02]

R. Bastide, J. Billington, E. Kindler, F. Kordon, and K. H. Mortensen, ed-
itors. Meeting on XML/SGML based Interchange Formats for Petri Nets.
University of Aarhus, Department of Computer Science, June 2000.

Jonathan Billington, Sgren Christensen, Kees van Hee, Ekkart Kindler, Olaf
Kummer, Laure Petrucci, Reinier Post, Christian Stehno, and Michael We-
ber. The Petri Net Markup Language: Concepts, Technology, and Tools. In
W. van der Aalst and E. Best, editors, Application and Theory of Petri Nets
2003, 24" International Conference, LNCS 2679, pages 483-505. Springer,
June 2003.

Falko Bause, Peter Kemper, and Pieter Kritzinger. Abstract Petri Net No-
tation. Petri Net Newsletter, 49:9-27, October 1995.

J. Ferraiolo, F. Jun, and D. Jackson (eds.). Scalable Vector Graphics (SVG)
1.1 Specification. URL http://www.w3.0rg/TR/SVG11/, 2003.

David Hollingsworth. The Workflow Reference Model. Technical Report
TCO00-1003, The Workflow Management Coalition (WfMC), January 1995.

Richard C. Holt, Andreas Winter, and Andy Schiirr. GXL: Towards a Stan-
dard Exchange Format. In 7*" Working Conference on Reverse Engineering,
pages 162-171. IEEE Computer Society, 2000.

Matthias Jiingel, Ekkart Kindler, and Michael Weber. Towards a Generic In-
terchange Format for Petri Nets — Position Paper. In R. Bastide, J. Billington,
E. Kindler, F. Kordon, and K. H. Mortensen, editors, Meeting on XML /S-
GML based Interchange Formats for Petri Nets, pages 1-5, June 2000.

Matthias Jiingel, Ekkart Kindler, and Michael Weber. The Petri Net Markup
Language. Petri Net Newsletter, 59:24-29, October 2000.

Frank Leymann and Dieter Roller. Production Workflow: Concepts and Tech-
niques. Prentice-Hall PTR, Upper Saddle River, New Jersey, USA, 1999.

XML Metadata Interchange (XMI) Specification, Version 2.0. Technical Re-
port formal/03-05-02, The Object Management Group, Inc., May 2003.

The Petri Net Markup Language. URL http://www.informatik.hu-berlin.
de/top/pnml/. 2001/07/19.

RELAX NG Specification. URL http://www.oasis-open.org/committees/
relax-ng/. 2001/12/03.

Christian Stehno. Petri Net Markup Language: Implementation and Appli-
cation. In J. Desel and M. Weske, editors, Promise 2002, Lecture Notes in
Informatics P-21, pages 18-30. Gesellschaft fiir Informatik, 2002.

59

[VvdA97]

[vdAtHO2]

[vdAvHO2]

[WEFM99]

[WKO03a]

[WKO03b]

[XSch]

W.M.P. van der Aalst. Exploring the Process Dimension of Workflow Man-
agement. Computing Science Reports 97/13, Eindhoven University of Tech-
nology, September 1997.

W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Work-
flow Language. Technical Report QUT Technical report, FIT-TR-2002-06,
Queensland University of Technology, Brisbane, 2002.

Wil van der Aalst and Kees van Hee. Workflow Management: Models, Meth-
ods, and Systems. Cooperative Information Systems. The MIT Press, 2002.

Workflow Management Coalition: Terminology & Glossary. Technical Report
WEMC-TC-1011, The Workflow Management Coalition (WfMC), February
1999.

Michael Weber and Ekkart Kindler. The Petri Net Kernel. In H. Ehrig,
W. Reisig, G. Rozenberg, and H. Weber, editors, Petri Net Technologies
for Modeling Communication Based Systems, LNCS 2472, pages 109-123.
Springer, 2003.

Michael Weber and Ekkart Kindler. The Petri Net Markup Language. In
H. Ehrig, W. Reisig, G. Rozenberg, and H. Weber, editors, Petri Net Tech-
nologies for Modeling Communication Based Systems, LNCS 2472, pages 124—
144. Springer, 2003.

XML Schema. URL http://www.w3.org/XML/Schema, April 2000. 2002-03-
22.

60

Exchanging EPC Business Process Models with EPML

Jan Mendling Markus Niittgens
Abteilung fiir Wirtschaftsinformatik Universitit des Saarlandes
Wirtschaftsuniversitiat Wien, D-66041 Saarbriicken
A-1090 Wien markus@nuettgens.de

jan.mendling@wu-wien.ac.at

Abstract: In this paper EPML is presented as an interchange format for EPC
business process models. EPML builds on EPC syntax related work and is
designed to be applicable as a serialisation format for EPC modelling tools. After a
description of EPML in the large, examples are given to illustrate selected
representational aspects including flat and hierarchical EPCs, business views, and
graphical information.

1. Exchanging Business Process Models

Today business process modelling is mainly used in two different contexts: business
analysts use process models for documentation purposes, for process optimization and
simulation; while information system analysts use them on the middleware tier in order
to glue together heterogeneous systems. For both of these layers analysts have a variety
of tools to choose from in order to support modelling of processes. In 2002 Gartner
Research distinguishes 35 major vendors of such software [Ga(02]. Heterogeneity of
these tools causes huge interoperability problem in this context. A recent survey of
DelphiGroup [De03] identifies the lack of a common and accepted interchange format
for business process models as the major detriment for business process management.

Event-Driven Process Chains (EPC) [KNS92] are a wide-spread method for business
process modelling. SAP AG has been using them to express their SAP reference model
[Ke99]. Motivated by the heterogeneity of business process modelling tools, a proposal
for an interchange format for EPCs is in progress of development. It is called EPC
Markup Language (EPML) [MNO02, MNO3b, MNO3c]. The establishment of a
standardized representation of business process models may be even more beneficial
than in other domains of standardization, because it may be used in two different
directions: horizontal interchange will simplify the integration of BPM tools of the same
scope. Vertical interchange can leverage the integration of simulation engines, execution
engines, and monitoring engines [W{02]. Standardization might be a crucial step to close
the engineering gap between business process modelling and implementation.

61

This paper gives an overview over EPML. Section 2 introduces Event-driven Process
Chains as a method to express business process models, their syntactical elements, and
related research on EPC syntax. Section 3 presents EPML general design principles and
XML design guidelines that have guided the specification. Section 4 explains how the
syntax elements of EPML relate to each other and outlines why edge element lists are
used to describe EPC process graphs in EPML. The Sections 5 to 8 introduce specific
aspects of EPML by giving examples: Section 5 presents a simple EPC example and its
EPML syntax representation; Section 6 shows how hierarchies of EPCs are expressed;
Section 7 discusses how business perspectives can be included in an EPML file; and
Section 8 shows which graphical information can be attached to a process element
Section 9 concludes and lists future directions of research.

2. Event-Driven Process Chains (EPCs)

Most of the formal contributions on EPCs have been focused on semantics, especially on
the semantics of OR connectors. The translation of EPC process models to Petri Nets
plays an important role in this context. Examples of this research can be found in
Chen/Scheer [CS94], Langner/Schneider/Wehler [LSW98], van der Aalst [Aa99],
Rittgen [Ri00], and Dehnert [De02]. A major point of discussion is the “non-locality” of
join-connectors [ADKO02]. This aspect has recently been formalized by Kindler [Ki03].
In this paper we will focus on EPC syntax referencing to based on the syntax definition
of EPCs in [NRO2]. Therefore we give a brief survey of syntax related work.

In Keller/Niittgens/Scheer the EPC is introduced [KNS92] to represent temporal and
logical dependencies in business processes. Elements of EPCs may be of function type
(active elements), event type (passive elements), or of one of the three connector types
AND, OR, or XOR. These objects are linked via control flow arcs. Connectors may be
split or join operators, starting either with function(s) or event(s). These four
combinations are discussed for the three connectors resulting in twelve possibilities. OR-
Split and XOR-Split are prohibited after events, due to the latter being unable to decide
which following functions to choose. Based on practical experience with the SAP
Reference model, process interfaces and hierarchical functions are introduced as
additional element types of EPCs [KM94]. These two elements permit to link different
EPC models: process interfaces can be used to refer from the end of a process to a
following process, hierarchical functions allow to define macro-processes with the help
of sub-processes. Keller [Ke99] and Rump [Ru99] provide a formal approach defining
the EPC syntax. Based on this, Niittgens/Rump [NRO02] distinguish the concepts of a flat
EPC Schema and a hierarchical EPC Schema. A flat EPC Schema is defined as a
directed and coherent graph with cardinality and type constraints. A hierarchical EPC
Schema is a set of flat or hierarchical EPC Schemata. Hierarchical EPC Schemata
consist of flat EPC Schemata and a hierarchy relation linking either a function or a
process interface to another EPC Schema. Fig. 1 shows a hierarchical EPC Schema
consisting of two processes, which are linked via a hierarchical relation attached to the
process interface “To Design Process”.

62

EPC Symbols Requirements Engineering Design Process

From
Requirementg
ngineering

Event

Function

Can be

Process Interface fulfilled

@ Connectors

_— Control Flow Arc
Cannot be
fulfilled

eUUU

Can be
fulfilled

Design
finished

To Design
Process

Fig. 1. EPC example of a simple requirements engineering process. The connector represents an
“exclusive or”. After “Can be fulfilled” a process interface links to the design process.

Work on EPML started off in 2002 mainly inspired by heterogeneity of business process
modelling tools and the potential of efficiency gains for the use of an intermediary
format [WHBO02, MNO3b]. As a first step, comparable efforts towards standardized
interchange formats in the area of Petri Nets, BPML, and UML have been analyzed
[MNO2]. Work on syntactical correctness led to a revised EPC syntax definition based
on implicit arc types and related syntax properties [MNO3a]. An analysis on EPC syntax
validation discusses in how far these syntax properties can be expressed via standard
XML Schema languages [MNO3c]. A proposal for an EPML schema is presented in
[MNO4] and has been made available at http://wi.wu-wien.ac.at/~mendling/EPML.

3. Design Principles

Towards the definition of an XML syntax for EPC models, the global goal of defining a
tool and platform independent XML-based interchange format for EPCs has to be
translated into domain-specific design principles in order to derive design decisions.
Domain-independent XML design guidelines standardize the way how things are put
into XML syntax.

3.1. EPML General Design Principles

In order to put EPML design principles into context, we present design principles
proposed for ASC X12 Reference Model for XML Design (X12) [AN02] and Petri Net
Markup Language (PNML) [Bi03]. X12 is a specification describing a seven layer
model for the development of business documents. The definition of X12 was guided by

63

four high level design principles: alignment with other standards, simplicity,
prescriptiveness, and limit randomness. Alignment with other standards refers to the
specific domain of business documents where other organisations including OASIS and
UN/CEFACT, World Wide Web Consortium, and OASIS UBL also develop
specifications. Simplicity is a domain independent principle. It demands features and
choices to be reduced to a reasonable minimum. Prescriptiveness is again related to
business documents. This principle recommends one to define rather more precise and
specific business documents than too few which are very general. Limit randomness
addresses certain constructs in XML schema languages that provide multiple options and
choices. These aspects shall be limited to a minimum. The PNML approach for Petri
Nets is governed by the principles flexibility, no ambiguity, and compatibility [Bi03].
Flexibility is an important aspect for Petri Nets, because all kinds of currently discussed
and also prospective classes of Petri Nets shall be stored. This will be achieved with
labels which can be attached to arcs and nodes. No ambiguity refers to the problem of
standardized labels. Therefore, Petri Net Type Definitions define legal labels for
particular net types. Compatibility deals with the problem of semantically equivalent
labels used by different Petri net types. These overlapping labels shall be exchangeable.

The EPML approach reflects these different design principles. It is governed by the
principles of readability, extensibility, tool orientation, and syntactical correctness
[MNO3b]. Readability expects EPML elements and attributes to have intuitive and
telling names. This is important because EPML documents will be used not only by
applications, but also by humans who write XSLT-scripts that transform between EPML
and other XML vocabularies. Readability is partially related to simplicity and limited
randomness of the X12 approach. Extensibility reflects a problem that is analogous to
different types of Petri nets. An important aspect of BPM is to provide different business
perspectives and views on a process. EPML should be capable to express arbitrary
perspectives instead of only supporting a pre-defined set. Section 6 is dedicated to this
issue. Tool orientation deals with graphical representation of EPCs. This is a crucial
feature, because BPM tools provide a GUI for developing models. EPML should be able
to store various layout and position information for EPC elements. Finally, syntactical
correctness summarizes aspects dealing with EPC syntax elements and their
interrelation. The following paragraph will discuss general XML design aspects.

3.2. XML Design Guidelines

Basically, two general approaches towards XML design guidelines can be distinguished:
a theoretical one building on normal forms and information content measures like
entropy; and a pragmatic one giving advise on when to use which XML language
concepts and how to name elements and attributes.

The theoretical approach builds on insights from database theory. For relational database
models concepts like functional dependency (FD), multi-value dependency (MVD), and
join dependency (JD) have been formally described [Bi95]. In order to derive schemas
with good properties, decomposition algorithms have been developed to achieve
different levels of normal forms. These normal forms avoid redundancies and anomalies

64

from operations on relational data. Analogously, a normal form has been presented for
XML, called (XNF) [EMO1, ALO2]. In [ALO3] an information-theoretic approach is
presented that bridges the conceptual gap between relational and XML representations.
A theory is developed building on entropy measures that brings forth a concept-
independent understanding of the interrelation of redundancies and normal forms. A
schema is called well-designed when it cannot contain instance data with an element that
has less than maximum information in terms of conditional entropy [AL03]. From this it
can be shown that a schema which has only FDs and neither MVDs nor JD is well-
designed iff (if and only if) it is in Boyce-Codd-Normal Form. FD for XML schemas
occur when paths from the root to nodes in the XML tree depend upon other paths.
Analogously, an XML schema subject to FDs is well-designed iff it is in XNF [ALO3].
A violation of XNF implies redundancies in that sense that a path may reach different
nodes, but that these nodes all have the same value. Such violations can be cured by a
normalization algorithm that moves attributes and creates new elements until XNF is
achieved [ALO3]. For XML reference model design this implies that there should be no
XPath [CD99] statement that always returns a set of nodes all containing the same value.
Then the XNF condition is fulfilled and the schema is well-designed.

Pragmatic approaches deal with extensibility and design leeway in XML. Documents
from ISO [ISOO01], SWIFT [SWO01], and X12 [ANO02] establish design rules in order to
minimize ambiguity and maximize communicability of XML schemas. Pragmatic XML
design guidelines include conventions for names; for the choice of style between
elements and attributes; for the use of special schema language features; and for
namespace support. Naming conventions refer to the choice of element and attribute
names. [SO, SWIFT, MISMO, and X12 agree on using English words for names. Names
may also consist of multiple words in so-called Upper Camel Case (no separating space,
each new word beginning with a capital letter) according to MISMO, SWIFT, and ISO,
abbreviations and acronyms shall be limited to a minimum. Style conventions govern the
choice between elements and attributes. X12 recommends the usage of attributes for
metadata and elements for application data [ANO02]. In this context, it is a good choice to
understand identifying keys as metadata and put them into attributes. That allows a DTD
conforming usage of the ID, IDREF, and IDREFS data types and a respective key or
keyref declaration in a W3C XML Schema [BeOl, BMOI1]. Further, attributes are
considered to provide a better readability of content [ANO02]. Therefore, content that can
never be extended may also be put into attributes. Schema conventions recommend one
to use only a reduced set of the expressive power provided by an XML schema language.
X12 advises one to avoid mixed content, substitution groups, and group redefinition
from another schema; one should use only named content types and built-in simple
types, to name but a few aspects. We refer to [ANO2] for a broader discussion.
Namespace conventions refer to the usage of namespaces in instance documents. X12
recommends one to use explicit namespace references only at the root level. Theoretical
and pragmatic approaches offer complementary guidelines for the development of
“good” XML schemas. The guidelines presented have contributed to the EPML
proposal.

65

4. EPML in the Large

<epml> is the root element of an EPML file. Like all other elements it may have
<documentations> or <toolInfo> child elements. These may contain data that has
been added by the editor of the EPML file or tool specific data attached by an
application. These two elements are of XML Schema type anyType which means that
they may hold arbitrary nesting of XML data. It is recommended to use only
standardised Dublin Core Metadata Elements [DCO03] for documentation of the EPML
file, and to add only such application specific data that has relevance for the internal
storage of models in a certain tool, but which does no influence the graphical
presentation of a model. General graphic settings may be defined in the
<graphicsDefault> element. The <coordinates> element is meant to explicate
the interpretation of coordinates annotated to graphical elements of an EPC. The
@xOrigin attribute may take the values “leftToRight” or “rightTolLeft”, and the
@yOrigin attribute can hold “topToBottom” or “bottomToTop”. It is recommended to
always use the “leftToRight” and “topToBottom” settings which most of the tools
assume. Yet, there are still exceptions like MS Visio [Mi03] that has its y-axis running
from the bottom of the screen upward. It is recommended to transform these coordinates
when storing EPC models in EPML.

In [NRO2] an EPC Schema Set is defined as a set of hierarchical EPC Schemas. Each of
these hierarchical EPC Schemas consists of a flat EPC Schema which may have
hierarchy relations attached with functions or process interfaces. The detailed discussion
of flat EPC Schemas is left to the following Section; here, it is sufficient to have a
general understanding of what EPCs are. Syntactically, a hierarchy relation connects
functions or process interfaces with other EPC processes. Semantically, it refers to the
call of sub-processes. <epml> also has a <definitions> child element which is
explained in conjunction with the <directory> element. The <view> element
allows business views and perspectives to be defined. Its <unit > element is a container
for information about an entity which is important in a business process. This unit may
be attached to control flow elements. Figure 2 gives an overview over EPML via a
metamodel; Table 1 illustrates the content model of high-level EPML elements.

In EPML a hierarchy of processes is organised by the help of directories. A
<directory> holds a @name attribute, other directories, and/or EPC models. Each
<epc> is identified by an @epcId attribute and has a @name attribute. The @epcId
can be referenced by hierarchy relations attached to functions or process interfaces. The
EPC control flow elements will be discussed in paragraph 4.2. In a hierarchy of EPC
models there may be the problem of redundancy. An EPC process element might be used
in two or more EPC models. In such a case there should be a place to store it once and
reference it from the different models. This is precisely the aim of the
<definitions> element. It serves as a container for control flow elements that are
used more than once in the model hierarchy.

66

Graphical Information

i coordinates
child?

xOrigin : string

toolinfo chid? yOrigin : string

cmdv—<>1 epml |<me<| graphicsDefault Iocmw— fill

<> color : string

image : anyURI
gradient-color : string
gradient-rotation : string

Definitions

chidr———1line

shape : string
color : string
width : decimal
style : string

eventDefinition

defld : string]
name : string kS keyref event — o
description : string I— font

prewm family : string
style : string

o weight : string
Definition size : positivelnteger
- decoration : string
defld : sinpg K keyref function: — color : string
name:_smng X child® child® verticalAlign : string
description : string child+ horizontalAlign : string
rotation : decimal

child?

position

p face
Definition X : string

+ strir y : string
e 'S;;‘r?r?g widih - string
description : string height : string

directory ch\\d']

name : string

Graphical Information EPC miw

view epc koenia—| event

name : string name : string

[} description : string
defRef : string

child* child* implicitType : string

unitRelation unit i |function
K> =keyrefem =t

graphics

child?

child?,

name : string epcld : string id : string > 1

chi

ild?

child?

relationld : string [K>=keyref— = unitld : string id : string

unitRef : string name : stiing name : sting
subUnitRef : string description : string
annotation: string defRef : string
_— implicitType : string
linkToEpcld : string
unitRef : string

child*

child?

id : string kK>
name : sting

chikd* description : string
defRef : string
implicitType : string
linkToEpcld : string

chikd*

and

id : string k>
name : sting
description : string
implicitType : string

or

id: string k>

name : sting
description : string
implicitType : string

xor

id : string

name : sting
description : string
implicitType : string

arc

id: string k>

name : sting
description : string
— keyref event, function, ete. 4 source : string

— keyref event, function, etc. > target : strin
implicitType : string

Fig. 2: Overview over EPML including its main syntax elements

67

EPML element Attributes and Sub-Elements

<epml > <documentations> ?
<toolInfo> ?
<graphicsDefaults> ?
<coordinates>
<definitions>
<views> *
<directorys> +

<definitions> <documentation> ?
<toolInfo> ?
<eventDefinition> *
<functionDefinition> *
<processInterfaceDefinition> *

<directory> @name
<documentations> ?
<toolInfo> ?
<directorys> *
<epc> *

<epc> @epclId, @name
<documentation> ?
<toolInfo> ?
<event> *
<function> *
<processInterface> *
<and>, <or>, <XOr> *
<arcs>

Table 1: High level elements of an EPML file.

5. Flat EPCsin EPML

This Section describes how a simple flat EPC process is encoded in EPML. Figure 3
shows the example of an “Online Shopping” process. After starting the process, a
product is added to the shopping cart. When the buyer wants to buy more, he adds
another product to the shopping cart until the list of products is completed. He then
completes the order by stating her shipping address. The code on the right hand side of
Fig. 3 shows an excerpt from an EPML file corresponding to that process. The root tag
of every EPML file is <epml> and it must belong to the EPML namespace. The
directory tag contains one EPC model which has the name “Online Shopping” and the

68

ID “1”. The EPC tag serves as a container of an unordered set of EPC control flow
elements. All of the latter have a unique ID attribute. The name tag of the events and
functions carry the text which is displayed as the label of the respective symbol in the
process diagram. Arcs are modelled as individual elements with source and target
attributes. This way of process graph representation is called edge element list [MNO4].
It is also used by Graph eXchange Language (GXL) [WKRO02]; by Petri Net Markup
Language (PNML) [WKO02]; by MS Visio’s XML-based VDX format [Mi03]; XML
Metadata Interchange for UML models [OMGO03]; and XML Process Definition
Language (XPDL) from Workflow Management Coalition (WfMC) [W{02]. In contrast
the Business Process Modeling Language (BPML) [Ar02] and the Business Process
Execution Language for Web Services (BPEL4WS) [An03] use a block-oriented
representation. AML, the XML format of ARIS Toolset [IDS01] uses adjacency sub-
element lists which are attached to the source node of an arc. Arcs and connectors are
not required to have a name. A complete list of EPC control flow elements and their sub-
elements 1s presented in Table 2. The following Section illustrates the representation of
hierarchical EPC Schemas in EPML.

<?xml version="1.0" encoding="UTF-8"?>
<epml:epml xmIns:epml="http://www.epml.de">
<coordinates xOrigin="leftToRight"
yOrigin="topToBottom"/>
<directory name="Root">
<epc epcld="1"
name="0Online Shopping">
<event id="1">
<name>Start Online

Find further Add Product to Shopping</name>
Products Shopping Cart </event>
<arc id="10">
<flow source="1" target="2"/>

lore Product ><> </ar.c>_,, "
to be bought <or id="2"/>
<arc id="11">
<flow source="2" target="3"/>
ist of Product: </arc>
completed <function id="3">
<name>Add Product to
Shopping Cart</name>

Online Shopping

Start Online
Shopping

f
&)

i) L5

State Shipping </function>
Address <arc id="12">
<flow source="3" target="4"/>
</arc>
Order <or id="4"/>

completed

[

</ep“c.>
</directory>
</epml:epml>

Fig. 3: A simple Online Shopping Process and parts of its EPML representation.

69

EPML element Attributes and Sub-Elements

<events> @id
<name >
<descriptions>
<reference @defRef> ?
<graphics> ?
<gyntaxInfo @implicitType> ?

<functions> @id
<name >
<description>
<reference @defRef> ?
<graphics> ?
<syntaxInfo @implicitType> ?
<toProcess @linkToEpcIds> ?
<unitReference @unitRef @roles> ?

<processInterface> @id
<name >
<description>
<reference @defRef> ?
<graphics> ?
<syntaxInfo @implicitType> ?
<toProcess @linkToEpcId> ?

<and>, <or>, <xor> @id
<name> °?
<description> ?
<graphics> ?
<syntaxInfo @implicitType> ?

<arc> @id
<name> ?
<description> ?
<flow @source @target> ?
<graphics> ?
<syntaxInfo @implicitType> ?

Table 2: Control flow elements of an EPML file.

70

6. Hierarchical EPCs in EPML

Consider an extension of the example above. After the “Online Shopping” process has
been modelled, the function “Add Product to Shopping Cart” is refined by a sub-process
called “Product Selection”. This means that the EPML file has to include this new
process and the hierarchical relation between the function and the sub-process. Figure 4
illustrates the EPML representation of EPC processes with hierarchy relations. The code
includes an excerpt from the “Online Shopping” process described in Fig. 3. The
hierarchy relation is described via sub-element of the function tag which is called
<toProcess>. This element has a @linkToEpcId pointing to the “Product
Selection” process which has an @epcId of 2. Hierarchy relations of process interfaces
are also described by a <toProcess> element. In that situation the process interface at
the end of a process points to a start-process interface of another process. The epcld
attribute of a process is unique for the whole EPML file. EPC models may be organized
in a hierarchy of directories. Hierarchy relations are allowed between processes no
matter where they are placed in the directory hierarchy, as long as hierarchy relations are
acyclic. In order to avoid redundancies, multiple occurrences of a function, an event, or a
process interface can be defined in the <definitions> block. l.e. a function used
twice in a process hierarchy should contain a <reference> sub-element pointing to a
function definition that stores its parameters in the definitions block.

Product Selection . wA An . " "
<?xml version="1.0" encoding="UTF-8"?>
S;T,;’p?ﬁge> < F’;g‘jﬁz‘s> <epml:epml xmins:epml="http://www.epml.de">

<directory name="Root">
<epc epcld="1"
name="0Online Shopping">

Query Product
Database

<function id="3">
<name>Add Product to
Shopping Cart</name>
<toProcess linkToEpcld=“2%/>

</function>

<arc id="12">
<flow source="3"

tafget="4"/>

New Search

</arc>
<or id="4"/>
not in List aues
</epc>
<epc epcld="2“

Product found
Add to
Shopping Cart

name="“Product Selection“>

</e§é>
</directory>
</epml:epml>

ist of Product: lore Product
completed to be bought

Fig. 4: The Product Selection process — a sub-process of the Online Shopping Process.

71

7. Business Perspectives and Views

Business perspectives and views play an important role for the analysis and conception
of process models, especially for EPCs. Perspectives have proven valuable to partition
the specification of a complex system [Fi92]. There have been many different
perspectives proposed for business process modelling. The Architecture of Integrated
Systems (ARIS) extends the EPC with a data-oriented, a functional, an organisational, an
application-oriented, and a product/service-oriented perspective [Sc00]. The PROMET
concept differentiates between business dimensions explicitly including organisation,
data, functions, and personnel [Os95]. An in-depth survey of organisational entities
provided in workflow management systems is given in [RM98]. The link between role-
based access control (RBAC) and business scenarios is analysed in [NS02] and a
methodology to generate role hierarchies is developed. From a delegation perspective
[AKVO03] structure the organisational perspective of a workflow system into a meta
model including resources, organisational units, users, and roles. In [WhO03] and
[BANO3] swim lanes and pools are recommended as a metaphor for the graphical
representation of parties involved in a process. Recently, BPM languages like
BPEL4WS contain references to WSDL descriptions [Ch01] of Web Services as a new
category of resource perspectives. Beyond resources there have been further perspectives
proposed like e.g. risk [BO02], performance measurement [IDS03] to name but a few.
The OWL-S Initiative strives to develop a standardised business process ontology for
Web Service [OWO04]. This is a difficult task taken into consideration the variety of
possible perspectives and views. There are even doubts whether a standardised ontology
1s desirable, because different domains and different business sectors need tailor-made
meta models that best fit their specific business model [KKO02].

EPML element Attributes and Sub-Elements

<view> @name
<units> *
<unitRelation> *

<units> @unitId
@name

<unitRelation> @relationId
@unitRef
@subUnitRef

@annotation °?

<unitReferences> @unitRef
@role ?
@value ?

Table 3: Business perspectives and views in EPML.

72

These arguments have governed the decision of letting EPML be guided by the principle
of extensibility instead of standardising certain views. The <view> element is meant to
be a container of entities of a certain business perspective and their relationships (cf.
Table 3). The <unit > element describes an entity within the domain of a business view
by a @unitId and a @name. The <unitRelation> expresses a hierarchical
relationship between by the help of a @unitRef and a @subUnitRef. The
@annotation may be used to detail the kind of relationship between the units. There
is also a @relationId included in order to logically distinguish different relationships
between two of the same units. Function elements of a control flow may contain a
<unitReferences>. The @role and the @value attribute allow one to specify
additional information concerning the relationship between the function and the unit.

Online Shopping <?xml version="1.0" encoding="UTF-8"?>
i , : <epml:epml xmins:epml="http://www.epml.de">
Start Online
Shopping
<view name="Party>
<unit unitld="u1” name="Customer”/>
Products ><> </view>
found <view name="System”>

<unit unitld="u2” name="Order System”/>

</view>
Find further Add Product to . _n "
Products Shopping Cart <directory name: !'?oot >
<epc epcld="1

name="0Online Shopping">

WCX> <function id="7">
’ <name>State Shipping Address

</name>
st of Product <un|tRef%rence unltRe.f=. u”‘l

- completed role="performs activity”/>
/c f o <unitReference unitRef="u2”
\ pusiomer role="receives data record”/>

o State Shipping </ fU nCtl on>

Address
Order </epc>
System </directory>

Order </epml:epml>

completed

[

Fig. 5: The Online Shopping process including a “Customer” and an “Order System” unit.

Figure 5 illustrates the use of view and unit elements in the “Online Shopping” process
of our example. In the header of the EPML file the views “Party” and “System” are
declared. Each of these views has one unit: “Customer” is a “Party”, and “Order System”
is a “System” involved in the process. Within the function element these units are
referenced via a <unitReference> element. The first one describes that the unit
“ul” (the customer) takes the role “performs activity” for the function “State Shipping
Address”. The second illustrates that the “Order System” receives a data record from this
function. This mechanism can be used to declare arbitrary views for an EPC process.

73

8. Graphical Information

Graphical Information refers to the presentation of EPC models in graphical BPM tools.
This is a topic that is not special to EPML. The Petri Net Markup Language (PNML) has
worked out and included a proposal for graphical information to be exchanged between
modelling tools [Bi03]. This concept is also well suited for EPML and adopted here.
There are some small modifications that will be made explicit in the discussion of the
details. Similar to the <graphics> element of control flow objects, the top level
element <graphicsDefault> may contain <fill>, <line>, and default
settings, but no <position> element.

EPML element Attributes and Sub-Elements
<graphicss> <positions>

<fill>

<line>

<positions @x, @y, @width, @height
<fill> @color, @image, @gradient-

color, @gradient-rotation

<line> @shape, @color, @width,
@style

 @family, @style, @weight,
@size, @decoration, @color,
@verticalAlign,

@horizontalAlign, @rotation

Table 4: The graphics element of an EPML file.

All the four attributes of the <position> element refer to the smallest rectangle
parallel to the axes that can be drawn to contain the whole polygon symbolizing the
object. The @x and @y attributes of the object describe the offset from the origin of the
coordinates system of that angle of the object that is closest to the origin. The @width
and the @height describe the length of the edges of the container rectangle. In PNML
a separate dimension element is used to represent width and height. Arcs may have
multiple position elements to describe anchor point where the arc runs through. Position
elements of arcs do not have width and height attributes.

74

The <£i11l> element describes the appearance of the interior of an object. Arcs do not
have fill elements. The @color attribute must take a RGB value or a predefined colour
of Cascading Stylesheets 2 (CSS2) [B098]. In order to describe a continuous variation of
the filling colour an optional @gradient-color may be defined. The @gradient -
rotation sets the orientation of the gradient to vertical, horizontal, or diagonal. If
there 1s the URI of an image assigned to @image the other attributes of fill are ignored.
The <line> element defines the outline of an object. The @shape attribute refers to
how arcs are displayed: the value “line” represents a linear connection of anchor points
to form a polygon; the value “curve” describes a quadratic Bezier curve. The
clement holds @efamily, @style, @weight, @size, and @decoration attributes
in conformance with CSS2. In addition to PNML, there may be a font colour defined.
@verticalAlign and @horizontalAlign specify the alignment of the text. In
PNML the align attribute corresponds to the EPML horizontalAlign attribute, and
verticalAlign is covered by a PNML offset element. @rotation describes a clockwise
rotation of the text similar to the concept in PNML.

9. Outlook

Throughout this paper we have outlined how EPML can be used to store an exchange
EPC business process models. Yet, there is still much discussion needed within the EPC
community to achieve a consensus on EPC representation in EPML, and to leverage
EPML application. There are several issues that will be addressed in the future. Firstly,
in order to leverage the benefits of EPML as an interchange format, transformation
scripts will be developed from major BPM tools towards EPML and reverse. A second
issue is the graphical presentation. For PNML there already exists a transformation script
to Scalable Vector Graphics (SVG) [Fe03]. A similar script will be developed from
EPML to SVG. Thirdly, an XSLT-based [C199] syntax checker will be developed and
continue the efforts of an XML-based syntax validation of EPCs [MNO3c]. Finally, there
is still much research needed to come to a general understanding of business
perspectives for BPM. Methodologically, this will have to take meta modelling and
semantic web techniques into account; furthermore related research on concrete
perspectives will have to be consolidated. Administration of decentralized, loosely
coupled models will be one of the topics in this context. In this sense, the development
of EPML can — beyond its principle purpose as an interchange format — serve as a
catalyst and a framework for the discussion of all these related topics. Information, on
EPML can be found at http://wi.wu-wien.ac.at/~mendling/EPML/.

References

[Aa99] van der Aalst, W.M.P.: Formalization and Verification of Event-driven Process Chains,
in: Information and Software Technology 41(1999)10, pp. 639-650.

[ADKO2]van der Aalst, W.; Desel, J.; Kindler, E.: On the semantics of EPCs: A vicious circle, in:
Niittgens, M.; Rump, F.J. (eds.): Geschiftsprozessmanagement mit Ereignisgesteuerten

75

Prozessketten - EPK 2002, Proceedings of the GI-Workshop EPK 2002, Trier, 2002, pp.
71-79.

[AKVO03]van der Aalst, W.M.P.; Kumar, A.; Verbeek, H.M.W.: Organizational Modeling in UML

[AL02]

[ALO3]

[ANO2]

[An03]

[Ar02]

and XML in the Context of Workflow Systems. In: Proceedings of the 2003 ACM
Symposium on Applied Computing (SAC), 2003, pp. 603-608.

Arenas, M.; Libkin, L.: A normal form for XML documents. In: Proceedings of the 21st
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS’02), 2002, pp. 85-96.

Arenas, M.; Libkin, L.: An Information-Theoretic Approach to Normal Forms for
Relational and XML Data. In: Proceedings of the 22nd ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS’03), 2003, pp. 15-26.

ANSI (ed.): ASC Xl12 Reference Model for XML Design, July 2002.
http://www.x12.org/x12org/comments/X12Reference_Model_For_XML_Design.pdf.

Andrews, T.; Curbera, F.; Dholakia, H.; Goland, Y.; Klein, J.; Leymann, F.; Liu, K;
Roller, D.; Smith, D.; Thatte, S.; Trickovic, I.; Weerawarana, S.: Business Process
Execution Language for Web Services (BPEL4WS) Version 1.1. BEA, IBM, Microsoft,
SAP, Siebel, 2003.

Arkin, A.: Business Process Modeling Language (BPML). BPMI.org, 2002.

[BANO3] Becker, J.; Algermissen, L.; Niehaves, B.: Prozessmodellierung in eGovernment-

[BeO1]

[Bi95]

[Bi03]

[BMO1]

[B098]

[BO02]

Projekten mit der eEPK. In: Niittgens, M.; Rump, F.J. (eds.): EPK 2003 -
Geschiftsprozessmanagement mit Ereignisgesteuerten Prozessketten, Proceedings of the
GI-Workshop EPK 2003, pp. 31-44.

Beech, D.; Lawrence, S.; Moloney, M.; Mendelsohn, N.; Thompson, H.S. (eds.): XML
Schema Part 1: Structures. World Wide Web Consortium, Boston, USA, 2001.
http://w3c.org/TR/2001/REC-xmlschema-1-20010502/.

Biskup, J.: Achievements of relational database schema design theory revisited. In:
Libkin, L.; Thalheim, B.: Semantics in Databases, LNCS 1358, 1998, pp. 29-54.

Billington, J.; Christensen, S.; van Hee, K.E.; Kindler, E.; Kummer, O.; Petrucci, L.;
Post, R.; Stehno, C.; Weber, M.: The Petri Net Markup Language: Concepts,
Technology, and Tools. In: van der Aalst, W.M.P.; Best, E. (eds.): Applications and
Theory of Petri Nets 2003, 24th International Conference, ICATPN 2003, Eindhoven,
The Netherlands, June 23-27, 2003, Proceedings. LNCS 2679, 2003, pp. 483-505.

Biron, P.V.; Malhotra, A. (eds.): XML Schema Part 2: Datatypes. World Wide Web
Consortium, Boston, USA, 2001. http://w3c.org/TR/2001/REC-xmlschema-2-
20010502/.

Bos, B.; Lie, H.W_; Lilley, C.; Jacobs, I. (eds.): Cascading Style Sheets, level 2 — CSS2
Specification. http://w3c.org/TR/CSS2, 1998.

Brabdander, E.; Ochs, H.. Analyse und Gestaltung prozessorientierter
Risikomanagementsysteme mit Ereignisgesteuerten Prozessketten. In: Niittgens, M.;
Rump, F.J. (eds.): EPK 2003 - Geschéftsprozessmanagement mit Ereignisgesteuerten
Prozessketten, Proceedings of the GI-Workshop EPK 2002, pp. 17-34.

76

[CD99]

[ChO1]

[C199]

[CS94]

[DCO3]

[De02]

[De03]

[EMO1]

[Fe03]

[Fi92]

[Ga02]

[IDSO1]

[IDS03]

[1SO01]

[Ke99]

[Ki03]

Clark, J.; DeRose, S.: XML Path Language (XPath) Version 1.0, World Wide Web
Consortium, Boston, USA, 1999. http://www.w3.org/TR/1999/REC-xpath-19991116.

Christensen, E.; Curbera, F.; Meredith, G.; Weerawarana, S.: Web Service Description
Language (WSDL) 1.1, World Wide Web Consortium, Boston, USA, 2001.
http://www.w3.org/TR/wsdl.

Clark, J. (ed.): XSL Transformations (XSLT) Version 1.0. World Wide Web
Consortium, Boston, USA, 1999. http://w3c.org/TR/1999/REC-xslt-19991116/.

Chen, R.; Scheer, A.-W.: Modellierung von Prozessketten mittels Petri-Netz-Theorie, in:
Scheer, A.-W. (ed.): Publications of the Institut fiir Wirtschaftsinformatik, No. 107,
Saarbriicken 1994.

Dublin Core Metadata Initiative: Dublin Core Metadata Element Set, Version 1.1:
Reference Description. 2003. http://dublincore.org/documents/2003/02/04/dces/.

Dehnert, J.: Making EPC'’s fit for Workflow Management, in: Niittgens, M.; Rump, F.J.
(eds.): Geschiftsprozessmanagement mit Ereignisgesteuerten Prozessketten - EPK 2002,
Proceedings of the GI-Workshop EPK 2002, Trier, 2002, pp. 51-69.

Delphi Group (ed.): BPM 2003 — Market Milestone Report. Delphi Group White Paper.
Boston, 2003.

Embley, D.W.; Mok, W.Y.: Developing XML documents with guaranteed “good”
properties. In: Kunii, H.S.; Jajodia, S.; Selvberg, A. (eds.): Conceptual Modeling - ER
2001, 20th International Conference on Conceptual Modeling, LNCS 2224, 2001, pp.
426 —441.

Ferraiolo, J.; Jun, F.; Jackson, D. (eds.): Scalable Vector Graphics (SVG) 1.1
Specification. http://www.w3c.org/TR/SVG11, 2003.

Finkelstein, A.; Kramer, J.; Nuseibeh, B.; Finkelstein, L.; Goedicke, M.: Viewpoints: A
Framework for Integrating Multiple Perspectives in System Development. In:

International Journal of Software Engineering and Knowledge Engineering. 2 (1992) 1,
pp. 31-57.

Gartner Research: The BPA Market Catches Another Major Updraft. Gartner's
Application Development & Maintenance Research Note M-16-8153, 12 June 2002.

IDS Scheer AG (ed.): XML-Export und-Import mit ARIS 5.0, Stand Januar 2001,
Saarbriicken, 2001.

IDS Scheer AG (ed.):ARIS Process Performance Manager, Whitepaper 2003,
Saarbriicken. www.ids-scheer.com/sixcms/media.php/
1186/aris_ppm_whitepaper_e_v500.pdf.

Ketels, K.: ISO 15022 XML Design Rules, Technical Specification, 2001.
http://xml.coverpages.org/[SO15022-XMLDesignRulesV23a.pdf.

Keller, G. & Partner: SAP R/3 prozessorientiert anwenden. Iteratives ProzeB3-Prototyping
mit Ereignisgesteuerten ProzefBketten und Knowledge Maps, Bonn et al. 1999.

Kindler, E.: On the semantics of EPCs: A framework for resolving the vicious circle
(Extended Abstract). In: Niittgens, M.; Rump, F.J. (eds.): EPK 2003 -

77

Geschiftsprozessmanagement mit Ereignisgesteuerten Prozessketten, Proceedings of the
GI-Workshop EPK 2003, pp. 7-18.

[KKO02] Karagiannis, D.; Kiihn, H.: Metamodelling Platforms. Invited Paper. In: Bauknecht, K.;
Min Tjoa, A.; Quirchmayer, G. (eds.): Proceedings of the 3rd International Conference
EC-Web 2002 - Dexa 2002, Aix-en-Provence, France, September 2002, LNCS 2455,
Springer-Verlag, p. 182-196.

[KM94] Keller, G.; Meinhardt, S.: SAP R/3-Analyzer: Optimierung von Geschéftsprozessen auf
der Basis des R/3-Referenzmodells, Walldorf, 1994.

[KNS92] Keller, G.; Niittgens, M.; Scheer, A.-W.: Semantische ProzeBmodellierung auf der
Grundlage ,Ereignisgesteuerter ProzeBketten (EPK)“. In: Scheer, A.-W. (eds.):
Veroftentlichungen des Instituts fiir Wirtschaftsinformatik, Heft 89, Saarbriicken, 1992.

[LSWO8] Langner, P.; Schneider, C.; Wehler, J.: Petri Net Based Certification of Event driven
Process Chains, in: Desel, J.; Silva, M. (eds.): Application and Theory of Petri Nets
1998, LNCS Vol. 1420, Springer, Berlin et. al. 1998, pp. 286-305.

[Mi03] Microsoft (ed.): About the XML for Visio Schema. MSDN Library, 2003.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/devref/HTML/XMLR_XMLBasics_818.asp

[MNO2] Mendling, J.; Niittgens, M.: Event-Driven-Process-Chain-Markup-Language (EPML):
Anforderungen zur Definition eines XML-Schemas fiir Ereignisgesteuerte Prozessketten
(EPK). In: Niittgens, M.; Rump, F. (eds.): EPK 2002 — Geschéftsprozessmanagement mit
Ereignisgesteuerten Prozessketten, Proceedings of the GI-Workshop EPK 2002, pp. 87-
93.

[MNO3a]Mendling, J.; Niittgens, M.: EPC Modelling based on Implicit Arc Types. In: Godlevsky,
M.; Liddle, S.W.; Mayr, H.C.: Proc. of the 2nd International Conference on Information
Systems Technology and its Applications (ISTA), LNI Vol. P-30, Bonn 2003, pp. 131-
142.

[MNO3b] Mendling, J.; Niittgens, M.: XML-basierte Geschéftsprozessmodellierung. In: Uhr, W.,
Esswein, W.; Schoop, E. (eds.): Wirtschaftsinformatik 2003 / Band II, Heidelberg, 2003,
pp. 161 -180.

[MNO3c] Mendling, J.; Niittgens, M.: EPC Syntax Validation with XML Schema Languages. In:
Niittgens, M.; Rump, F.J. (eds.): EPK 2003 - Geschiftsprozessmanagement mit
Ereignisgesteuerten Prozessketten, Proceedings of the GI-Workshop EPK 2003, pp. 19-
30.

[MNO4] Mendling, J.; Niittgens, M.: XML-based Reference Modelling: Foundations of an EPC
Markup Language. In: Becker, J. (ed.): Proceedings of the 8th GI Workshop
,Referenzmodellierung*, Essen, Germany.

[NRO2] Niittgens, M.; Rump, J.F.: Syntax und Semantik Ereignisgesteuerter Prozessketten
(EPK). In: Desel, J.; Weske, M. (eds.): Promise 2002 - Prozessorientierte Methoden und
Werkzeuge fiir die Entwicklung von Informationssystemen, Proceedings GI-Workshop
und Fachgruppentreffen (Potsdam, Oktober 2002), LNI Vol. P-21, Bonn 2002, pp. 64-
77.

78

[NSO02]

Neumann, G.; Strembeck, M.: A scenario-driven role engineering process for functional
RBAC roles. In: 7th ACM Symposium on Access Control Models and Technologies
(SACMAT 2002), pp. 33-42.

[OMGO03]Object Management Group (ed.): XML Metadata Interchange (XMI) Specification, May

[0s95]

[OW04]

[Ri00]

[RMO8]

[Ru99]

[Sc00]
[SWO1]

[W02]

[Wh03]

2003, Version 2.0, 2003.

Osterle, H.: Business Engineering. Prozess- und Systementwicklung, Band 1,
Entwurfstechniken, Berlin, 1995.

The OWL Services Coalition (ed.): OWL-S: Semantic Markup for Web Services.
Whitepaper Version 1.0. http://www.daml.org/services, 2004.

Rittgen, P.: Paving the Road to Business Process Automation, European Conference on
Information Systems (ECIS) 2000, Vienna, Austria, July 3 - 5, 2000, pp. 313-319.

Rosemann, M.; zur Miihlen, M.: Evaluation of Workflow Management Systems - A
Meta Model Approach. In: Australian Journal of Information Systems 6 (1998) 1, pp.
103-116.

Rump, F.: GeschiftsprozeBmanagement auf der Basis ereignisgesteuerter ProzeBketten -
Formalisierung, Analyse und Ausfiihrung von EPKs, Teubner, Stuttgart et al. 1999.

Scheer, A.-W.: ARIS business process modelling, Berlin et al., 2000.

SWIFT (ed.): SWIFTStandards XML Design Rules Version 2.3, Technical
Specification, 2001. http://xml.coverpages.org/EBTWG-SWIFTStandards-
XML200110.pdf.

Workflow Management Coalition (ed.): Workflow Process Definition Interface — XML
Process Definition Language, Document Number WFMC-TC-1025, October 25, 2002,
Version 1.0, Lighthouse Point, USA, 2002.

White, S.A: Business Process Modeling Notation — Working Draft 1.0, Aug. 25, 2003.
BPMl.org, 2003.

[WHBO02]Wiistner, E.; Hotzel, T.; Buxmann, P.: Converting Business Documents: A Classification

[WK02]

of Problems and Solutions using XML/XSLT. In: Proceedings of the 4th International
Workshop on Advanced Issues of E-Commerce and Web-based Systems (WECWIS
2002).

M. Weber, E. Kindler: The Petri Net Markup Language. In: H. Ehrig, W. Reisig, G.
Rozenberg, and H. Weber (eds.): Petri Net Technology for Communication Based
Systems. LNCS 2472, 2002.

[WKRO2]Winter, A.; Kullbach, B.; Riediger, V.: An Overview of the GXL Graph Exchange

Language. In: Diehl, S. (ed.) Software Visualization - International Seminar Dagstuhl
Castle, LNCS 2269, 2001.

79

80

ebXML Business Processes -
Defined both in UMM and BPSS

Birgit Hofreiter' Christian Huemer'~
'Department of Computer Science and ? Department of Information Systems,
Business Informatics, University of Vienna University Duisburg-Essen
Liebiggasse 4, 1010 Vienna, Austria Universitétsstr. 9, 45141 Essen, Germany
E-Mail: birgit.hofreiter@univie.ac.at E-mail: huemer@wi-inf.uni-essen.de

Abstract: The ebXML framework consists of eight specifications for conducting
e-Business. The loosely coupled specifications span over the topics of messaging,
registries, profiles & agreements, business processes, and core (data) components.
The choreography of business processes is defined by instances of the business
processes specification schema (BPSS). The BPSS is defined as an XML schema
used by business systems to support the execution of business collaborations. It is
based on concepts introduced by the UN/CEFACT Modelling Methodology
(UMM), or the UMM meta model to be more specific. Thus, BPSS provides the
bridge between e-business process modeling and specification of e-business
software components. In this paper we show how an ebXML business process is
represented in both UMM and BPSS.

1 Introduction

In November 1999 UN/CEFACT and OASIS started the ebXML initiative. The vision of
ebXML is to create an electronic marketplace, where businesses can find each other,
agree to become trading partners and conduct business. All operations are performed
automatically by exchanging XML documents. In order to support the needs of small
and medium enterprises (SMEs), ebXML envisions that software industries will deliver
commercial off-the-shelf software (COTS) for Business-to-Business (B2B) scenarios to
the SMEs. This goal is expressed in the ebXML scenario between a large corporation
(Company A) and a SME (Company B) as illustrated in Figure 1. The scenario is
described in the ebXML technical architecture specification [UOO1].

Company A requests business details from the ebXML registry (step 1) and decides to
build its own ebXML-compliant application. Company A submits its own business
profile information to the ebXML registry. The business profile submitted to the ebXML
registry describes the company's ebXML capabilities and constraints, as well as its
supported business scenarios. Company B, which uses an ebXML-compliant shrink-
wrapped application, discovers the business scenarios supported by Company A in the
registry (step 4). Company B sends a request to Company A stating that they would like
to engage in a business scenario (step 5). Before engaging in the scenario, company B
submits a proposed business arrangement directly to Company A's ebXML-compliant
software interface. The proposed business arrangement outlines the mutually agreed

81

upon business scenarios and specific agreements. Then, Company A accepts the business
agreement. Company A and B are ready to engage in e-business using ebXML (step 6).

ebXML Registry Company A
(Large enterprise)

Business Scenarios

Business Profiles

sr— — 1: Request Business Details

~ |«

3: Register Implementation Details
Register Company A's Profile

i
>

2: Build Local System
Implementation

4: Query about Company A's ||
Profile |

Company B
(SME)

Fig. 1. ebXML Scenario

In order to support this secenario ebXML offers a modular suite of specifications. These
specifications provide a standard method to exchange business messages, conduct
trading relationships, communicate data in common terms and define/register business
processes [HHKO02]. The current set of specification comprises the ebXML
requirements, technical architecture, messaging service, registry services specification,
registry information model, collaboration protocol profile and agreement specification,
business process specification schema, and core components.

In this paper we concentrate on the ebXML business process specification schema
(BPSS) in its current version 1.10 [UNO3c]. It is defined as an XML schema. The BPSS
is used to describe standard B2B business processes by defining a choreography of
activites amongst business partners. It usally refers to standard business documents that
are exchanged in the business process. A partner’s profile references the BPSS of a
supported process and the role(s) therein. Similarily, a business partners’ agreement
references the BPSS of a business process in which the business partners will
collaborate.

Creating a BPSS does not require a specific process modeling methodology. However,
BPSS is based on concepts introduced by UN/CEFACT’s Modelling Methodology
(UMM). UMM is a methodology for defining the business aspects of a B2B
collaboration. It is based on UML [BJR98]. BPSS can be considered as an XML
representation of a subset of UMM’s meta model. In Section 2 we define an ebXML
business process by the means of UMM. The graphical UML syntax helps to quickly

82

understand the basic concepts. In Section 3 we show the equivalent business process in
the XML syntax of BPSS. We show how the UMM concepts are mapped to BPSS and
point out the rare cases where BPSS extends the UMM concepts. We conclude with a
summary in Section 4.

2 UN/CEFACT’s Modelling Methodology

ebXML does not require any specific modeling language or modeling methodology.
However, the architecture specification recommends that if implementers and users
decide to apply business process modeling, they shall use UMM [UOO1]. The UMM
concentrates on the business semantics of B2B partnerships. It captures the commitments
that are made by business partners when agreeing to a certain type of business processes.
These commitments are reflected in the resulting orchestration of the business process
involving information exchanges. UMM defines a procedure [UNO3b] that describes the
necessary steps to create business collaboration models. These business collaboration
models are independent of the technology (e.g. ebXML) used to implement them. The
term "business collaboration" is used in UMM for a business process involving two or
more business partners to accomplish a common business goal.

In addition to the procedure, the reference ontologies, and the patterns, UMM delivers a
meta model [UNO3a]. The UMM meta model puts the UML meta model into a small
corset defining those diagram types that are specific for B2B. The most important
diagram types are presented in the subsections below. The UMM procedure [UNO3b]
leads to business collaboration models that are valid instances of the UMM meta model.
These business collaboration models contain more information than what is required for
configuring ebXML compliant software, but not less than that. BPSS is based on the
UMM meta model. It uses only those concepts that are important for the configuration of
the ebXML software. Thus, BPSS is a subset of the UMM meta model, but expressed as
XML schema. One might use any methodology to create an BPSS instance. However,
UMM guarantees a consistent way for developing a business collaboration model that is
a superset of a BPSS instance.

Beforehand, we introduce the UMM by means of a simple example. In the next section
the resulting business collaboration model is mapped to the BPSS equivalent. It is not
our goal to introduce UMM in all the details. We limit ourselves to those features that
help to understand the concepts of BPSS.

The UMM procedure as well as the UMM meta model consists of 4 views in order to
describe business collaboration models. Firstly, the Business Domain View (BDV)
provides a framework for understanding existing business processes and categorizing
these business processes into business areas and process areas. Secondly, the Business
Requirements View (BRYV) identifies possible business collaborations and further
elaborates on these collaborations. It describes processes and resources used to achieve
certain objectives and the resulting commitments. In other words, the BRV focuses on
the economics of a system. Thirdly, the Business Transaction View (BTV) presents the
view of the business process analyst. It defines the orchestration of the business
collaboration and structures the business information exchanged. Finally, the Business

83

Service View (BSV) considers the interaction sequences between network components
in order to map the business collaboration semantics to collaborating application
systems. The business service view does not add any new information. Its artefacts are
automatically created from the information gained in the previous process steps. The
BSV artefacts are not mapped to the BPSS. Therefore, we do not detail the BSV in the

following subsections.

2.1 Business Domain View (BDYV)
The first workflow of UMM is used to gather existing knowledge. It identifies the
business processes in the domain of the business problems that are important to

stakeholders. It is important at this stage that business processes are not constructed, but
intra-organizational as well as inter-

discovered. Stakeholders might describe
organizational business processes. Both types are recorded. However, the description

concentrates on so-called business interface tasks, where an organization communicates
with its partners. All the discovered business processes are classified according to a pre-
defined classification schema. The final result of the business domain view allows a
business process analyst to find opportunities for business collaborations that are

constructed in the following view.

«BusinessProcess»

\

/ Seller

(BusinessProcess
Provide Product
Catalog

«BusinessProcess»
«BusinessProcess»)

Buy Products

«BusinessProcess»
Sell Products

«BusinessProcess»
Organize Transport

BusinessProcess
Check
Creditw orthiness

'
]
'
'
'
i
i
i
|

Custome\

«BusinessProcess»
Compare Products \

«BusinessProcess»)

(BusinessProcess
Provide Credibility
Check

Bank

Simple Order
Management

Fig. 2. Business Processes to be Considered in Simple Order Management

To demonstrate UMM and BPSS we use the example of a simple order management

process (see also [HHO03, HHNO04]). Note that this example does not include all the
complexity that might be involved in an order management process. The simplified

process still allows us to show the main concepts of UMM. In the first workflow the

84

stakeholders in the simple order management process are interviewed. Customers,
sellers, and banks (amongst others not included in the example) describe their business
processes that are important in the domain under consideration. These business processes
are documented by UML use cases. The resulting use case diagram is depicted in Figure
2. Each actor (customer, seller, and bank) is associated with those business processes
that are described by the respective role. The details of each business process are
described by completing a worksheet. UMM provides a worksheet type designed to
capture all the relevant aspects of a business process. Due to space limitation we do not
further concentrate on these worksheets.

2.2 Business Requirements View (BRV)

The goal of the business requirements view 1is to identify possible business
collaborations in the considered domain and to detail the requirements of these
collaborations. Business collaborations span over multiple business processes discovered
in the previous workflow. Thus, a use case for a business collaboration must consider the
views of different stakeholders. The description of the use case must present an
harmonized view on the business collaboration being developed.

In our example we identify a simple order management as a possible business collabora-
tion between a customer, a seller, and a bank. This simple order management depends on
business processes described in the previous workflow. The simple order management is
described again by a use case together with a worksheet especially designed for business
collaboration use cases. We show the simple order management use case already at the
bottom of Figure 2. This allows us to show the dependency of the business collaboration
use case on the business processes of the BDV.

Possible business collaborations identified in the BRV are multiparty as well as binary
business collaborations. Binary collaborations are between two business partners only.
More than two business partners participate in a multiparty collaboration. Business col-
laborations might be complex involving a lot of activities between business partners.
However, the most basic business collaboration is a binary collaboration realized by a
request from one side and an optional response from the other side. This simple collabo-
ration is a unit of work that allows roll back to a defined state before it was initiated.
Therefore, this special type of collaboration is called a business transaction.

Use cases and special worksheets document the requirements of multiparty business col-
laborations, binary business collaborations and business transactions. So-called business
collaboration protocol use cases define the needs of both multiparty and binary business
collaborations. The term “protocol” appears in the stereotype to express that a complex
protocol is needed to choreograph the activities of the collaboration. Less surprisingly, a
business transaction use case describes the requirements of a business transaction. A
business collaboration protocol use case usually requires other business collaborations
and/or business transactions to be included as part of it. This fact is denoted by
“include”-relationships between the respective use cases (c.f. Figure 4). In the BRV all
the business collaboration use cases are decomposed recursively until the lowest level,
which is a business transaction use case, is reached.

85

The simple order management collaboration is a multiparty collaboration since three
business partners (customer, seller, bank) are participating in this collaboration. BPSS
allows multiparty collaborations only if they are synthesized from two or more binary
collaborations. A multiparty collaboration is not able to reflect dependencies between
intermediate states of different business collaborations. For a better understanding we
anticipate what we will see later on: The purchasing process between a customer and a
seller involves multiple choreographed steps. Somewhere in the course of this process a
customer requests registration. The seller might check the credibility of the customer
with the customer’s bank before responding to the customer. This means that some
activities of one binary collaboration are performed during the course of the other. By
strictly separating the two binary collaborations we loose this choreography information.

UMM is a little bit less restrictive than BPSS. A choreography for a collaboration might
include more than two parties. Important in UMM is that a business collaboration is
finally decomposed into business transactions, which are by default binary. These busi-
ness transactions do not overlap. This means that UMM does not support nested business
transactions. Note, that the UMM reference guide (currently only available as Chapter 8
of the old UMM Revision 10) mentions that business transactions can be nested - how-
ever the UMM meta model does not support it. Coming back to the example above, the
credibility check is nested in the registration transaction. This cannot be expressed
according to the UMM meta model. Nesting business transactions usually appear in mul-
tiparty collaborations. Only, binary collaborations are choreographed without the need
for nesting transactions. In our example, we split the multiparty collaboration simple
order management into two binary collaborations: (1) the simple purchase management
performed by customer and seller and (2) the credibility check performed by seller and
bank. Figure 3 shows this decomposition.

«BusinéssCollaborationUsgCase»
Simple Order
/ \
,

’ N
«include» «include»
4 N

Custome Bank

’ N

«BusinessgollaborationProtocglUseCase»
Simple Purchase
Management

«Business{CollaborationProtocdlUseCase>

Seller

Fig. 3. Decomposing Multiparty Collaborations into Binary Collaborations
On first glance one might consider the weak support of multiparty collaborations as a

weak point of UMM. It is necessary to understand that UMM is especially designed for
modelling B2B partnerships focusing on the aspects regarding the making of business

86

decisions and commitments among the business partners. Therefore, a UMM-compliant
business collaboration model designs all the steps necessary to fulfill a contract. The
business collaboration considers all the parties fulfilling the contract. Most of the
contracts in real business life are between two parties. Returning to the example above, a
contract is made between the customer and the seller. This contract is independent of
whether the seller decides to check the credibility or not. UMM does not standardize any

internal processes or decisions.
«Businessmwse%se»
Simple Purchase

Customer e ! ! N Seller

«BusjnessTransactionUseCase» «BusinessTransactionUseCase»
Search Product Order Products

Fig. 4. Decomposing a Binary Collaboration into Business Transactions

The binary collaboration simple purchase management includes - according to the work-
sheet - the use cases of register customer, search product, and order products among
others not detailed here. Figure 4 shows the decomposition. The requirements of these
use cases are documented by corresponding worksheets. By completing the worksheet it
is easy to detect that each of these use cases can be realized by a business transaction.
Consequently, the use cases are stereotyped as business transaction use cases. It follows,
that the bottom layer is reached and no more decomposition is necessary.

According to UMM, a business collaboration is best designed by a choreography of busi-
ness state changes. Thus, it is important to analyze the effects of activities on the
business state of the collaboration or, better, on the business states of business entities,
which have a life-cycle during the business collaboration. Figure 5 depicts the business
state changes in the business transaction register customer. It defines preconditions,
post-conditions and inter-mediate states of the customer information during the
transaction.

87

Buyer

:Customerinformation
[Pending]

Request } _
Registration =1

:Customerinformation

Seller

Evaluate

[Tendered]

Registration
Request

tiv
[pos|/\ve]

I

negative
[negative]

\

:Customerinformation
[Accepted]

:Customerinformation

[NotAccepted]

Submit
Registration
Response
Positive

:Customerinformation
[Confirmed]

:Customerinformation

[Assigned]

:Customerinformation
[Rejected]

Submit
Registration
Response
Negative

Fig. 5. Business Entity States for Customer Information

2.3 Business Transaction View (BTV)

The BTV defines the choreography for the business collaboration as well as the structure
of the business information exchanges. The business transaction view covers three main
types of artefacts: the business collaboration protocol, the business transaction diagram
and the class diagram on business information structures.

The first step of the BTV models the business collaboration according to the correspond-
ing use case description. The resulting activity graph is called business collaboration
protocol. An extract of the business collaboration protocol for the binary collaboration
simple purchase management is presented in Figure 6. The use case diagram of the BRV
in Figure 4 defines that simple purchase management includes register customer, search
products and order products among others. All the included use cases are mapped in the
BTV to activities of the business collaboration protocol. Business transaction use cases
are mapped to business transaction activities and business collaboration protocol use
cases to collaboration activities. Each business transaction activity is further detailed by
the activity graph for a business transaction (see further below). A collaboration activity
is refined by another business collaboration protocol. However, UMM mentions the con-
cept of collaboration activity, but does not support it by the current meta model. It
follows that a collaboration activity must be recursively replaced by its detailing
business collaboration protocol. Finally, a business collaboration protocol is built by
business transactions activities only. We think that the concept of collaboration activities
- which is supported by BPSS - is certainly useful and should be considered in future
revisions of the UMM meta model.

88

tBusinessTransactionActivitys [Pro ducts.NatFaund]

timeToPerform: 4hrs Search Product

isConcurrent: false
kY tﬂ)duclsﬁound AMND Products.\WWanted]

[Customerinfermation.Confim ed]

[NOT Customednfom ation. Confirm ed]

kN

usinessTransactionActivitys Bus T tionA ctivit
5\ [Cugom arinformation.Confirma d] /(ustness I SO e
Register Customer /} ,\\ Order Products

Customernform ation.Rejected

[! ! / [PurchaseOrderContract. Established]
©= ®

PurchaseManagement. PurchaseManagement.
Failed Succeded

Fig. 6. Business Collaboration Protocol for Simple Purchase Management

For each business transaction activity the maximum performance time is documented by
the timeToPerform property. If this time is exceeded, the initiating partner has to send a
failure notice. Furthermore, the isConcurrent property defines whether or not more than
one business transaction activity can be open at one time. In our example register cus-
tomer 1s not concurrent and most be performed in 4 hours at most.

The business collaboration protocol defines the choreography amongst the business
transaction activities. The transitions between the activities are guarded by business
states of business entities. For example, a transition from search product to order
product requires that products were found and that these products are wanted (by the
customer). Furthermore, the customer must be registered at the seller, i.e. she must have
a confirmed customer information.

The next step in the BTV is to detail each business transaction activity by its own
activity graph. This graph defines the choreography of a business transaction. The
activity graph of a business transaction is always composed of two business actions, a
requesting business activity performed by the initiator and a responding business activity
performed by the other business partner. We stick here to the UMM terms, although
initiating and reacting business activities would be better terms, since not each
transaction is a request / response one. In the UML notation, a business action is
assigned to the swimlane of the respective business partner. In a one-way transaction
business information is exchanged only from the requesting business activity to the
responding business activity. In case of two-way transaction the responding business
activity returns business information to the requesting business activity. The exchange of
business information is shown by object flows. Figure 7 shows the business transaction
register customer.

89

Customer : Seller

timeToAdknowledgeR eceipt: null
timeToAgknowledgeAcceptance: null
. timeToPgrform: 4 hrs
'g' al isAuthorikzationRequired: false

fte isNonRepudiationR equired: false
isNonRepudiationOfReceiptRequired: null
retryCount: 3

¥
«RequestRegpaonse» RegistrationResponseEnv elope
requestregistraton S ~ T T T T T [TTTTTTT

I

-

isConfidentTaI: trug
isTamperProof: false
isAuthenticated:fajse

[success] [control fail]

timeToA¢knowledgeReceipt: null
timeToA¢knowledgeAcceptance: null
timeToP¢rform: 4 hrs

|- — _____>

Final Final isAuthorizationRequired: false
State - State - isNonRepudiationRequired: false
Success Control <
\V Fail

‘Re gistrationReque stEnv elope %RespondingBusnessActivity»
ps
____________________ perform registration

isConfidential: true
isTamperProof: false
isAuthenticated:false

Fig. 7. Business Transaction for Register Customer

In UMM we distinguish two types of one-way transactions. If the business information
sent is a formal non-reputable notification, the transaction is called notification.
Otherwise the transaction is known as information distribution. Furthermore, there exist
four different types of two-way transactions. If the responder already has the information
available, it is a query/response transaction. If the responder does not have the informa-
tion, but no pre-editor context validation is required before processing, the transaction is
a request/confirm one. If the latter is required, the next question is whether the
transaction results in a residual obligation between the business partners to fulfill terms
of a contract. In case of a “yes” it is a commercial transaction and a request/response
transaction otherwise. These types of business transactions cover all known legally
binding interactions between two decision making applications as defined in Open-edi
[ISO95]. They have proven to be useful in RosettaNet. In the UML notation the
requesting business activity is stereotyped according to the transaction type.

The different types of business transaction patterns differ in the default values for the
parameters that characterize the activities 1in the business transaction:
timeToAcknowledgeReceipt, timeToAcknowledgeAcceptance, timeToPerform,
isAuthorizationRequired, — and isNonRepudiationRequired. =~ The values for
isNonRepudiationOfReceiptRequired and for retryCount are only defined for the
requesting business activity. Note, an acknowledge of receipt is sent after grammar
validation, sequence validation, and schema validation. An acknowledge of acceptance
is sent after an additional content validation. Retry count is the number of retries in case
of control failures.

90

The object flow states of a business transaction refer to instances of business information
envelopes. The business information envelope and the included business information is
modeled in a class diagram. The business information is commonly called a business
document. Since UMM is not a document-centric approach and only exchanges
information necessary for a business state change, we stick to the term business
information.

In order to guarantee reusability, the business information must be built by common
building blocks. Unfortunately, the current version of UMM does not reflect this require-
ment. The meta model only defines that the business information exchanged is built by
recursively structured information entities. Recently it was agreed that the business
information should be based on ebXML core components. A core components is defined
as “a building block that contains pieces of business information that belong to a single
concept. Core components are characterized by the fact that they appear in many
different circumstances of business information and in many different areas of business.”
[UNO03d] Currently, UN/CEFACT is building a library of core components which will
become the richest and cross-industry harmonized source for assembling business
information.

«InformationEnvelope»
RegistrationRequestEnvelope

T

«Businessinformation»
RegistrationRequest

@ >
«ABIE» «BusinessEntity»
HeaderInformationDetails Customerinformation

+ «BBIE» Referenceldentifier: IdentifierType
+ «BBIE» RespondByDate: DateType

«ABIE» +BuyerParty
AccountDetails
«ABIE»
+ «BBIE» Bankdentifier: IdentifierType |, oo o PartyDetails
+ «BIE» Type: CodeType
+ «BBIE» Identification: IdentifierType + «BBIE» LegalName: NameType
+ «BBIE» HolderName: NameType + «BBIE» ShortName: NameType
+ «BBIE» StartDate: DateType + «BBIE» Official_RegistrationNumberldentifier: IdentifierType
+ «BBIE» EndDate: DateType
+ «BBIE» Balance: AmountType
+BillingAddress +ShippingAddress 0.1
«ABIE»
AddressDetails
«ABIE»
ContactDetails + «BBIE» Addressee: NameType
+ «BBIE» Street: NameType
+ «BBIE» Business_ PhoneNumber: TextType + «BBIE» StreetNumber: TextType
+ «BBIE» Mobile_PhoneNumber: TextType + «BBIE» HouseNumber: TextType
+ «BBIE» Fax_PhoneNumer: TextType + «BBIE» BuildingNumber: TextType
+ «BBIE» EMailAddress_UniformRessourceldentifier: IdentifierType + «BBIE» FloorNumber: TextType
+ «BBIE» Postcode: IdentifierType
+ «BBIE» Country: IdentifierType

Fig. 8. Class Diagramm for Registration Request

91

In order to model the class diagram for a business information exchange, one must deter-
mine the business entities that are effected by the transaction. Each business entity is
described by the information needed to change its business state. This information is
built by re-using core components of the library. Thus, one must select suitable core
components from the library and customize them to the needs of the business
transaction. Customizing means setting the core components into the context of the
business transaction. This is when the core component becomes a so called business
information entity. In the resulting class diagram a basic business information entity
(BBIE) is represented by an attribute and an aggregate business information entity by a
class or a group of classes.

Figure 8 presents a class diagram for the registration request. The registration request
envelope includes the business information, i.e. the registration request. The registration
request aggregates the header details and the affected business entities. In this case the
only business entity is the customer information. The customer information must include
all the information necessary to change its state from “tendered” to “accepted” and
finally “confirmed”. Therefore existing core component types are set into the context of
our registration transaction. Setting into context means e.g. selecting only those
attributes from the more than 20 attributes that are assigned to the core component
address. Due to space limitation we do not explain this process in detail but refer to the
core components specification [UN03d].

3 From UMM to BPSS

In this section we describe how the UMM model developed in the previous section is
equally represented in a BPSS instance. As mentioned earlier BPSS is based on a subset
of the UMM meta model. This subset is more or less identical to the Business
Transaction View (BTV). Thus, BPSS might be viewed as an “XML-ification” of the
BTV artefacts: business collaboration protocol and business transaction with references
to exchanged documents. The UMM 1is an approach intended to specify business
collaborations from top down, re-using existing lower level content as much as possible.
In BPSS it does not matter whether an top-down or bottom-up approach is used. For
educational purposes we use a bottom up approach to describe the concepts of BPSS.

3.1 Business Documents / Business Information

In BPSS, the business information exchanged in a business transaction is called a busi-
ness document. Thus the UMM concept of business information must be mapped to an
BPSS equivalent. BPSS does not by itself support the definition of business document
types, nor does any other ebXML specification. It is assumed that the various business
document standard organizations will define the rules on how to map the business infor-
mation entities to their specific document types.

A BPSS instance points to the resulting business document types. If the document type is
XML-based, BPSS will use the business document element to point to an external
schema. We assume that this is the case in our example below. However, it is possible to
define documents of any other structure, e.g. UN/EDIFACT, or completely unstructured

92

documents as attachments. The following two code fragments show the XML schema
for the attribute group name used in BusinessDocument and many other BPSS elements,
and the XML schema for BusinessDocument. Each defined business document carries a
globally unique Id (GUID) in the namelD attribute. The logical name of the business
document, which corresponds to the class name for business information in UMM, is
defined in the name attribute. Either specificationLocation or specificationID are used to
point to the external schema.

<xsd:attributeGroup name="name">
<xsd:attribute name="name" type="xsd:string" use="optional"/>
<xsd:attribute name="namelD" use="required">
<xsd:simpleType> <xsd:restriction base="GUID"/> </xsd:simpleType>
</xsd:attribute>
</xsd:attributeGroup>

<xsd:element name="BusinessDocument">
<xsd:complexType>
<snip/>
<xsd:attributeGroup ref="name"/>
<xsd:attribute name="specificationLocation" type="xsd:anyURI"/>
<xsd:attribute name="specificationID" type="xsd:anyURI"/>
<snip/>
</xsd:complexType>
</xsd:element>

The valid instances for pointing to external XML schemas that define the document
types for registration request and registration response are the following:

<BusinessDocument namelD="BPSS-XML4BPM-Document-001" name="RegistrationRequest"
specificationLocation="http://www.xml4bpm.org/RegistrationRequest.xsd"/>
<BusinessDocument namelD="BPSS-XML4BPM-Document-002" name="RegistrationResponse"
specificationLocation="http://www.xml4bpm.org/RegistrationResponse.xsd"/>

3.2 Business Transactions

BPSS uses the concept of business transactions more or less identically to UMM. This
means a business transaction is built by two business actions - the requesting business
activity and the responding business activity. The request document flow is mandatory
and the responding one is optional. We recommend to read this subsection in
conjunction with Figure 7 showing a UMM business transaction.

The information exchanged in a UMM business transaction is represented by an object
flow state. This object flow state is an instance of a business information envelope which
covers the business information. For this purpose, BPSS defines the element Document-
Envelope. The envelope has a GUID (attribute namelD) and a logical name (attribute
name). Its attribute businessDocumentIDREF references one of the business documents
described above. Furthermore, the attribute businessDocument contains the logical name
of this document. In the example further below the business document envelope
RegistrationRequestEnvelope is created with its unique Id (BPSS-XML4BPM-Envelope-
000001). This envelope references the business document RegistrationRequest (BPSS-
XML4BPM-Document-000001).

93

Both BPSS and UMM define the security parameters isAuthenticated, isConfidential,
and isTamperDetectabel (in UMM: isTamperProof) for the information exchanged. In
UMM these parameters are booleans. BPSS uses a more sophisticated differentiation
with four possible values: none, tranmsient, persistent, and transient-and-persistent.
Transient security focuses on the delivery to the receiving message service handler.
Persistence security applies as soon as the document leaves the receiving message
handler. Transient security is what is considered by UMM. Therefore, a UMM f#rue for a
security parameter maps to transient in BPSS. Persistence security cannot be mapped
automatically. In UMM, each subpart within a business information envelope might
have its own security parameters. In BPSS the security parameters are the same for the
envelope and its content. By mapping UMM to BPSS the highest security identified for a
subpart must be set for the whole envelope. In our UMM example we already used the
security parameters only on the envelope level. Therefore, the code fragment for the
registration request envelope looks as follows (c.f. Figure 7): isConfidential is set to
transient, whereas isAuthenticated and isTamperDetectable are set to none.

<xsd:element name="DocumentEnvelope">
<xsd:complexType>
<snip/>
<xsd:attributeGroup ref="name"/>
<xsd:attribute name="businessDocument" type="xsd:string" use="required"/>
<xsd:attribute name="businessDocumentIDREF" type="GUIDREF"/>
<xsd:attribute name="isPositiveResponse" type="xsd:boolean"/>
<xsd:attributeGroup ref="documentSecurity"/>
</xsd:complexType>
<snip/>
</xsd:element>

<xsd:attributeGroup name="documentSecurity">
<xsd:attribute name="isAuthenticated">
<xsd:simpleType>
<xsd:restriction base="xsd:NMTOKEN">
<xsd:enumeration value="none"/> <xsd:enumeration value="transient"/>
<xsd:enumeration value="persistent"/><xsd:enumeration value="transient-and-persistent"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="isConfidential">
<xsd:simpleType> <snip>identical to isAuthenticated</snip></xsd:simpleType>
</xsd:attribute>
<xsd:attribute name="isTamperDetectable">
<xsd:simpleType> <snip>identical to isAuthenticated</snip></xsd:simpleType>
</xsd:attribute>
</xsd:attributeGroup>

<DocumentEnvelope namelD="BPSS-XML4BPM-Envelope-001" name="RegistrationRequestEnvelope"
businessDocument="RegistrationRequest" businessDocumentIDREF="BPSS-XML4BPM-Document-001"
isAuthenticated="none" isConfidential="transient" isTamperDetectable="none"/>

Next, we consider the requesting activity and the responding activity. Both are subtypes
of business action in UMM and BPSS. Each business action has a GUID and a name. In
BPSS, the requesting business activity includes the child element document envelope
created by the requesting business activity itself. Since the requesting flow is mandatory,
the child element is mandatory as well. The responding activity includes an optional
document envelope. Note, there is a bug in the BPSS 1.10, since a responding business

94

activity might output even more document envelopes. We corrected this in the code
fragment below. In BPSS there is no explicit link between a business document envelop
and the business action that receives this input. The receiving business action is always
the one that does not create the business document envelope.

The most significant difference to UMM is the fact, that BPSS does not assign any roles
to the business actions on the transaction level. In addition, the parameters characterizing
the business actions differ in UMM and BPSS. timeToAcknowledgeReceipt and time-
ToAcknowledgeAcceptance are used similar. A value is assigned to each of these
attributes, if the acks are required. In UMM an acknowledgment of receipt is sent after
schema validation. The BPSS equivalent requires the flag isintelligibleCheck to be set,
otherwise the ack is sent after receiving the information without any validation. In BPSS
there is no attribute like timeToPerform, since the only significant time is the one for the
overall transaction that is defined in the business transaction activity. Both isNonRepudi-
ationRequired and isNonRepudiationOfReceiptRequired are attributes of both business
action types - in UMM the latter does not exist for the responding business activity. The
retryCount for the requesting business activity is also used as in UMM. The isAuthoriza-
tionRequired attribute is defined, but deprecated, because it cannot be supported by cur-
rent ebXML business service interfaces.

In our example (c.f. Figure 7) the requesting business activity is request registration.
Both non-repudiation requirements do not apply. The retry count is set to 3. Time values
for the acknowledgments must not be specified, since no acks are sent. Request registra-
tion outputs the registration request envelope. The responding business activity is per-
form registration. Non-repudiation is not required. The acks attributes must be omitted
as well. Since both acknowledgments do not require acknowledgments of receipt, the
isIntelligibleCheckRequired parameter is not useful.

<xsd:complexType name="BusinessAction">
<snip/>
<xsd:attributeGroup ref="name"/>
<xsd:attribute name="isAuthorizationRequired" type="xsd:boolean" default="false">
<xsd:annotation> <xsd:documentation>deprecated</xsd:documentation> </xsd:annotation>
</xsd:attribute>
<xsd:attribute name="isIntelligibleCheckRequired" type="xsd:boolean" default="false"/>
<xsd:attribute name="isNonRepudiationRequired" type="xsd:boolean" default="false"/>
<xsd:attribute name="isNonRepudiationReceiptRequired" type="xsd:boolean" default="false"/>
<xsd:attribute name="timeToAcknowledgeReceipt" type="xsd:duration"/>
<xsd:attribute name="timeToAcknowledgeAcceptance" type="xsd:duration"/>
</xsd:complexType>
<xsd:element name="RequestingBusinessActivity">
<xsd:complexType>
<xsd:complexContent>
<xsd:extension base="BusinessAction">
<xsd:sequence><xsd:element ref="DocumentEnvelope"/></xsd:sequence>
<xsd:attribute name="retryCount" type="xsd:int"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>

95

<xsd:element name="RespondingBusinessActivity">
<xsd:complexType>
<xsd:complexContent>
<xsd:extension base="BusinessAction">
<xsd:sequence>
<xsd:element ref="DocumentEnvelope" minOccurs="0" maxOccurs="1"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>

<RequestingBusinessActivity namelD="BPSS-XML4BPM-Action-001" name="RequestRegistration"
retryCount="3" isNonRepudiationRequired="false" isNonRepudiationReceiptRequired="false">
<DocumentEnvelope namelD="BPSS-XML4BPM-Envelope-001" name="RegistrationRequestEnvelope" ... />
</RequestingBusinessActivity>
<RespondingBusinessActivity namelD="BPSS-XML4BPM-Action-002" name="PerformRegistration"
isNonRepudiationRequired="false">
<DocumentEnvelope namelD="BPSS-XML4BPM-Envelope-002" name="RegistrationResponseEnvelope" .../>
</RespondingBusinessActivity>

A business transaction is defined by the sequence of the requesting business activity and
the responding business activity. In UMM each business transaction follows one out of
six legally binding business patterns. The attribute pattern of the BPSS element Busi-
nessTransaction specifies the underlying pattern type. Furthermore, the attribute isGuar-
anteedDeliveryRequired signals that reading partners must employ a delivery channel
that provides a delivery guarantee. UMM always assumes guaranteed delivery if neces-
sary.

The business transaction register customer (c.f. Figure 7) includes the requesting
business activity request registration and the responding business activity perform
registration. Its underlying pattern is a query/response transaction. Furthermore, we
assume a guaranteed delivery channel.

<xsd:element name="BusinessTransaction">
<xsd:complexType>
<xsd:sequence>
<snip/>
<xsd:element ref="RequestingBusinessActivity"/>
<xsd:element ref="RespondingBusinessActivity"/>
</xsd:sequence>
<xsd:attributeGroup ref="name"/>
<xsd:attribute name="pattern" type="xsd:anyURI"/>
<xsd:attribute name="isGuaranteedDeliveryRequired" type="xsd:boolean" default="false"/>
</xsd:complexType>
<snip/>
</xsd:element>

<BusinessTransaction namelD="BPSS-XML4BPM-Transaction-001" name="RegisterCustomer"
pattern="QueryResponseActivity" isGuaranteedDeliveryRequired="true">
<RequestingBusinessActivity namelD="BPSS-XML4BPM-Action-001" name="RequestRegistration" ... >
<snip/>
</RequestingBusinessActivity>
<RespondingBusinessActivity namelD="BPSS-XML4BPM-Action-002" name="PerformRegistration" ... >
<snip/>
</RespondingBusinessActivity>
</BusinessTransaction>

96

<BusinessTransactionActivity name="RegisterCustomer" name|D="BPSS-XML4BPM-Activity-001"
businessTransaction="RegisterCustomer" businessTransactionIDREF="BPSS-XML4BPM-Transaction-001"
fromRole="customer" fromRole|DREF="BPSS-XML4BPM-Role-001" toRole="seller" toRole|IDREF="BPSS-
XML4BPM-Role-002" isConcurrent="false" timeToPerform="PT4H" preCondition="some text" begins\WWhen="some
text" endsWhen="some text" postCondition="some text"/>

3.3 Binary Collaboration

A binary collaboration is always conducted by two roles. They perform one or more
business activities. In BPSS, a business activity is either a business transaction activity
or a collaboration activity. We first concentrate on business transaction activities.
Collaboration activities are briefly explained at the end of this subchapter. A business
transaction activity points to a business transaction. The semantic of a business
transaction activity is the same as in UMM (c.f. Figure 6). The business transaction
activity is identified by its own namelD and name. It is quite common that the name of
the referenced business transaction is identical. However, this is not a must. The IDREF
to the business transaction ensures unambiguouty. For each business transaction activity
an initiating role (fromRole) and an reacting role (foRole) together with IDREFs to the
role definitions are specified. The fromRole will perform the requesting business activity
of the business transaction. The responding business activity is performed by the toRole.
The UMM parameters isConcurrent and timeToPerform characterizing a business
transaction activity exist in BPSS as well. Further attributes assigned to the BPSS
business transaction activity are preCondition, beginsWhen, endsWhen and
postCondition. Values for these attributes are usually defined in the transaction use case
template (worksheet) of UMM.

<xsd:complexType name="BusinessActivity">
<xsd:attributeGroup ref="name"/>
<xsd:attribute name="fromRole" type="xsd:string" use="required"/>
<xsd:attribute name="fromRolelDREF" type="GUIDREF"/>
<xsd:attribute name="toRole" type="xsd:string" use="required"/>
<xsd:attribute name="toRoleIDREF" type="GUIDREF"/>
<xsd:attribute name="beginsWhen" type="xsd:string"/>
<xsd:attribute name="endsWhen" type="xsd:string"/>
<xsd:attribute name="preCondition" type="xsd:string"/>
<xsd:attribute name="postCondition" type="xsd:string"/>
</xsd:complexType>

<xsd:element name="BusinessTransactionActivity">
<xsd:complexType>
<xsd:complexContent>
<xsd:extension base="BusinessActivity">
<snip/>
<xsd:attribute name="businessTransaction" type="xsd:string" use="required"/>
<xsd:attribute name="businessTransactionIDREF" type="GUIDREF"/>
<xsd:attribute name="isConcurrent" type="xsd:boolean" default="true"/>
<snip/>
<xsd:attribute name="timeToPerform" type="xsd:duration"/>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>

97

The code fragment further below shows the definition of the register customer business
transaction activity (c.f. Figure 6). It is a non-concurrent business transaction activity
which must be executed within 4 hours. The customer initiates the referenced business
transaction, which is defined in the previous subsection. The seller is the responder.

<BusinessTransactionActivity name="RegisterCustomer" namelD="BPSS-XML4BPM-Activity-001"
businessTransaction="RegisterCustomer" businessTransactionlDREF="BPSS-XML4BPM-Transaction-001"
fromRole="customer" fromRole|DREF="BPSS-XML4BPM-Role-001" toRole="seller" toRoleIDREF="BPSS-
XML4BPM-Role-002" isConcurrent="false" timeToPerform="PT4H" preCondition="some text" begins\WWhen="some
text" endsWhen="some text" postCondition="some text"/>

In UMM the business collaboration protocol choreographs the business transaction activ-
ities. This choreography is defined in BPSS by a binary collaboration. Figure 9 shows
the subelement structure for a binary collaboration. Due to space limitation we do not
present the XML schema code for each of these elements. The details of the binary
collaboration are best explained by means of the example depicted in the business
collaboration protocol of Figure 6 and mapped to the code fragment further below.

,BusinessTl ansactionActivity

isLegallyBinding is being deprecated

1.0

»CollaborationActivity $

LSuccess
]
BinaryCollaboration [%J—@— i

-

t-1 Decision EI—E)EI—LComIﬁionExpression
. -

'''''''''''''' '\; -

Fig. 9. XML Schema for a Binary Collaboration
The binary collaboration simple purchase management is identified by a unique id

(BPSS-XML4BPM-BinaryCollaboration-001). The attribute is/nnerCollaboration is a
flag indicating that the binary collaboration can only be used as subpart of another binary

98

collaboration. Since this is not the case in our example it is set to false. The initiating-
RolelDREF references the role that initiates the first business transaction activity. This
attribute is only relevant if a binary collaboration is subpart of another one (see further
below). Another attribute indicates a pattern of a binary collaboration. Since these types
of patterns are currently in development, this attribute is for future use only. A maximum
time for a binary collaboration is defined by timeToPerform - a concept that does not
exist on this level in UMM. The attributes preCondition, beginsWhen, endsWhen and
postConditions are gathered in UMM by the business collaboration protocol use case.

Exactly two roles participate in a binary collaboration. In our example these roles are a
customer and a seller, which are defined by Role elements. The namelD of a role must
be unique for all binary collaborations regardless the fact that a role with the same name
exists in another binary collaboration. The next element Starf maps the UMM transition
from the initial pseudo state to the first business transaction activity, which is Search
Products. This business transaction activity is referenced by name (toBusinessState) and
id (toBusinessState]IDREF). The referenced business transaction activity must be in the
following list of all business transaction activities of the binary collaboration. Thus, the
next elements define the business transaction activity search products as well as order
products and register customer. The definition of business transaction activities was
explained in detail above.

Next, the Success element specifies the successful completion, i.e. the transition from
Order Products to the successful end state. The last business transaction activity Order
Products is referenced by name (from BusinessState) and id (fromBusinessState]l DREF).
The value BusinessSuccess for conditionGuard of the transition is taken from an
enumerated list of different success and failure types. Similarly, the Failure elements
specify the transitions from Register Customer and from Order Products to the failing
end state.

Only then all the other transitions between the business activities are declared. A transi-
tion has its own id and references both source and target business transaction activity by
name and id. Again a transition guard from the enumerated list of success and failure
types might be specified in conditionGuard. In addition the child element ConditionEx-
pression enables a more complex specification reflecting the UMM business entity
states. In our example we use an OCL syntax to denote the guards on the transitions. The
Decision element - which follows the transition declarations - is the equivalent to the
UML decision (depicted as rhombus). The underlying decision must be given in the
subelement ConditionExpression; e.g. the OCL statement on whether the customer
information is in state Confirmed or not. Other BPSS elements - not used in our example
- include Fork for alternative flows and Join for parallel flows. Transitions reference not
only business transaction activities as source and target, but also Fork, Join, and
Decision. For example, the first transition statement is from Search Product to the
decision node guarded by the fact that products are in state Found and substate Wanted.

UMM business collaboration protocols are always built by business transaction activities

and do not include collaboration activities. These might be used in BPSS only. A
collaboration activity references another binary collaboration which thereby becomes

99

part of the parent binary collaboration. The other attributes of the collaboration activity
are the same as for the business transaction activity except that timeToPerform and
isConcurrent are not appropriate. The fromRoleIDREF of the collaboration activity
binds to the initiatingRole of the included binary collaboration. Note, that the id values
must be different and the names of the roles might be different. This allows to bind e.g. a
buyer role from the parent collaboration to a customer role of the included collaboration.

<BinaryCollaboration name="SimplePurchaseManagement" namelD="BPSS-XML4BPM-BinaryCollaboration-001"
initiatingRoleI DREF="BPSS-XML4BPM-Role-001" isInnerCollaboration="false" pattern="nopatterns exist yet"
timeToPerform="P1D" preCondition="some text" begins\WWhen="some text" ends\When="some text"
postCondition="some text">
<Role name="customer" name|D="BPSS-XML4BPM-Role-001"/>
<Role name="seller" namelD="BPSS-XML4BPM-Role-002"/>
<Start namelD="BPSS-XML4BPM-Start-001" toBusinessState="SearchProducts"
toBusinessStateDREF="BPSS-XML4BPM-Activity-002"/>
<BusinessTransactionActivity name="SearchProducts" namelD="BPSS-XML4BPM-Activity-002" ... />
<BusinessTransactionActivity name="OrderProducts" namelD="BPSS-XML4BPM-Activity-003" ... />
<BusinessTransactionActivity name="RegisterCustomer" namelD="BPSS-XML4BPM-Activity-001"... />
<Success namelD="BPSS-XML4BPM-Success-002" fromBusinessState="OrderProducts"
fromBusinessState| DREF="BPSS-XML4BPM-Activity-003" conditionGuard="BusinessSuccess"/>
<Failure namelD="..." fromBusinessState="OrderProducts" ... conditionGuard="Failure"/>
<Failure ... fromBusinessState="RegisterCustomer" ... conditionGuard="Failure"/>
<Transition namelD="Transition-002-F001" fromBusinessState="SearchProduct"
fromBusinessState| DREF="BPSS-XML4BPM-Activity-002" toBusinessState="Decision1"
toBusinessStateDREF="BPSS-XML4BPM-Decision-001" conditionGuard="BusinessSuccess">
<ConditionExpression expressionLanguage="OCL"
expression="Products.oclinState(Found::Wanted) = TRUE"/>
</Transition>
<Transition ... fromBusinessState="Decision1" ... toBusinessState="RegisterCustomer" ...>
<ConditionExpression ... expression="Customerinformation.oclinState(Confirmed) = FALSE"/>
</Transition>
<Transition ... fromBusinessState="Decision1" ... toBusinessState="OrderProducts" ... >
<ConditionExpression ... expression="Customerinformation.oclinState(Confirmed) = TRUE"/>
</Transition>
<Transition ... fromBusinessState="RegisterCustomer" ... toBusinessState="OrderProducts" ...
ConditionGuard="BusinessSuccess">
<ConditionExpression ... expression="Customerinformation.oclinState(Confirmed) = TRUE"/>
</Transition>
<Decision name="Decision1" namelD="BPSS-XML4BPM-Decision-001">
<ConditionExpression ... expression="Customerlnformation.oclinState(Confirmed)"/>
</Decision>
</BinaryCollaboration>

3.4 Mulitparty Transaction

The current version of BPSS 1.10 uses binary collaborations only. The XML schema
allows the specification of multiparty transaction, but it is not recommended to use them.
The concepts for multiparty collaborations might change considerably within the next
revision. Multiparty collaborations are always synthesized by binary collaborations.
However, the multiparty statement does not list the included binary collaborations.
Instead the multiparty statement list the business partner roles that participate in the mul-
tiparty collaboration. Each business partner role includes one or more Performs elements
to bind roles of binary collaborations. Since the id of a role is unique for all binary
collaborations, the binary collaborations are also unambiguously identified.

100

The business partners in our example simple order management are buyer, seller and
bank. The buyer takes on the role of customer in the simple purchase management. The
seller binds the role of seller in the simple purchase management and the role of the
credibility requestor in check credibility. The bank supports the role of a bank in check
credibility. Furthermore, transitions between business transaction activities of different
binary collaborations are supported. Since the business transaction activities of our
example are nested this concept is not used in the code fragment below.

<MultiPartyCollaboration name="SimpleOrderManagement" namelD="BPSS-XML4BPM-MultiParty-001">
<BusinessPartnerRole name="buyer" namelD="BPSS-XML4BPM-MultiRole-001">
<Performs namelD="" role="customer" role| DREF="BPSS-XML4BPM-Role-001"/>
</BusinessPartnerRole>
<BusinessPartnerRole namelD="BPSS-XML4BPM-MultiRole-002" hame="seller">
<Performs namelD="" role="seller" roleIDREF="BPSS-XML4BPM-Role-002"/>
<Performs namelD="" role="credibilityRequestor" roleIDREF="BPSS-XML4BPM-Role-003"/>
</BusinessPartnerRole>
<BusinessPartnerRole namelD="" hame="bank">
<Performs namelD="" role="bank" roleDREF="BPSS-XML4BPM-Role-004"/>
</BusinessPartnerRole>
</MultiPartyCollaboration>

4 Summary

The BPSS specification states that its goal is to provide the bridge between e-business
process modeling and specification of e-business software components. BPSS does not
require any particular e-business process modeling methodology. Nevertheless, main
concepts of BPSS are based on UMM, or better its meta model. Thus it is close at hand
to model e-business collaborations with UMM and to map these models to XML-based
BPSS. The gap between UMM and BPSS is quite close. This approach enables e-
business software to interpret the choreography specified by UMM models.

In this paper we first presented UMM as a top-down approach. Apart from introducing
UMM’s methodology, this section helps to understand the background of many BPSS
concepts. Then the UMM business collaboration models are mapped to BPSS. We
explained the mapping the other way round by a bottom-up approach. It is demonstrated
that most of the UMM semantics - except those for requirements gathering - result in a
equivalent BPSS counterpart. Most of them use the same terms and structures. Only very
few UMM concepts are not supported by BPSS. Additional concepts available in BPSS
but not supported in UMM are rare exceptions.

From the arguments above it becomes obvious that alignment of BPSS and UMM is
desirable. However, BPSS must also be aligned with the other ebXML specifications.
The BPSS team has done a good job to deal with these sometimes conflicting interests.
At the end of the 18-month ebXML initiative UN/CEFACT and OASIS agreed that
ebXML business process specifications are maintained by UN/CEFACT. UN/CEFACT
has signaled steps toward UMM BRV alignment in BPSS 2.0 and towards BDV
alignment in BPSS 3.0. OASIS has formed its new ebXML business process technical
committee in October 2003. Therefore, we stick with the current version 1.10 and await
BPSS’s future.

101

References

[BIR9S]

[HHKO02]

[HHNO4]

[HHO3]

[1SO95]
[UNO3a]

[UNO3b]

[UN03c]

[UN03d]

[UOO01]

Booch, G., Jacobson, 1., Rumbaugh J.: The Unified Modeling Language User Guide.
Addison Wesley Object Technology Series, Reading, (1998)

Hofreiter, B., Huemer, C., Klas, W.: ebXML: Status, Research Issues and Obstacles.
Proc. of 12th Int. Workshop on Research Issues on Data Engineering (RIDE02), San
Jose (2002)

Hofreiter, B., Huemer, C., Naujok, K.-D.: UN/CEFACT’s Business Collaboration
Framework - Motivation and Basic Concepts. Proc. of MKWI’04 Track on Co-

ordination in Value Creation networks / Agent Technology for Business Applications,
LNI GITO (2004)

Hofreiter, B., Huemer, C.: Modeling Business Collaborations in Context. Proc. of On
The Move to Meaningful Internet Systems 2003: OTM 2003 Workshops, Springer
LNCS, Catania (2003)

ISO: Open-edi Reference Model. ISO/IEC JTC 1/SC30 ISO Standard 14662 (1995)

UN/CEFACT TMG: UN/CEFACT Modelling Methodology - Meta Model, Revision
12. (2003),
http://www.untmg.org/downloads/General/approved/ UMM-MM-V20030117.zip

UN/CEFACT TMG: UMM User Guide, Revision 12. (2003)
http://www.untmg.org/downloads/General/approved/ UMM-UG-V20030922.zip

UN/CEFACT TMG: UN/CEFACT — ebXML Business Process Specification Schema,
Version 1.10,
http://www.untmg.org/downloads/General/approved/ebBPSS-v1pt10.zip

UN/CEFACT TMG: Core Components Technical Specification — Part 8 of the
ebXML Framework, Version 2.01, (2003),
http://www.untmg.org/downloads/General/approved/ CEFACT-CCTS-Version-2pt01.zip

UN/CEFACT, OASIS: ebXML Technical Architecture Specification v1.0.4. (2001),
http://www.ebxml.org/specs/ebTA.pdf

102

Exchanging Business Process Models with GXL

Andreas Winter Carlo Simon
Institute for Software Technology Institute for Management
University of Koblenz University of Koblenz
D-56070 Koblenz D-56070 Koblenz
Universitdtsstral3e 1 Universitétsstral3e 1
www.uni-koblenz.de/~winter/ www.uni-koblenz.de/~simon/
mailto:winter@uni-koblenz.de mailto:simon@uni-koblenz.de

Abstract: GXL (Graph eXchange Language) is an XML-based standard exchange
language for sharing graph data between tools. GXL can be customized to exchange
application specific types of graphs. This is done by exchanging both, the instance
graph, representing the data itself, and the schema, representing the graph structure.

Business Process Models are usually depicted in a graph-like form. So, GXL is
also a proper means to exchange those data. This paper shows, how to customize GXL
in order to exchange business process models depicted as Event-driven Process Chains
or Workflow-Nets as examples for the control flow part of business process models.
Each level of modeling is exemplarily demonstrated from the meta schemas down to
instances of graphs.

1 Introduction

Graphs are widely used for representing and analysing structured data in various areas.
They combine visual descriptiveness and clearness with mathematical foundation leading
to efficient data-structures and -algorithms. Thus, a great variety of tools relies on various
kinds of graph based structures. Offering a generally applicable means for exchanging
graph based structures provides a broad basis for data-exchange.

A general and widely accepted interchange format for graphs has to fulfill various demands
(cf. [Mii98], [KGWI8]).

Adaptability: Different problems solved by graph-based tools require different problem-
related graph models. Graph-based tools might base e. g. on trees, directed or undirected
graphs, node and edge attributed graphs, node and edge typed graphs, hypergraphs, or hi-
erarchical graphs, or combinations of these. A standard graph exchange language would
need to be flexible enough to be an intermediary for these and other graph models.
Exchanging graphs requires to agree on the kind of graphs to be interchanged. An ex-
change language has to offer means to define and customize graph structure to certain
problem domains by defining e. g. node- and edge types, incidence relations between node-
and edge types, and multiplicity constraints.

Processability: exchanged data has to be processed, efficiently. The efficiency of ex-
change formats refers to the exchange process rather than the efficient usage of that data in

103

certain applications [B104]. Thus, graph documents have to be generated from stored data,
easily, have to be transferred between interoperating tools, rapidly, and have to be imported
into current applications, easily. Furthermore, a general graph exchange language should
come along with a set of tools supporting its usage.

Distribution: standard exchange formats are only useful, if they are supported by a large
number of tools. A graph exchange language will be successful, if it is supported by
various components e. g. for generating graphs, for analyzing graphs and applying graph
algorithms and graph transformations, and for visualizing graphs.

The GXL Graph eXchange language [HWS00], [Wi102] was developed to offer such a
standard interchange format for graphs complying these demands:

Adaptability: GXL represents TGraphs, i.e.(node and edge) typed, (node and edge)
attributed, ordered, and directed Graphs [EWD196] which are extended to represent hier-
archical graphs [BuO1] and hypergraphs [Be76]. Typed, attributed, ordered, and directed,
hierarchical graphs and hypergraphs form a general graph model which covers most of
usually used graph structures. Thus, GXL is able to exchange graphs following a wide
range of graph models.

GXL supports both, exchanging graphs (instance graph) and graph structure (graph schema).
Class diagrams are a proper way to define graph structures. Since these information can
easily be mapped to graphs [Wi02], GXL exchanges instance and schema information by
using the same mechanisms.

Processability: GXL is defined as an XML language [W3C00]. Graphs and schemas are
exchanged by XML streams following the GXL document type definition [Wi02] or the
GXL XML Schema specification [GXLa] . GXL was defined plain and simple. So, the
GXL DTD only requires 18 XML-elements to support a most general and powerfull graph
model.

Like all XML languages, GXL gains profit from a large number of already existing XML-
based tools. GXL base functionality can be implemented easily using XML standard tools
like Xerces parser for reading or Xalan for manipulating GXL documents [Apache]. Fur-
thermore, special GXL tools exist, e. g. for validating GXL documents [Ka03]. The effi-
ciency of representing and processing GXL data is (only) restricted by the efficiency of
XML.

Distribution: GXL was ratified as standard exchange format in software reengineer-
ing at the Dagstuhl Seminar on Interoperability of Reengineering Tools in January 2001
[EKMO1]. GXL also defines the foundation of the GTXL exchange language for Graph
transformation system [Ta01] [GTXL]. During the last years various groups in reengi-
neering, graph transformation, graph drawing, and other areas of software engineering
have added GXL support in their tools. A still growing list of currently more than 40 tools
supporting GXL can be found at [GXLDb].

Summarizing, GXL can be viewed as an adaptable, easily processable, and widely dis-
tributed standard exchange language for graphs.

GXL originally intended to become a commonly accepted exchange language for informa-
tion on software systems providing interoperability of various reengineering tools. Since
GXL was developed as a general graph exchange language, its use was extended to many
areas that deal with graph-structured data.

104

This paper demonstrates the use of GXL as a language to exchange Business Process Mod-
els. Within such models, the work performed within businesses is described and put into
a structure. Additionally, the binding of resources like humans or machines to specific
activities is expressed. Business processes are usually depicted using graphical languages.
In this paper we focuss on languages modeling dynamic aspects of business processes.
These languages include Event-driven Process Chains [Sc94b] and Petri-Net based ap-
proaches like Workflow-Nets [Aal96]. For exchanging process models among different
modeling environments and Workflow Management Systems, formal exchange languages
are required.

Since Event-driven Process Chains and Petri-Net diagrams provide structural information,
they are typically viewed as graphs. Thus, GXL as a graph exchange language is a proper
means for exchanging such models. The reminder of this paper introduces the foundation
of GXL (cf. section 2) and shows how GXL is customized to exchange Event-driven Pro-
cess Chains (cf. section 3.1) and Workflow-Nets (cf. section 3.2). We finish our paper with
some concluding remarks.

2 GXL Graph eXchange Language

GXL is an XML based configurable exchange format for graphs. It can be adapted to a
broad variety of different types of graphs and hypergraphs. The adaptability of GXL is
based on metaschemas specifying the required graph structure.

Thus, GXL representations of graphs typically consist of two parts: in a first part, the ac-
tual graph is specified, in a second (optional) part the graph structure is defined in a graph
schema. Section 2.1 explains, how graph data is represented in GXL streams. The defi-
nition and exchange of graph schemas as special GXL graphs, is presented in section 2.2.
GXL exchanges graphs and schemas using the same type of XML documents.

2.1 Exchanging Graphs with GXL

GXL supports the exchange of directed or undirected graphs consisting of typed, at-
tributed, and ordered nodes, edges and hyperedges, incidences, and hierarchical subgraphs.
As a simple example, Figure 1 depicts a fragment of a London map used in the Scotland-
Yard game [ScY]. The map shows some sights and connection points for changing public
transport by taxi, bus, or subway (tube). A graph representation of that map is done by an
undirected, node- and edge typed, node attributed graph depicted as UML object diagram.
The graph consists of two different kinds of nodes. Nodes of class Junction depict street-
crossings, where public transport can be changed and sight-nodes emphasize sightseeing
highlights like monuments or squares. Both, Junction- and Sight-nodes are identified by
a number. Additionally, Sight-nodes carry the sights’ name. It is possible to navigate
between crossings and sights by taxi, bus, or tube. These connections are modeled by
taxi-, bus-, and tube-edges.

GXL provides constructs for representing and exchanging graphs such as the one in Fig-
ure 1. Here constructs are required to represent nodes, edges, incidences, node- and edge-
classes, and node-attributes.

105

n130: Junction

number=130

e197:taxi

n139:Sight £199:taxi n140:Sight
number=139 number=140
name="Bucking- name="Houses of
hamPalace" 200:taxi Parliament"
e J@axi
e198:taxi

e205:taxi

n154:Junction

201-taxi number=154
n153:Junction —— ~

number=153 €202:bus

e203:tube

Figure 1: undirected typed, attributed graph

Figure 2 depicts the graph from Figure 1 as an XML document according to the GXL
structure. The first two lines specify the used XML version and refer to the GXL document
type definition (gxI-1.0.dtd). The GXL DTD can be found at [Wi02] and an XML-schema

version is given at [GXLa].

O 001N LN B Wk~

<?xml version="1.0"?>
<!DOCTYPE gxl SYSTEM "gx1-1.0.dtd">
<gxl xmlns:xlink="http://www.w3.0rg/1999/x1ink">
<graph id="londonmap" edgeids="true" edgemode="undirected">
<type xlink:href="map .gxl#mapSchema"/>
<node id="n130"><type xlink:href="map.gxl#Junction"/>
<attr name="number " > <int>>130</int>> </attr > </node>-
<node id="nl153"><type xlink:href="map.gxl#Junction"/>
<attr name="number" > <int>>153</int> </attr > </node >~
<node id="nl154"><type xlink:href="map.gxl#Junction"/>

11 <attr name="number" > <int> 154 </int>> </attr>> </node >
12 <node id="n139"><type xlink:href="map.gxl#Sight"/>
13 <attr name="number" > <int>139</int> </attr>

15 <node id="n140"><type xlink:href="map.gxl#Sight"/>

16

17

18 <edge id="e197"
19 <edge id="e198"
20 <edge id="e199"
21 <edge id="e200"
22 <edge id="e201"
23 <edge id="e205"
24 <edge id="e202"
25 <edge id="e204"
26 <edge id="e203"
27 </graph>

28 <lgxl>

from="n130"
from="n139"
from="n139"
from="n139"
from="n153"
from="n154"
from="n153"
from="n154"
from="n153"

<attr name="number" > <int>140</int> </attr>
<attr name="name" >><string>>Houses of Parliament</string>></attr>></node>>
.gxl#ttaxi"/></edge>
.gxl#ftaxi"/></edge>
.gxl#taxi"/></edge>
.gxl#ttaxi"/></edge>
.gxl#taxi"/></edge>
.gxl#taxi"/></edge>>
.gxl#bus"/></edge>
.gxl#tbus"/></edge>
.gxl#tube"/></edge>>

to="n139"><type
to="n153"><type
to="nl40"><type
to="nl54" > <type
to="nl54" > <type
to="nl40"><type
to="nl54" > <type
to="n140"><type
to="nl40"><type

xlink:href="map
xlink:href="map
xlink:href="map
xlink:href="map
xlink:href="map
xlink:href="map
xlink:href="map
xlink:href="map
xlink:href="map

Figure 2: GXL representation of Figure 1

106

<attr name="name" > <string>Buckingham Palace </string > </attr ></node>-

The body of the document is enclosed in <gxI> elements. Line 3 includes the xlink-
namespace, which is required for referring to external XML documents. Graphs are en-
closed in <graph> elements. Line 4 introduces the graph as londonmap, specifies that
edges must have identifiers, and that the graph has to be interpreted as an undirected graph.
Nodes and edges are represented by <node> and <edge> elements. Both, nodes and
edges can be located by their id-attribute. Incidences of edges are stored in from and to
attributes within <edge> tags. These attributes refer to the id’s of the adjacent nodes. For
undirected graphs, like the one in figure 1, the implicitly given edge-orientation by from
and to-attributes has to be ignored. In the case of directed graphs, from and to refer to
nodes representing origin and end of an edge.

<node> and <edge> elements may contain further attribute information, stored in <attr>
elements. <attr> elements describe attribute names and values. Like OCL [WK98], GXL
provides <bool>, <int>, <float>, and <string> attributes. Furthermore, enumeration
values (<enum>) and URI-references (<locator>) to externally stored objects are sup-
ported. Attributes in GXL might also be structured. Here, GXL offers composite attributes
like sequences (<seq>), sets (<set>), multi sets (<bag>), and tuples (<tup>).

Graphs and graph elements may refer to the according schema information, stored in
<type> elements. Using xlink [W3C01] <type> elements refer to a GXL-document
defining the schema (here map.gxl) and the appropriate node or edge class. An extract of
the GXL stream for that schema is shown in Figure 5. The relation between GXL graphs
and their according schema can be checked within the GXL framework using the GXL
validator [Ka03].

In addition to the GXL features, described with Figure 2, GXL provides the exchange of
hypergraphs and hierarchical graphs. More information on exchanging various kinds of
graphs can be found at [Wi02].

2.2 Exchanging Graphclasses with GXL

Graphs like the one depicted in Figure 1 contain nodes representing crossings and sights.
They are connected by three different kinds of edges representing taxi, bus and subway
connections. Exchanging graphs like this, requires to know about that structure. A graph
schema, defining the structure of graphs like the one in Figure 1 is shown in Figure 3. The
graph schema is depicted as an UML class diagram [BRJ99], where classes define node
classes and associations define edge classes.

taxi

* / » \ *
*{ Junction Sight
bus E number : int 47 name : string

*
\ » ’

tube

Figure 3: Graph schema

The graph schema defines node class Junction and its specialization Sight for modeling
crossings and sights. Nodes of class Junction are attributed with their number and addi-

107

tionally nodes of class Sight carry a name attribute. All nodes may be connected by edges
of edge class taxi-, bus-, and tube.

Since class diagrams are structured information themselves, they can be represented as
graphs as well. For exchanging graph schemas, GXL uses a predefined way to translate
schemas into graphs. Graphs representing schema information follow the GXL Meta-
schema [Wi02]. A graph representation of the schema in Figure 3 is depicted in Figure 4.

mapSchema: taxi:
GraphClass e16:contains EdgeClass
name= P name="taxi"
"mapSchema" e15: isabstract=false
W isdirected=false
e12:contains \ e3:from e3:to
e13: limits=©,-1) [~ limits = (0,-1)
contains e14:lisordered=false [~ isordered=false
contains \ e9:has
2o n1:AttributeClass | Domain n2:Int
T (0"_1) name="number" >
v isordered:=false v v 1‘
bus: \ Junction: 28:I1zst Sight:
EdgeClass » NodeClass *Attribute NodeClass
name="bus" \ name="Junction" (<& TaoA name="Sight"
isabstract=false - p- isabstract=false efils isabstract=false
isdirected=false \
H A A
el:from
limits = (0,-1) e10:has
isordered=false Attribute
Y
e5:from e6:to n3:AttributeClass
limits=(0,-1) [\ [limits = (0,-1) name="name"
isordered=false isordered=false
tube: el :ha}s
| EdgeClass Domain y
name="tube" n4:String
isabstract=false
isdirected=false

Figure 4: Graph schema represented as Graph

Node classes and edge classes are modeled by NodeClass-nodes and EdgeClass-nodes.
Their name-attributes determine the node and edge classes’ names. For example, node
class Junction is represented by the NodeClass node with OID Junction and edge class
taxi is depicted by the EdgeClass node with OID taxi. from and to-edges connect Edge-
Classes with the incident NodeClasses. Their attributes contain multiplicities (limits) and
indicate if the incidence should be treated as ordered (isordered). Attribute information is
modeled by AttributeClass nodes. They can be connected to both, node and edge classes by
hasAttribute edges. hasDomain edges link to attribute domains (Int or String nodes). GXL
provides generalization of node and edge classes by isA-edges; cf.edge €7 connecting
Sight :NodeClass and Junction:NodeClass. isabstract=false marks concrete
classes and isdirected=false labels undirected edge classes. The complete graph class is
represented by a GraphClass node which collects its node and edge classes by contains
edges.

Graph class mapSchema in Figure 4 contains node classes Junction and Sight and edge
classes taxi, bus, and tube. GXL instances matching the Map schema refer to these nodes
as schema references, e. g.node 154 in Figure 2 (line 10) refers to node Junction in
the corresponding schema identifying n154 as a street crossing.

108

1 <?xml version="1.0"?>
2 <!DOCTYPE gxl SYSTEM "http://www.gupro.de/GXL/gx1-1.0.dtd" >
3 <gxl xmlns:xlink="http://www.w3.0rg/1999/x1link" >
4 <graph id="map" edgeids="true" edgemode="directed" >
5 <type xlink:href="http://www.gupro.de/GXL/gx1l-1.0.gxl#gxl-1.0"/>
6 <node id="mapSchema" >
7 <type xlinkhref="http://www.gupro.de/GXL/gxl-1.0.gx1#GraphClass"/>
8 <attr name="name" > <string>>mapSchema</string>> < /attr >></node>>
9 <node id="Junction">
10 <type xlinkhref="http://www.gupro.de/GXL/gx1l-1.0.gx1l#NodeClass"/>
11 <attr name="name" > <string>Junction</string > </attr >
12 <attr name="1isabstract" > <bool>>false</bool>> </attr>></node>>
13 ...
14 <node id="taxi">
15 <type xlinkhref="http://www.gupro.de/GXL/gxl-1.0.gx1#EdgeClass"/>
16 <attr name="name" > <string >taxi</string> </attr>
17 <attr name="1isabstract"><bool>false</bool></attr>
18 <attr name="1isdirected" > <bool>>false</bool>> </attr>></node>>
9 ...
20 <node id="n1">
21 <type xlinkhref="http://www.gupro.de/GXL/gx1l-1.0.gx1l#AttributeClass"/>
22 <attr name="name" > <string >number </string > </attr > </node>
23 <node id="n2">
24 <type xlinkhref="http://www.gupro.de/GXL/gx1-1.0.gx1l#Int"/></node>
25 ...
26 <edge id="e3" from="taxi" to="Junction">
27 <type xlink:href="http://www.gupro.de/GXL/gxl-1.0.gx1l#from"/>
28 <attr name="1limits"><tup><int>0</int> <int>—1</int> </tup></attr>
29 <attr name="1isordered" ><bool>false</bool> </attr> </edge>
30 <edge id="e4" from="taxi" to="Junction">
31 <type xlink:href="http://www.gupro.de/GXL/gxl-1.0.gx1l#to"/>
32 <attr name="1limits"><tup><int>0</int> <int>—1</int> </tup></attr>
33 <attr name="1isordered" ><bool>false</bool> </attr> </edge>
34 ...
35 <edge id="e8" from="Junction" to="nl">>
36 <type xlink:href="http://www.gupro.de/GXL/gxl-1.0.gxl#hasAttribute"/>
37 </edge>>
38 <edge id="e9" from="nl" to="n2">
39 <type xlinkhref="http://www.gupro.de/GXL/gx1l-1.0.gxl#hasDomain"/></edge>
40 ...
41 <edge id="el4" from="mapSchema" to="Junction">>
42 <type xlink:href="http://www.gupro.de/GXL/gx1-1.0.gxl#contains"/></edge>
43 ...
44 </graph>
45 </gxl>

Figure 5: GXL representation of schema graph in Figure 4 (extract)

Like all GXL graphs, this graph can be stored as an XML-stream following the GXL defi-
nition. An extract of that GXL document is depicted in figure 5. Graphs, modeling schema
information, are instances of the GXL-Metaschema whose GXL representation is stored
at http://www.gupro.de/GXL/gx1l-1.0.gx1l. Thus, all schema references link
to nodes of that file: e. g. NodeClass node Junction refers to the definition of its type
in the GXL-Metaschema (line 10). Analogously, lines 14-18 show the definition of edge-
Class taxi. taxi edges connect Junction nodes. These incidences are modeled by edges
e3 and e4 (lines 26-33). Attribute structures are represented by AttributeClass and do-
main nodes. Figure 5 shows the attribute structure associated to node class Junction in
lines 20-24 (Attribute and Domain) and in lines 35-39 (connections). Each GXL docu-
ment, defining a graph schema, possesses at least one GraphClass node representing the

109

graph class. Lines 6-8 denote the GraphClass-node for the map graph class. It is connected
to all of its node- and edge classes (e. g. lines 41f).

Since the GXL Metaschema is a schema, it is represented by an GXL document referring to
the GXL Metaschema, namely itself. The GXL Metaschema, its representation as UML-
class diagram and as GXL document is documented at [GXLa].

2.3 Customizing GXL

The previous sections shortly introduced GXL for representing graph data and associated
graph schemas. Both, graph instances and graph schemas are exchanged by the same type
of XML documents following the GXL specification.
Using GXL for exchanging graph data in a particular application domain requires to con-
strain the form of graphs, i. e. limiting the types of nodes and edges. GXL is customized
by defining graph schemas. These schemas determine

e which node, edge, and hyperedge classes (types) can be used,

e which relations can exist between nodes, edges, and hyperedges of given classes,

e which attributes can be associated with nodes, edges, and hyperedges,

e which graph hierarchies are supported, and

e which additional constraints (such as ordering of incidences, degree restrictions)
have to be imposed.

These constraints specialize the graph structure to represent the domain of interest. It is
useful to standardize graph structures for particular domains by GXL Reference Schemas.
Currently, those GXL reference schemas are defined for various reverses engineering do-
mains e. g. [LTP04] defines a GXL reference schema for language independent representa-
tion of source code data and [FSH* 01, FB02] deal with the definition of a GXL reference
schema for C++-abstract syntax trees.

Tailoring GXL for exchanging Business Process Models requires to specity GXL Schemas
for Business Process Models. Depending on the used modeling approach and notation,
these schemas define the relevant modeling concepts and their associations. The following
section introduces candidates for those GXL schemas for customizing GXL to exchange
Event-driven Process Chains and Workflow-Nets as a variant of Petri-Nets.

3 Exchanging Business Process Models

Business process models must provide the following views on organizations: control flow,
information, and organizational structure [Sc94b],[JBS97, p 98ff]. In this paper we focus
on the control flow part, which is modeled either in Event-driven Process Chains or in
Petri-Nets. All other aspects of business process models can be treated analogeously.
Several notations have been introduced which all profit from the ability of Petri-Nets to
represent both the actual process as well as business resources like humans or information.
A brought overview over published approaches to modeling business processes with Petri-
Nets is given by Janssens, Verelst and Weyn in [JVWO00]. Beside the descriptive nature of
models and the ability to verify the models with standard Petri net analysing techniques
or against special process specifications [Si02b, Si02a], their automatic execution within a
Workflow Management System [WfM96] is one of their aims.

110

Both the variety of description languages as well as the necessity to execute the models
in Workflow Management Systems require formal languages that can be used to exchange
models among different platforms. In the following we demonstrate how to use GXL as
such a language.

To illustrate our approach, we have have chosen Event-driven Process Chains (EPCs) in-
troduced by Scheer [Sc94b] and Workflow-Nets (WF-Nets) introduced by van der Aalst
[Aal96, AH02] as exemplary Petri-Net-based notations for business process modeling. We
are defining a meta schema for each of these notations and demonstrate the instantiation
of these models by examples.

3.1 Exchanging Event-driven Process Chains with GXL

Event-driven Process Chains (EPCs) [KNS92] are one central concept within the ARIS
business process framework [Sc00] basing on stochastic networks and Petri-Nets.

Events (depicted by hexagons) and functions (depicted by ovals) are the basic elements
of EPCs which are connected by a flow relation and additional connectives used to span

complex process structures. Figure 6 shows the basic elements of EPCs as defined in
[Sc94a].

CE1) (Ea) CE1) (Ea)
gﬁ (%

When event Eq and E2 occur, When event E1 or Ea occur,

function F' is launched function F' is launched

) (FE2) (FL) (FEs)

>

0
o

» A » A
()) () TE)

When event E1 and E2 occur, When event E or Ea occur,
functions Fy and F3 are launched either function Fy or Fa is launched

Figure 6: Event relationships in EPC from [Sc94a]

EPCs support branching and merging control flows. Logical operators (A, V, xzor) depicted
in circles, indicate how incoming events are combined to enable function execution, how
control flow is shared between concurrent functions, and how different functions result
in an event. Furthermore, EPCs provide sequences of control flow operators. In general,
control flows in EPCs span bipartite (hyper)-graphs, where functions follow on events and
events follow on functions.

Syntax and semantics of EPCs is explained somehow vague. Various approaches exist to
resolve this uncertainness by specifying the concrete syntax (e. g. [St99]) and semantics
(e.g.[NRO2], [ADKO2]) of EPC. In the following, we will not address that problem, we
only specify the EPC-syntax as far as it is required to explain the idea of using GXL for
exchanging EPC-based process models and assume an intuitive EPC semantics.

111

3.1.1 Metaschema for Event-driven Process Chains

Adapting GXL to exchange EPCs requires the specification of a GXL schema for Event-
driven Process Chains. This schema has to cover all modeling concepts and their associa-
tions used in EPC. In [Sc00] all modeling techniques used within the ARIS business pro-
cess framework are introduced along their metaschemas. The EPC meta schema in [Sc00,
p 128] was designed to roughly describe modeling techniques and their relationships to
other modeling techniques. Although this model is sound within the ARIS business pro-
cess framework, it is not appropriate for GXL exchange and has to be adapted. Especially,
it does not cover different kinds of control flows between events and functions.

A usefull meta schema for defining the exchange of EPC models has to specify the com-
plete syntax of EPC. It has to cover concepts for modeling events, functions and the various
control flows. Figure 7 shows the class diagram part of a GXL schema for EPC. To ex-
plain the idea of exchanging business process models with GXL, this schema is restricted
to those EPC concepts described in this paper. A complete GXL schema for EPC should
also contain concepts to exchange conditions, messages and hierarchies.

—— AtomicFlow AndBranch

<<abstract>>

Branch OrBranch

0.1

Event <« comesFrom XOrBranch
<<abstract>> [1..* 0..*
:|_‘> DynamicObject <<at;:SIg;Ct>> q_ A | next
name : string 1..* 0..*
Function < goesTo AndMerge

0.1

<<abstract>>

Merge OrMerge

XOrMerge

Figure 7: GXL schema for Event-driven Process Chains

Events and Functions are connected by Flows. comesFrom and goesTo-edges express the
directed flow of control between Events, Functions and Flows. Flows are distinguished in
AtomicFlows linking from one event to one function or vice versa, in Branches branching
control flow to various events or functions, and in Merges joining control flow from various
events or functions. Branches and Merges occur in their A, V, and xor-variants. Direct
sequences of flows between merges and branches (cf. Figure 6) are modeled by next-edges.
Further constraints add syntactical restrictions to a metaschema. For instance, these con-
straints ensure, that functions and events alternate on the control flow, that branches have
one incoming and many outgoing connections, and that merges have many incoming and
only one outgoing connection. These constraints are not required to exchange graphs with
GXL, but they are mandatory to decide if an EPC model conforms its syntax definition.
Complete meta schemas for EPC with their class diagram and constraint part are given in
[Wi00, 192]. These schemas also include hierarchies of EPC and the embedding of EPC
in multi-perspective modeling environments.

112

A meta schema like the one in Figure 7 controls the exchange of EPC business process
models via GXL. According the GXL meta schema the EPC schema is exchanged by an
suitable GXL graph (cf. section 2.2).

3.1.2 Exemplary EPC in GXL

Exchanging an EPC with GXL is based on translating the EPC diagram into an GXL
graph according the metaschema given in Figure 7. In the following, we will demonstate

this with an example EPC modeling a business process for processing customer orders
[BH99, p. 62] in Figure 8.

customer
calls

i

~
define CO |
-/

5]

r

CO defined

h i h o Y h o l

™y =y
check check sales establish check reserve
aspects cust. credit | availability ‘ product

v] J

feasibility
A

"
(efe] CO not sales aspects\ / sales aspects cust. credit cust. credit prod prod not prod
feasible feasible OK not OK established / \not establishe available available reserved

hYY

~
accept ‘

X ™y
reject |
CcO

co

A Y

Cco Cco
accepted rejected

Figure 8: An exemplary EPC (from [BH99, p. 62])

Business process “process customer order” starts with a customers call. After defining
the order, control flow branches into concurrent activities which perform various tests.
Depending on their results, the customers order is either accepted or rejected.

Figure 9 shows an extract of the GXL graph representing the EPC depicted in Figure 8.
Events are modeled by Event and Functions by Function nodes: e.g.node nel:Event
represents the event customer calls starting the business process and nf1l:Function
depicts the first function, which defines the customer order (define CO).

113

nel:Event

name="customer calls"

‘r' comesFrom
c1:AtomicFlow
goesTo
nf1:Function

name="define CO"

‘r' comesFrom
c2:AtomicFlow
*. goesTo
ne2:Event

name="CO defined"

‘r comesFrom

| c3:AndBranch I

4, goesTo l goesTo + goesTo

nf2:Function nf5:Function nf6:Function

name="check feasibility" name="check availability" name="reserve product"
f comesFrom ‘r comesFrom f‘ comesFrom

c4:0rBranch | | c7:0rBranch | | c8:AtomicFlow
goesTo 4, goesTo ‘. goesTo *, goesTo + goesTo

ne3:Event ne4:Event ne9:Event ne10:Event nel1:Event
name="CO feasible" name="CO not feasible" o name="prod available" name="prod not available" name="prod reserved"

4 comesFrom T comesFrom 4 comesFrom f comesFrom
c10:0rMerge

c9:AndMerge I

4. goesTo + goesTo
nf7:Function nf8:Function
name="accept CO" name="reject CO"
f comesFrom f comesFrom
c11:AtomicFlow c12:AtomicFlow
4. goesTo 4. goesTo
nel2:Event ne13:Event
name="CO accepted" name="CO rejected"

Figure 9: Representation of the exemplary EPC of figure 8 as a UML instance diagram

On the contrary to the EPC diagram in Figure 8, where atomic flows of control are depicted
as directed edges, the EPC meta schema demands modeling atomic flows by nodes. Anal-
ogously to merges and branches, AtomicFlow nodes connect associated events or functions
by comesFrom and goesTo edges (cf.node c1:AtomicFlow).

Branching the flow of control into various concurrent activities is modeled by AndBranch
nodes. For instance node c¢3 : AndBranch links the (incoming) event CO defined with
the (outgoing) concurrent functions by comesFrom and goesTo edges. Analogously, And-
Merge and OrMerge nodes collect control flows. E.g. node c¢9:AndMerge conjugates
the events CO feasible and prod available and proceeds with function accept CO.

Figure 10 shows the GXL stream representing an extract of the graph in Figure 9. This
GXL document refers to the GXL representation of the EPC meta schema (cf. Figure 7)
in line 5. Events, Functions and Flows are stored by suitable <node> elements (lines
9-16) and their connections are modeled by <edge> elements. Lines 21-26 show the
conjunction (node c9 : AndMerge in line 16) of events CO feasible (node ne3:Event) and
prod available (node ne9:Event) leading to the execution of function accept CO (node
nf7:Function).

114

O 001N N B~ W —

<?xml version="1.0"?>
<IDOCTYPE gxl SYSTEM "http://www.gupro.de/GXL/gxl-1.0.dtd" >
<gxl xmlns:xlink="http://www.w3.0rg/1999/x1link" >
<graph id="exampleEPC" edgeids="true" edgemode="directed" >
<type xlink:href="metaEPC.gxl#epcSchema"/>
<node id="nel"><type xlink:href="epcSchema .gxl#Event"/>
<attr name="name" > <string>customer calls</string></attr></node>-

<node id="nfl"><type xlink:href="epcSchema .gxl#Function"/>

10 <attr name="name" ><string>define CO</string>></attr>></node>

12 <node id="cl1"><type xlink:href="epcSchema.gxl#AtomicFlow"/></node>

13 ...

14 <node id="c3"><type xlink:href="epcSchema.gxl#AndBranch"/></node>
15 ...

16 <node id="c9"><type xlink:href="epcSchema .gxl#AndMerge"/></node>
17 ...

18 <edge id="el" from="cl" to="nel">>

19 <type xlink:href="epcSchema .gxl#comesFrom"/></edge>

20 ...

21 <edge id="el7" from="c9" to="ne3">

22 <type xlink:href="epcSchema .gxl#comesFrom"/></edge>

23 <edge id="el18" from="c9" to="ne9">

24 <type xlink:href="epcSchema .gxl#comesFrom"/></edge>

25 <edge id="e22" from="c9" to="nf7">

26 <type xlink:href="epcSchema .gxl#goesTo"/></edge>>

27 ...

28 </graph>

29 <lgxl>

Figure 10: GXL representation EPC graph in Figure 9 (extract)

3.2 Exchanging Workflow-Nets with GXL

Petri-Nets [Pe62, Ba96] are a formally sound and well understood approach to describe
and analyse concurrent and non-deterministic processes.

Places represent system states or conditions and transitions model specified actions pro-
voking the change of states. Usually places are depicted by circles and transitions by
rectangles. Flows connect places and transitions. Like flows in EPC, they span a bipartite
graph, where places proceed transitions and transitions proceed places. The base modeling
constructs of those place-transition-nets is shown in Figure 11.

When condition s1 and s2
s1 hold, transaction t1 is launched
and terminates in condition s3

t1

—0

s2

s3

sb
s4
Oz
When condition s4t holds, s6

transactions t2 is launched and
terminates in conditions s5 and s6

Figure 11: Petri-Net modeling constructs

Process modeling is supported by various different Petri-Net variants. To explain the ex-
change of business processes modeled by Petri-Nets we have chosen Workflow-Nets de-
fined by van der Aalst [Aal96] as an example.

115

3.2.1 Metaschema for Workflow-Nets

Workflow-Nets are especially suited to describe and analyze workflows. Formally speak-
ing (cf. [Aal00]), a Workflow-Net is a Petri-Net

e there exists one input (or source) place ¢ € P with ei = {J, i.e. 7 is no postcondition
of any transition,

e one output (or sink) place 0 € P with oe = {}, i.e. 0 is no precondition to any
transition,

e ecvery node 2 € PU R is on a path from 7 to o

Additionally, transitions can be augmented by triggers (time and event) describing addi-
tional conditions for firing specific transitions. We will use this additional construct within
our example and, therefore, take into account within our meta schema.

To enable exchanging Workflow-Nets with GXL, all modeling constructs have to be de-
fined in a GXL metaschema. This metaschema can be viewed as an extension of the
metaschema of simple Petri-Nets already presented in [Wi0O] by a means to associate
typed triggers to transitions. Figure 12 shows a GXL metaschema for Workflow-Nets.

<<abstract>> i . »
Place < linksTo <<abstract>> linksTo > Transition

0.* Flow 0.* 1

name : string name : string

/\ N 1.7
triggers
I I 0.*

Input Internal Output To To <<abstract>>
Place Place Place Place Transition Trigger
Time Event
Trigger Trigger

Figure 12: GXL meta schema for Workflow-Nets

Places and Transitions are connected by Flows. According to the definition of Workflow-
Nets [Aal00], places are distinguished into InputPlaces, InternalPlaces, and OutputPlaces.
Additional constraints ensure, that there exists only one InputPlace and only one Output-
Places having no incoming or outgoing transitions. Transitions might be triggered by time
(TimeTrigger) or by external events (EventTrigger). To show that GXL can deal with dif-
ferent meta-modeling styles, we used special subtypes of Flows to indicate if a flow links
to a place (ToPlace) or to a transition (ToTransition). Corresponding places and transitions
are connected by linksTo edges. A further constraint ensures that the resulting graph has to
be connected.

Workflow-Nets can be exchanged with GXL, using the Workflow-Net metaschema from
figure 12. The metaschema itself is exchanged by its suitable GXL graph (cf. section 2.2).

116

3.2.2 Exemplary Workflow-Net in GXL

Figure 13 shows an exemplary Workflow-Net taken from [Aal00]. The net describes the
distribution and evaluation of questionnaires. Although this net is a simple Petri-Net ex-
cept the extraordinary role of places ¢ and o, two additional elements are added: a clock
interpreted as a time trigger for transition time out and an envelope symbol representing an
external trigger for transition process questionnaire. Their interpretation is as follows:
transition time out fires immediately after a specified time is over, and transition process
questionnaire fires immediately when an external event occurs and is recognized - in this
example the arrival of an answered questionnaire.

| ;
cl Q— register

send
questionnaire

= 2O g

process processing

questionnaire time out required

NV
he

.

evaluate

no
processing

O

2
o
o
@
123
12

complaint

O

check
processing

processing
NOK

c9

)t

processing

T

- archive

c6

Figure 13: A WF-net for the processing of complaints from [Aal00]

(s

Figure 14 shows the translation of the Workflow-Net into a graph matching the Workflow-
Net metaschema from Figure 12. Input- and output places are modeled by InputPlace and
OutputPlace nodes c0 and c10. InternalPlace nodes represent all intermediate places,
e.g.cl:InternalPlace describes a system state after registration. Transitions are
modelled by Transition nodes, which also carry the transitions name: here the first transi-
tion is mapped to node t 1. Place and Transition nodes are connected by ToTransition and
ToPlace nodes. These nodes are associated by linksTo edges. Triggers controlling the invo-
cation of transition process questionaire and time out are modeled by x1 : TimeTrigger
and x2 : Event Trigger nodes, respectively. They are connected to their Transitions by
triggers edges.

117

cO:InputPlace

name=-1

f1:ToTransition

¥

t1:Transition

name="register"

| 2:ToPlace | f12:ToPlace |

t ¥

cl:InternalPlace c2:InternalPlace

name="cl" name="c2"

| 3:ToTransition | | f13: ToTransition |

¥ ¥

t2: Transition t5: Transition

name="sendQuestionnaire” name="evaluate"

f4:ToPlace f14:ToPlace |

¥ ¥

c3:InternalPlace c4:InternalPlace | T

f16: ToTransition
name="c3" name="c4" | 3

| t7: Transition

15: ToTransition | | f6:ToTransition | | f15:ToTransition
+ + + name="noProcessing"”

t3:Transition t4: Transition t6: Transition 26 ToPlace

1ame="processQuestionnaire" name="timeOut" name="processingRequired”

x1:TimeTrigger | | x2:ExternalEvent | | f17:ToPlace |

¥

c7:InternalPlace |

name="c7" |

7:ToPlace | | £8: ToPlace I8 ToTransition |

e e— :

1 opt
5:Internal Plac 4—| 19: ToPlace 18- Transit
co/interna ace | ‘|'—-' ransition v
name="c5" '4_| £10:ToTransition {._.. name="processComplaint"

f11:ToTransition | | 19:ToPlace

c8:InternalPlace

name="c8"

| £20: ToTransition |

¥

t9: Transition |

124:ToPlace
name="checkProcessing” +

57 ToPlace | t11:Transition

'processingNOK "

name="

123:ToTransition

¢9:InternalPlace _’_{

name="c9"

£22: ToTransition |

¥

t10: Transition

name="processingOK"

| 25 ToPlace |

¥

c6:InternalPlace

name="c6" -

| 27: ToTransition |

h 4 Y_J

t12:Transition

name="archive"

| 28: ToPlace

c10:OutputPlace

—o"

name=

Figure 14: Representation of the exemplary Workflow-Net of Figure 13 as UML instance diagram

118

Finally, the graph depicted in Figure 14 has to be transfered into a GXL stream. Figure 15
shows a snippet of that document referring to the Workflow-Net metaschema (cf. Figure 12)
stored in as GXL document in metaPN.gx1. Places, transitions, and triggers are ex-
changed by suitable <node> elements (lines 6-19). <edge> elements, referring the def-
inition of linksTo and triggers-edges in metaPN.gx1 describe the interrelation between
places, transitions, and triggers.

<?xml version="1.0"?>
<!DOCTYPE gxl SYSTEM "http://www.gupro.de/GXL/gxl-1.0.dtd" >
<gxl xmlns:xlink="http://www.w3.0rg/1999/x1ink">
<graph id="examplePN" edgeids="true" edgemode="directed" >
<type xlink:href="metaPN.gxl#pnSchema"/>
<node id="c0"><type xlink:href="pnSchema.gxl#InputPlace"/>
<attr name="name" ><string>i</string>> </attr> </node>

0O~ N AW —

9 <node id="cl"><type xlink:href="pnSchema.gxl#InternalPlace"/>
10 <attr name="name" ><string>i</string>> </attr> </node >

12 <node id="t1"><type xlink:href="pnSchema.gxl#Transition"/>
P

13 <attr name="name" ><string>define CO</string>> </attr>></node>

14 ...

15 <node id="f1"><type xlink:href="pnSchema.gxl#ToTransition"/></node>
16 ...

17 <node id="f2"><type xlink:href="pnSchema.gxl#ToPlace"/></mode>

18 ...

19 <node id="x1"><type xlink:href="pnSchema.gxl#TimeTrigger"/></node>
20 ...

21 <edge id="el" from="£f1" to="c0">

22 <type xlink:href="pnSchema.gx1#linksTo"/></edge>>

23 <edge id="e2" from="f1" to="t1n">

24 <type xlink:href="pnSchema.gx1l#linksTo"/></edge>>

25 ...

26 <edge id="ell" from="x1" to="t3">

27 <type xlink:href="pnSchema .gxl#triggers"/></edge>

28 ...

29 </graph>-

30 </gxl>

Figure 15: GXL representation of the Workflow-Net graph in Figure 14 (extract)

4 Conclusion

GXL provides an adaptable, easy processable and widely distributed exchange format for
graph-based data. Consequently, GXL is an eligible means to exchange models for all
types of visual modeling languages. GXL follows a metamodel-based strategy to adapt
GXL for exchanging particular models. Metaschemas for each modeling approach define
graph structures, which carry appropriate models. In this paper we demonstrate how to
tailor GXL to exchange business process models depicted as Event-driven Process Chains
and Workflow-Nets. Analogously, GXL can be customized to exchange contol flow as-
pects of business process models represented in further Petri-Net based notations or pro-
cess modeling languages like UML activity diagrams or flow charts. Exchanging data on
the information-view or the organizational-structure-view of business process follows the
same mechanism by using suitable metaschemas for e. g. class diagrams, entity-relation-
ship diagrams or organization charts. Integrated GXL schemas provide a coherent inter-
change format covering all views of business processes.

119

There exist further approaches for exchanging control flow aspects of business process
models. EPML (Event-Driven Process Chains (EPC) Markup Language) [EPML], [MNO04]
offers an XML-based interchange format for Event-driven Process Chains. An XML-
based interchange language for various types of Petri-Nets is given by PNML (Petri Net
Markup Language) [PNML] [BCHT03]. Both offer means to exchange business process
models including layout information. Whereas these approaches provide sufficient support
for exchanging only EPC or Petri-Nets, GXL is not restricted to one style of modeling lan-
guages.

A general interchange format is given by XMI (XML Meta Data Interchange) [OMGO00].
This approach comes along with different document type definitions for different modeling
approaches. Usually, these document definitions are rather complex and contain a vast
number of (unnecessary) XML elements. Additionally, XMI requires different document
types for schemas and instances. Depending on the intended usage, a schema has to be
represented as an XML-instance of its schema or as a document type definition. GXL only
requires one common and simple document type definition (using only 18 elements) for
exchanging instance and schema data in the same way.

In contrast to EPML and PNML, GXL does not offer any support for exchanging layout
information on graph based data per se. Here, GXL follows a strong separation of content
and layout. GXL provides means for exchanging content information. Layout information
can be stored for instance with GraphML (Graph Markup Language) [BEH*01], [Gra01]
or SVG (Scalable Vector Graphics) [W3CO03]. Thus, storing business process models with
GXL-files enables independent calculation of layout with proper graph layout techniques.
But, since GXL is generally adaptable by metaschemas, these metaschemas might also be
defined to carry structures for exchanging layout information.

Summarizing, GXL offers a general means for exchanging graph-based data. The adapt-
ability of GXL enables its usage to exchange business process models following different
styles. Expanding GXL to a general base for exchanging business process models, requires
to agree upon a set of widely accepted schemas for all commonly used business process
models. These schemas might also found a base for defining transformations between
different business process languages A catalog of candidates for those metaschemas for a
large variety of modeling languages is given in [Wi00].

References

[Apache] The Apache XML Project. http:http://xml.apache.org/.

[Ba96] Baumgarten, B.: Petri-Netze, Grundlagen und Anwendungen. Heidelberg. 1996.

[BCH+03] Billington, J., Christensen, S., van Hee, K., Kindler, E., Kummer, O., Petrucci, L.,
Post, R., Stehno, C., and Weber, M.: The Petri Net Markup Language: Concepts,
Technology, and Tools. In: W. van der Aalst, E. Best (eds.): Applications and Theory
of Petri Nets 2003: 24th International Conference, ICATPN 2003. Proceedings, LNCS
2679. S. 483-505. 2003.

[Be76] Berge, C.: Graphs and Hypergraphs. volume 6. North-Holland. Amsterdam. 2. 1976.

[BEHT01] Brandes, U., Eiglsperger, M., Herman, I., Himsolt, M., and Marschall, M. S.: GraphML
Progress Report, Structural Layer Proposal. In: Graph Drawing 2001. 2001.

[BH99] Bungert, W. and HeB, H.: Objektorientierte Geschiaftsmodellierung. Information Man-
agement. 10(1):52-63. 1999.

120

[B104]

[BRI99]

[Bu01]

[CSMR02]
[EKMO1]
[EPML]
[EWDT96]
[FB02]
[FSHT01]

[Gra01]
[GTXL]

[GXLa]
[GXLb]

[HWS00]
[JBS97]

[JVWO00]

[Ka03]
[KGW98]

[KNS92]

[LTP04]

[MJL02]

[MN04]
[Mii98]

[NRO2]

Blaha, M.: Data Store Models are Different than Data Interchange Models (Workshop
on Meta-Models and Schemas for Reverse Engineering) . fo appear in Electronic Notes
on Theoretical Computer Science. 2004.

Booch, G., Rumbaugh, J., and Jacobson, I.: The Unified Modeling Language User
Guide. Addison Wesley. Reading. 1999.

Busatto, G. An Abstract Model of Hierarchical Graphs and Hierarchical Graph
Transformation. http://www.informatik.uni-bremen.de/~giorgio/
papers/phd-thesis.ps.gz. 2001.

6th European Conference on Software Maintenance and Reengineering. 1IEEE Com-
puter Society. March 11 - 13 2002.

J. Ebert, K. Kontogiannis, J. Mylopoulos: Interoperability of Reverse Engineering
Tools. http://www.dagstuhl.de/DATA/Reports/01041/.2001.

EPC Markup Languge. http://wi.wu-wien.ac.at/Wer sind wir/
mendling/EPML/.

Ebert, J., Winter, A., Dahm, P., Franzke, A., and Siittenbach, R.: Graph Based Model-
ing and Implementation with EER/GRAL . In: /Th96]. S. 163—178. 1996.

Ferenc, R. and Beszédes, A.: Data Exchange with the Columbus Schema for C++. In:
[CSMRO02]. S. 59-66. 2002.

Ferenc, R., Sim, S. E., Holt, R. C., Koschke, R., and Gyimothy, T.: Towards a Standard
Schema for C/C++. In: [WCREOQI]. S. 49-58. 2001.

The GraphML Format. http://www.graphdrawing.org/graphml/. 2001.
Graph Transformation System Exchange Language. http://tfs.cs.
tu-berlin.de/projekte/gxl-gtxl.html.

GXL: Graph Exchange Language. http://www.gupro.de/GXL.

GXL: Graph Exchange Language, Tools. http://www.gupro.de/GXL/tools/
tools.html.

Holt, R. C., Winter, A., and Schiirr, A.: GXL: Toward a Standard Exchange Format.
In: /WCRE00]. S. 162—-171. 2000.

Jablonski, S., B6hm, M., Schulze W.: Workflow-Management, Entwicklung von Anwen-
dungen und Systemen, Facetten einer neuen Technologie. dpunkt. Heidelberg. 1997.
Janssens, G. K., Verelst, J., and Weyn, B.: Techniques for Modelling Workflows and
Their Support of Reuse. In: van der Aalst, W., Desel, J., and Oberweis, A. (eds.),
Business Process Management (Models, Techniques, and Empirical Studies). LNCS
1806. Berlin. 2000. Springer.

Kaczmarek, A.: GXL Validator, Validierung von GXL-Dokumenten auf Instanz-,
Schema, und Metaschema-Ebene. Studienarbeit. Universitit Koblenz-Landau. 2003.
Koschke, R., Girard, J.-F., and Wiirthner, M.: An Intermediate Representation for
Integrating Reverse Engineering Analyses. In: /[WCRE9S]. S. 241-250. 1998.

Keller, G., Niittgens, M., and Scheer, A.-W.: Semantische ProzeBmodellierung auf der
Grundlage "‘Ereignisgesteuerter ProzeBketten"” (EPK). IWi-Heft Heft 89. Institut fiir
Wirtschaftsinformatik. Saarbriicken. Januar 1992.

Lethbridge, T. C., Tichelaar, S., and Ploedereder, E.: The Dagstuhl Middle Metamodel,
(Workshop on Meta-Models and Schemas for Reverse Engineering) . to appear in
Electronic Notes on Theoretical Computer Science. 2004.

Mutzel, P., Jiinger, M., and Leipert, S. (eds.): Graph Drawing, 9th International Sympo-
sium, GD 2001 Vienna, Austria, September 23-26, 2001. Revised Papers. LNCS 22635.
Springer. Berlin. 2002.

Mendling, J. and Niittgens, M. EPC Markup Language and Refernce Models for XML
Model Interchange. draft. 2004.

Miiller, H. Criteria for Success, in Exchange Formats for Information Extracted from
Computer Programs. http://plg2.math.uwaterloo.ca/ holt/sw.eng/exch.format/. 1998.
Niittgens, M. and Rump, F. J.: Syntax und Semantik Ereignisgesteuerter Prozessket-
ten (EPK). In: PROMISE 2002, Prozessorientierte Methoden und Werkzeuge fiir die
Entwicklung von Informationssystemen, LNI P-21. S. 64-77. 2002.

121

[OMG00]
[Pe62]
[PNML]
[Sc94a]
[Sc94b]
[Sc00]
[ScY]
[Si02a]
[Si02b]

[St99]

[Ta01]
[Th96]
[Aal96]

[Aal00]

[ADK02]

[AHO2]
[W3C00]
[W3C01]
[W3C03]
[WCRE98]
[WCRE00]
[WCREO1]
[WM96]
[Wi00]

[Wi02]
[WK98]

XML Meta Data Interchange (XMI) Specification. http://www.omg.org/
technology/documents/formal /xmi.htm. November 2000.

Petri, C. A. Kommunikation mit Automaten. Schriften des Institutes fiir instrumentelle
Mathematik, Bonn. 1962.

Petri-Net Markup Language. http://www.informatik.hu-berlin.de/
top/pnml/.

Scheer, A.-W.: Business Process Engineering - Reference Models for Industrial Enter-
prises, 2nd ed. Springer-Verlag. Berlin. 1994.

Scheer, A.-W.: Wirtschaftsinformatik, Referenzmodelle fiir industrielle Geschdift-
sprozesse. Springer. Berlin. 5. 1994.

Scheer, A.-W.: ARIS - Business Process Modeling, 3rd ed. Springer-Verlag. Berlin.
2000.

Scotland Yard, Hunting Mr. X. Ravensburger.

Simon, C.: A logic of actions to specify and verify process requirements. In: The
Seventh Australien Workshop on Requirements Engineering (AWRE 2002). Melbourne,
Australia. 2002.

Simon, C.: Verification in factory and office automation. In: /EEE International Con-
ference on Systems, Man and Cybernetics (SMC). Hammamet, Tunesien. 2002.

Staud, J.: Geschidfisprozefsanalyse mit Ereignisgesteuerten Prozefketten, Grundlage
des Business Reengineering fiir SAP R/3 und andere Betriebswirtschaftliche Standard-
software. Springer. Berlin. 1999.

Taentzer, G.: Towards Common Exchange Formats for Graphs and Graph Transforma-
tion Systems. In: Proceedings UNIGRA satellite workshop of ETAPS’01. 2001.
Thalheim, B. (ed.): Conceptual Modeling — ER’96. LNCS 1157. Springer. Berlin.
1996.

van der Aalst, W.: Structural Characterizations of Sound Workflow Nets. Computing
Science Reports 96/23. Eindhoven University of Technology. 1996.

van der Aalst, W.: Workflow Verification: Finding Control-Flow Errors Using Petri-
Net-Based Techniques. In: van der Aalst, W., Desel, J., and Oberweis, A. (eds.), Busi-
ness Process Management (Models, Techniques, and Empirical Studies). LNCS 1806.
Berlin. 2000. Springer.

van der Aalst, W., Desel, J., and Kindler, E.: On the semantics of EPCs: A vicious
circle. In: M. Niittgens, F. J. Rump (eds): EPK 2002, Geschdftsprozessmanagement mit
Ereignisgesteuerten Prozessketten. S. 71-79. 2002.

van der Aalst, W. and van Hee, K.: Workflow Management - Models, Methods, and
Systems. MIT Press. Cambridge, Massachusetts. 2002.

Extensible Markup Language (XML) 1.0 (Second Edition). http://www.w3 .org/
TR/2000/REC-xm1-20001006.pdf. October 2000.

XML Linking Language (XLink) Version 1.0, W3C Recommendation. http://
www.w3 .0org/TR/2001/REC-x1ink-20010627/.27 June 2001.

Scalable Vector Graphics (SVG) 1.1 Specification. http://www.w3.org/TR/
2003 /REC-SVG11-20030114/. 14 January 2003.

Sth Working Conference on Reverse Engineering. IEEE Computer Society. 1998.

7th Working Conference on Reverse Engineering. IEEE Computer Society. 2000.

8th Working Conference on Reverse Engineering. IEEE Computer Society. 2001.
Terminology & Glossary. Technical Report WFMC-TC-1011. Workflow Management
Coalition. Brussels. June 1996.

Winter, A.: Referenz-Metaschemata fiir visuelle Modellierungssprachen. Deutscher
Universitatsverlag. Wiesbaden. 2000.

Winter, A.: Exchanging Graphs with GXL. In: /MJL02]. S. 485-500. 2002.

Warmer, J. B. and Kleppe, A. G.: The Object Constraint Language : Precise Modeling
With UML. Addison-Wesley. 1998.

122

