
Using Event-Driven Process Chains for Model-Driven
Development of Business Applications

Daniel Lübke(1), Tim Lüecke(1), Kurt Schneider(1), Jorge Marx Gómez(2)

daniel.luebke@inf.uni-hannover.de, tlueecke@acm.org,
kurt.schneider@inf.uni-hannover.de, marx-gomez@informatik.uni-oldenburg.de

(1)University of Hannover, FG Software Engineering
(2)University of Oldenburg, Department of Computer Science

Abstract: Web services provide a standardized way of accessing functionality over
networks. Most beneficial is their use if many Web services are composed in order
to develop an application. Due to their nature, Web servicescan be used to support
businesses if their composition matches the underlying business processes. However,
the activities related to composition as well as design of a corresponding user interface
are still time consuming. This is especially true in small and medium sized enterprises
(SMEs) due to their available resources. Therefore, we propose a light-weight concept
for model-driven composition by attaching additional attributes to EPCs only. This
allows to model the Web service composition as well as the user interaction. In this
context model-driven means that developers create models instead of source code.
These models are then used to create executable code.

In contrast to established approaches complete applications can be modeled with
less effort. Therefore, even SMEs who cannot invest heavilyinto information technol-
ogy can profit from the advantages of Web service technology.

1 Introduction

With the advent of Web services during the last years, software components can be re-
motely accessed via local networks as well as the Internet. Small services provide clients
with specific functions. These can be invoked using standardized protocols, like Simple
Object Access Protocol (SOAP) [GHM+03]. The goal is to create an infrastructure al-
lowing business applications to transparently discover and use Web services. Thereby, the
integration of different applications and the developmentof distributed applications will
be made easier. This architecture, called Service OrientedArchitecture (SOA), provides a
transparent environment in which applications are composed out of services.

Some hopes and visions are associated with SOAs. For example, Enterprise Application
Integration (EAI), i.e. the seamless connection and data exchange between different sys-
tems in an enterprise, is mainly based on using Web service standards. While EAI has
become an objective for larger enterprises due to the huge number of deployed systems,
small and medium sized enterprises (SME) still have problems supporting their business

265

processes with integrated IT systems.

SMEs compete against larger corporations utilizing their flexibility and their ability to in-
novate. In order to further increase their opportunities, these SMEs need to deploy ERP
systems to support their business processes. But to stay as flexible and competitive as
today, SMEs would have to customize their ERP system each time the business processes
change. However, ERP systems are complex and their customization as well as mainte-
nance are costly. Therefore, SMEs often do not have the financial resources to deploy and
maintain powerful and large ERP systems.

To fill this gap, cheaper ERP systems with less functionalityhave been offered and the
concept of Application Service Providing (ASP) has emerged. However, both solutions
have their drawbacks: ERP systems offering less functionality do not realize all possible
opportunities and do not address maintenance costs. Even worse, ASP, i.e. the operation of
systems by a third-party in an external data-center, has been rejected because enterprises
are not willing to store their valuable data externally and the distribution of responsibilities
creates management problems [Wal03]. Therefore, a solution is needed which combines
local data management with reduced costs and flexible support for changing and optimiz-
ing business processes [LGS05].

We address this problem with an ERP system whose logic is completely composed of Web
services. These are dynamically arranged to support the company’s business processes
[KGRL04]. Such an ERP system has the advantage of storing allrelevant data in-house as
well as being extensible by integrating as many Web servicesas required for realizing the
desired functionality.

The main focus of this paper is the light-weight compositionof a set of Web services to
a fully functional application by directly using business process descriptions. For a fully
functional application not only the logic but also the user interface has to be composed as
well. For modeling the application’s processes Event-Driven Process Chains (EPCs) are
used.

The presented ideas are subject of our current research. Theuser interface part has already
been implemented, demonstrating the technical merits of our approach and serving as a
proof of concept. Composition of Web services and data management will be implemented
next.

This paper is structured as follows: After presenting the related work on this subject, the
paper discusses possible advantages of using EPCs in the given problem domain. In the
main part, the concepts for composing Web services and user interfaces are explained.
Afterwards, a small example is given. The paper closes by describing future research
problems and challenges before a conclusion is given.

2 Related Work

As stated in the introduction, the goal of our approach is thelight-weight design of business
applications as a whole using a model-driven concept. This includes the generation of the

266

user interface needed to support human interaction with theIT system. However, EPCs
are only used for the modeling and visualization of businessprocesses. Thus they must be
extended with additional information, allowing for the modeling of the Web services’ flow
and the user interface.

From the field ofBusiness Process Modeling, research into EPCs [KNS92] is valuable to
our approach: Since the main purpose of EPCs is to model business processes, some prop-
erties are missing to directly use EPCs as a workflow language. However, there has been
research on how EPCs can be used as a workflow language [Deh02]and which extensions
are needed to pass all workflow patterns [MNN05]. Other research has been done to pre-
cisely define the semantics of EPC models [Kin06]. Furthermore, proprietary standards
have been developed, e.g. by IBM [LSZ01] to combine businessprocess management and
Web service development.

In the field ofWeb Service Compositionthe predominant standard is the Business Process
Execution Language for Web services (BPEL4WS, WS-BPEL, BPEL) [ACD+05] which
allows the composition of Web services but does not incorporate any user interaction.
Furthermore, there has been research on the architectural and management issues of Web
service-based applications, for example by Ardissono et. al. [ACPS04] and Anzboeck
[ADG02]. On the subject on how to synchronize business processes and Web service
composition there has been much research as well, e.g. repository replication by Terai et.
al [TIY03]. Furthermore, there are possibilities to map BPEL descriptions back to EPCs
[MZ05].

Related touser interface Design and Generationis the attachment of user interface infor-
mation to business processes. The idea of capturing the coredesign of a user interface in
an abstract model is not new and has been researched activelyin the Model-Based Design
of user interfaces (MB-UI) for more than a decade [Pat99]. Numerous design environ-
ments have been proposed, each differing in the number and type of models used (for a
thorough overview the reader is referred to [dS00]). Thetask model, commonly found in
all approaches, is tightly connected to our project: The business process model is in fact a
task model on a very high abstract level. This is elaborated in [Træ99], where the author
shows that both models share the same basic components.

Criteria which are required for successful acceptance of model-based techniques by prac-
titioners and problems MB-UI techniques have faced in the past are listed in [TMN04].
Especially their complexity hinders their application. Therefore, our approach particularly
strives to reduce the inherent complexity.

3 Using Business Processes as a Modeling Tool for ERP Systems

The main users of our envisioned ERP system are SMEs as they often optimize their
business processes. They should themselves be able to customize the software as easily
and cheaply as possible.

We assume SME personnel to be able to understand and edit simple business process no-
tations. Business Processes are often modeled in Business Process Languages, i.e. special

267

notations suited to be comprehensible by business process designers, IS specialists and
many economists. These notations are a very good foundationto build a common under-
standing between all involved parties.

In SOA-based applications services are composed. In particular applications need to know
when and how a service should be executed.

Such compositions can be implemented by using workflow systems. They allow to de-
scribe an executable process whose activities can be service calls. Special languages like
BPEL have been developed in order to make Web service composition easier. Composition
models are often refinements of business processes. After special composition languages
have been used, the extraction of a pure business process view is difficult. The synchro-
nization between business process models on the one hand andthe dependent composition
models on the other hand is a real challenge. Research has been done on how to make
the transition back to business process models easier [MZ05] or how to replicate between
both repositories [TIY03]. But much effort would be saved ifit was not necessary to
synchronize at all. Instead a unified repository in which changes to the underlying busi-
ness processes would directly change the composition modelas well would be a better
alternative.

For our design of an ERP system suited for SMEs the aim is such aunified repository.
Event-Driven Process Chains (EPCs) are the foundation of our approach: They are ex-
tended with necessary attributes for generating a working software system. The system
shall support the corresponding business processes and useWeb services for embedding
the application logic into the system.

In order to be useful, an application needs to be operated by end users. In contrast to
BPEL we decided to model the user interaction directly in thebusiness process as well
and generate screen masks out of the business process repository.

The necessary extensions can be organized in different views on the EPC model: There
can be views for traditional EPCs, for composition properties, for requirements and so on.
EPCs are well-suited for this task because many views are just hierarchical refinements of
traditional business functions. For example, steps in the user interface correspond to steps
within a business function.

Consequently, our approach tries to attach necessary information for generating applica-
tions as properties to EPC models. Therefore, we divide the application into three layers:

• Presentation Layer: In this layer the user interface is generated from the extended
EPC attributes.

• Process Layer: The process layer is responsible for the composition of theWeb
services, to organize the application’s workflow and data management.

• Web Service Layer: The application logic is composed out of Web services which
are offered on the Internet and in the local network.

In the next two sections we present the additional properties needed for Web service com-
position and UI generation.

268

4 Attaching Web Services to Business Functions

When composing Web services within the given scenario of SMEs, the composition should
be easily understandable and changeable. Since EPCs can foster a common understanding,
it would be helpful to use EPC models in order to do the composition.

For composition we differentiate Web services depending ontheir granularity:

• Business Service: This kind of Web service can be directly invoked to execute the
program logic covering a whole business function in an EPC. This means one busi-
ness function can be related directly to one Web service call.

• Sub-Business Service: All other services which provide a corresponding business
service interface, such as technical support services likedata querying etc. and
business logic services which contain business logic but not on an abstraction level
high enough to directly support a business function withoutrequiring additional help
mechanisms like transaction management.

In the following the composition options of each Web servicetype will be discussed.

4.1 Composition of Business Services

If a Web service contains the required logic of a business function, there is a 1:1 mapping
between the service and the function. Therefore, the Web service description, for example
as a WSDL document, can be attached to the business function.

Furthermore, the Web services’ input and output need to be managed and saved. In BPEL
this is realized by transformations which clutter the diagrams. Furthermore, these trans-
formations are technical details and therefore only interesting for IT experts but neither for
economists nor business process designers. Because of thiswe decided to attach input and
output XSL transformations to the business function as attributes. These transformations
can access the business objects attached to the business function according to the eEPC
notation. Because we require each business object to have anXML Schema, XSL can
convert between XML objects and the XML document containingthe Web service param-
eters and vice versa. The XSL input and output transformations as well as the WSDL
document would be the functional equivalent to BPEL’s partner links and port types.

This concept achieves to store all additional information needed for Web service com-
position and execution as properties of business functions. No additional symbols have
to be introduced in the EPCs although we recommend to mark business functions. Such
markers are intended for people interested in the compositional and IT-related aspects. We
propose to use three markers for a business function: (1) forbusiness functions which are
automated by Web services, (2) another one for those that cannot be automated by soft-
ware and a third for those (3) that are unknown. The last marker is like a to-do-marker
which signals that the Web service composer needs to inspectthe business function and

269

Name Description Notation

Web
Service

A given Web service can be used to achieve the
business function, e.g. ”Add customer” or ”Cancel
Order”.

Manual
Execution

The business function cannot be executed but need to
be done manually, e.g. ”Send product to customer”
or ”Phone Customer”

Unknown

The business function has not yet been inspected and
it is not known whether or not it can be automated by
a Web service.

Table 1: Marked Business Functions for Web service composition

decide whether to use a Web service or to keep the manual execution. The marker types
are shown in table 1.

We believe that Business Services will be the predominant form of Web services for the
following reasons:

• Semantic: Web services are normally developed to support a business process.
Therefore the software designers will mimic the semantic ofthe business process
in their design. This leads to top-level interfaces reflecting the business functions.
Good examples of accepted design practices leading to such adesign are the Fa-
cade Pattern, Command Pattern [GHJV95] and Use Case/Front Controller Pattern
[ASP02, AMC03].

• Performance: Web services are remote components. Each remote call is very costly
in terms of performance. Therefore, design focuses on minimizing remote calls
leading to coarse-grained interfaces of remote components[Fow02].

• Ease of Composition: Composition is supposed to be easier with coarse-grained
Web services. Since this practice has been propagated for years (e.g. by Hanson
[Han03]) it will influence designers’ decisions.

Because of these reasons we believe EPC-only composition will be possible most of the
time.

4.2 Composition of other Services

Sometimes Web services, that are too fine-grained to be composed with EPCs, need to be
included in the composition model. In this case, more advanced composition options are

270

needed. Introducing all these capabilities into EPCs woulddestroy their main advantage:
The easy notation with three main elements (function, event, connector) would vanish.
Furthermore, it would duplicate the effort already undertaken, because BPEL was devel-
oped with exactly that support in mind.

Therefore, we propose a two-layered approach for composingfiner grained services by
combining EPC’s and BPEL’s strengths:

1. Fine grained Web services are composed using BPEL. This allows maximum flexi-
bility. The result is a Business Service.

2. The new Business Service is integrated into the global Webservice composition
modeled with EPCs. This still allows a good overview and a reference for discussion
with all responsible people in an enterprise.

Smaller services are therefore composed outside the EPC model thus hiding complex com-
position logic from the top-most view. The business processmodel can still be changed by
business process designers. Independently, experts can fine-tune details in the Web service
composition.

4.3 Composition Architecture Summary

Our general Composition Architecture as shown in figure 1 is based on EPCs for compo-
sition of the Web services. The EPCs and their execution engine form the Process Layer.
The Process Layer calls Web services located in the Web Services Layer. This layer con-
sists of Web services divided into Business Services and other services. Non-Business
Services will be composed using BPEL in order to form a Business Service which can be
composed using the Process Layer.

The clear distinction between Process Layer and Web servicelayer allows different roles to
fulfill process-related and technical tasks. The EPC notation is understandable for non-IT
experts; Web service development and more demanding composition are separated clearly.
These tasks can be done by technically skilled people.

In the context of SMEs this means that the general workflow canbe changed by the en-
terprise itself. In contrast the business services and morecomplex compositions can be
developed and maintained by a third party like ISVs etc.

In chapter 6 we present a short example on how to compose a business process using our
concept.

5 Generating and Controlling the user interface

In the sections above the lower two layers of the envisioned ERP system were presented.
If a process change occurs on the middle layer, only the presentation layer is rendered

271

Figure 1: Overview of the Composition Architecture

useless: This is due to the occurring inconsistencies between the process model and the
control flow implicitly defined by the user interface. It is crucial that the presentation layer
is kept up-to-date according to the business process changes to preserve the flexibility of
our approach.

Our goal is to semi-automatically generate the user interfaces by adding additional infor-
mation to the process model. The following requirements of the user interface can be
identified and mapped to the correspondent level, where theyshould be dealt with:

1. The cooperation between different users of the ERP systemhas to be handled be-
cause many users can be involved in the same business process. This is a distin-
guishing feature of this kind of application, as normal standalone applications are
only controlled by a single user. The cooperation is alreadymodeled by the business
process and merely has to be supported by our system.

2. The activities in the business processes have to be modeled in such detail that a
screen mask for a single user interface can be inferred from the extended informa-
tion. The business functions requiring interaction with a user can be seen as gener-
alized descriptions of these activities, for which a more detailed task model has to
be designed. As we will see, our proposed task model remains on a high abstraction
level in comparison to others [dS00], which reduces the inherent complexity.

5.1 Business Process Layer

The separation of concerns to different layers of the model as described above can be made
explicit by the use of hierarchic functions in the EPC model.Events form the implicit
interface between both model layers as they are shared by both the business process and
the task model. This interface is used to implement the cooperative aspect of the system.
It easily translates into an exchange of events by the ERP system among the different
clients: If an event has occurred in the process layer, all affected users have to be notified.
To this end, roles are assigned to each user and to the steps inthe business processes.
If an event is triggered, all affected users can be notified and the event is forwarded to

272

their client computers. Given a well documented EPC, these events can be displayed
appropriately to the user in the user interface. If all necessary preconditions are fulfilled,
the user can afterwards start the subprocess (i.e. the task model) and control it using
his client application. Once the user finishes the subprocess, the server is notified of the
evoked end events. This in turn may lead to the notification ofother clients and eventually
to the execution of following processes and task models. EPCs are well-suited to model
the cooperative aspect of ERP systems.

5.2 Task Model Layer

Modeling the cooperation on the business process layer, thedesigner can focus on model-
ing the activities of a single user on the task model layer.

Tasks are activities required to reach a certain goal. A single task is always assigned to a
single goal. A task model is a composition of tasks, defining their temporal and conditional
relationships. For instance the task model specifies in whatorder tasks are to be performed,
i.e. if one task necessitates another, or if tasks can be executed independently of each other.
A task model defines a so calledstructuredtask, which subsumes the goals of its subtasks
to a global goal. Structured tasks can then again be used in other task models. Therefore,
a task hierarchy is established.

EPCs are a task model, with the notion of a task translated to the notion of a function. The
hierarchical relationship mentioned above is easily modeled by the use of EPC’s hierarchi-
cal functions. However, EPCs reside on a very high abstract level with functions denoting
quite complex activities. In order to generate a user interface from an EPC, its level has to
be lowered by decomposing each abstract business function into more detailed tasks.

The detailed information is given by assigning each function or task to a certain type.
The user interface generator uses this type in order to construct a component capable of
supporting it. Comparing the various proposed task models,a common set of tasks can be
identified, which seems to be of elementary importance. We have adopted these tasks in
our approach and transferred them to an EPC notation as listed in table 2.

Tasks are connected to objects which need to be manipulated or retrieved. These are the
domain of the task. In our case, the domain is well-defined by the use of Web Services
and the representation of data by an XML Schema. In other models the objects handled
by the various tasks are sometimes as fine grained as a String object. The trade-off is
between flexibility to model the user interface on the one hand side and the complexity
and size of the model on the other hand side. We decided to define the tasks on a higher
abstraction level, because the complexity greatly hindersthe acceptance of the approach.
Each task is assigned an information object, which is part ofthe whole process’s XML
data and is defined by a complex XML Schema type. Due to the well-structured nature of
XML Schema, this information can be used to generate basic user interfaces supporting
the execution of the task types. This approach is similar to [LLK04].

XML Schema is recursively built from primitive types, like strings or integers, which are
defined in its specification. These types can either be used toderive other simple types by

273

Name Description Notation

Selection
The user selects data from a collection of possible
choices.

Edit
The user edits some information object from the data
model.

Control
The user explicitly invokes some action. This is used
to model navigational decisions.

User
The user has to do something by himself, e.g. plan-
ning, comparing, etc.

Table 2: Task types

constraining the range of possible values (like only positive numbers) or they can be used
to compose them in a content model, which is either one ofall, sequence or choice
(like address containing name, street, city, ...).

In order to construct a user interface, each primitive type is mapped to a well-suited editor.
The XML Schema’s constraints can either be used to limit the editor itself, or be used as
a validation rule to check the user input. If the entered value is out of range, this can be
reported to the user. A short example of the whole transformation is given in figure 2. The
assignment of the editors to the different primitive types can be supplemented with a tem-
plate system, which allows the user or a whole organization to choose the representation
most fitting for a certain type.

If editors are available for all simple types, they can be composed in the same way as
specified in the XML Schema. In case of asequence, the translation is the straight-
forward chaining of the editors. The XML Schema content models all andchoice are
represented by the use of check boxes, drop down lists or tabbed panes. All editors can be
recursively composed with each other in a bottom-up approach.

Figure 2: Generation of a simple mask (b) for a customer data type (a).

274

The result is a basic user interface component for each task in the task model. The events
in the process represent the possible results of a task. Eachevent can hold a condition
evaluating the task’s output to determine the path taken at splits. Though this may seem
to contradict the passive nature of events, the data itself is produced only in the func-
tions. Raising the tasks on the high abstraction level as we have done, results in a task
model which resembles very much the controller in the MVC framework [KP88] (more
specifically the Model 2 architecture used in Web applications). Hence, the task model
descriptions can be used as a back-end of a generic controller, which is responsible for (a)
selecting the following view, (b) managing the data model , and (c) invoking the underlying
services.

A minor problem arises with (a) when we consider AND/OR splits in the EPC model. In
the traditional interpretation such a split means that the following paths can be executed
independently of each other. Thus, the generic controller can arbitrarily handle the paths
one after another, which results in a sequence thereby removing the split. However, in
the context of task models the designers might intend to model synchronized tasks, which
depend on each others information. In this case the controller has to merge both associated
user interface components.

The user interfaces generated above are constrained in two dimensions: Firstly, a task
model is a decomposition of an abstract business function. Thus, the User interface is
goal-oriented in its nature, because all tasks have a commonoverall goal, namely that of
the abstract business function. This corresponds to a wizard-style interface with a linear
control flow, guiding the user towards that goal. Secondly, the basic user interface com-
ponents are constrained to the expressiveness of XML Schema. Consequently, structures
which cannot be expressed by XML Schema cannot be manipulated by the user interface.

The generated interfaces seem to be simple in nature. However, they are still sufficient for
the domain of ERP systems, where most screen masks resemble simple forms for textual
or numerical data. Their simplicity furthermore reduces the complexity of modeling the
user interface. The latter might prove to be crucial for the adoption by practitioners, as the
learning curve is not as steep as in other approaches.

6 Example: Supporting a Order Reception Application

To illustrate the concept a small example is given in this chapter: A small company takes
orders from its customers, who can request a special price they are willing to pay. Thus,
the profit margin of each order has to be checked. If it is not inaccordance with the
company’s strategy, a manager has to decide whether the order will be accepted or not.
If it is accepted, the profit margin has to be adjusted. We define the process using our
extended EPC notation as shown in figure 3.

Starting with the incoming order, an employee chooses an ”Receive Order” item within its
user interface. This issues the EPC’s start event and the margin is checked. This action is
automated by a Web service as can be seen by the business function’s symbol. The result
will be some change to the underlying data model. The following events specify mutual

275

Figure 3: Extended EPCs for an Order Reception Application

excluding conditions on the model, so the path taken at execution time can be determined.
If the profit margin is too low, the manager has to handle the order.

The correspondent business function is decomposed into a task model, from which a user
interface can be generated. If a”Margin too low” event occurs, the manager’s client
application receives an event and the task model is executed. First, the difference between
the expected margin and the one from the order is visualized.This can either be a simple
textual display in the user interface, or the company could specify a special editor like a
chart for this task. Based on the difference, the manager must make a decision, which is
modeled by a Control task. If the order is not rejected, the manager must update the profit
margin in an Edit task. If the order is approved, it is forwarded to the production facility,
which can be automated by a Web service call.

7 Future Work

This paper presented a concept on how to compose Web servicesto a fully functional
business application including the user interface. The user interface part has already been
implemented in an application server. The Web service composition is implemented rudi-
mentarily. Our system is able to call Business Services. We will extend the application
server with additional functionality for dealing with Web services: Fail-over support, load
balancing, selection of appropriate Web services are the next logical steps.

Other extensions will be security and transaction management. However, these exten-
sions will require their own properties, e.g. which user roles may access various business

276

functions or where transaction boundaries are located. Themore properties get attached
to EPCs, the more an EPC editor is needed, which can show viewssuited for different
stakeholders in the underlying EPC model. For example, business process designers could
be interested in an EPC notion, while IT department managerswould like to see which
software supports certain processes and by which users it isaccessed.

On the management and requirements side, there are open issues on how to transfer the
business requirements as smoothly as possible into a business process model. Our goal is
to integrate known and proofed requirements engineering concepts of the Software Engi-
neering world, like Use Cases [Coc00], into business process models. As with traditional
Requirements Engineering this is mainly an organizationalaspect.

On the theoretical side, the EPC model with the new properties for Web service and user
interface composition needs to be formalized. This includes extensions to EPML (EPC
Markup Language) [MN05]. We have preliminary support for these extensions since we
use EPML to store the business process models on the application server.

8 Conclusions

In this paper we described a concept for using EPC models in order to design the service
composition and user interface of business software. EPCs have the advantage of offering
a simple notation which can be easily extended. If combined with Web services the step
from business processes to the service composition model can be made easily, thus offering
a unified modeling environment for business software. Whileseveral other technologies
exist for composing services, we added user interface generation. For accomplishing this
task we describe the task model of the user interface with theEPC notation of functions
and events. This notation is sufficient to describe ERP user interfaces having a mainly
linear control flow.

Combined, these technologies provide a solid foundation for ERP systems well suited for
SMEs. They allow flexible and rich functionality by easy integration of Web services
while providing local data storage and easy customization.These strengths will hopefully
be further improved by the results of the open research questions outlined in the future
work section.

References

[ACD+05] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes Klein,
Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith, SatishThatte, Ivana Trickovic,
and Sanjiva Weerawarana.Business Process Execution Language for Web Services
version 1.1, February 2005.

[ACPS04] Liliana Ardissono, Davide Cardinio, Giovanna Petrone, and Marino Segnan. A frame-
work for the server-side management of conversations with web services. InProceed-

277

ings of the 13th international World Wide Web conference on Alternate track papers &
posters, pages 124–133. ACM Press, 2004.

[ADG02] Rainer Anzböck, Schahram Dustdar, and Harald Gall. Software configuration, dis-
tribution, and deployment of web-services. InSEKE ’02: Proceedings of the 14th
international conference on Software engineering and knowledge engineering, pages
649–656, New York, NY, USA, 2002. ACM Press.

[AMC03] Deepak Alur, Dan Malks, and John Crupi.Core J2EE Patterns: Best Practices and
Design Strategies. Prentice Hall PTR, 2nd edition edition, June 2003.

[ASP02] Ademar Aguiar, Alexandre Sousa, and Alexandre Pinto. Use-Case Controller.
WWW: http://se2c.uni.lu/tiki/se2c-bibdownload.php?id=554, 2002.

[Coc00] Alistair Cockburn.Writing Effective Use Cases. Addison-Wesley Professional, 2000.

[Deh02] Juliane Dehnert. Making EPCs fit for Workflow management. In Markus Nüttgens and
Frank J. Rump, editors,EPK 2002 - Geschäftsprozessmanagement mit Ereignisges-
teuerten Prozessketten, pages 51–69. Gesellschaft für Informatik e.V. (GI), November
2002.

[dS00] Paulo Pinheiro da Silva. User Interface DeclarativeModels and Development Environ-
ments: A Survey. In Philippe A. Palanque and Fabio Paternò,editors,DSV-IS, volume
1946 ofLecture Notes in Computer Science, pages 207–226. Springer, 2000.

[Fow02] Martin Fowler.Patterns of Enterprise Application Architecture. Addison-Wesley Pro-
fessional, 1st edition, November 2002.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and JohnVlissides. Design Patterns
- Elements of Reusable Object-Oriented Software. Addison-Wesley Professional, 1st
edition, January 1995.

[GHM+03] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, and Hen-
rik Frystyk Nielsen. SOAP Version 1.2 Part 1: Messaging Framework. Technical
report, World Wide Web Consortium, 2003.

[Han03] Jeff Hanson. Coarse-grained interfaces enable service composition in SOA.
WWW: http://builder.com.com/5100-6386-5064520.html, August 2003.

[KGRL04] Oliver Krüger, Jorge Marx Gómez, Claus Rautenstrauch, and Daniel Lübke. Devel-
oping a distributed ERP system based on Peer-to-Peer-Networks and Webservices. In
Jorge Marx Gómez, editor,Proceedings of the Workshop for Intelligent Mobile Agents
in Peer -to- Peer Networks, EIS 2004, 2004.

[Kin06] Ekkart Kindler. On the semantics of EPCs: Resolvingthe vicious circle. Data &
Knowledge Engineering, 56(1):23–40, January 2006 2006.

[KNS92] G. Keller, M. Nüttgens, and A.-W. Scheer. Semantische Prozeßmodellierung auf der
Grundlage ”Ereignisgesteuerter Prozeßketten (EPK). Number 89 in Veröffentlichungen
des Instituts für Wirtschaftsinformatik. Scheer, A.-W.,1992.

[KP88] Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model-view controller
user interface paradigm in Smalltalk-80.J. Object Oriented Program., 1(3):26–49,
1988.

[LGS05] Daniel Lübke, Jorge Marx Gómez, and Kurt Schneider. Serviceorientierte Architek-
turen und Prozessmanagement Chancen durch die Verbindung zweier Welten. ERP
Management, (3), September 2005.

278

[LLK04] Patrick Lay and Stefan Lüttringhaus-Kappel. Transforming XML Schemas into Java
Swing GUIs. In Peter Dadam and Manfred Reichert, editors,GI Jahrestagung (1),
volume 50 ofLNI, pages 271–276. GI, 2004.

[LSZ01] Peter Lambros, Marc-Thomas Schmidt, and Claudia Zentner. Combine business pro-
cess management technology and business services to implement complex Web ser-
vices. Whitepaper, IBM, May 2001.

[MN05] Jan Mendling and Markus Nüttgens. EPC Markup Language (EPML) - An XML-Based
Interchange Format for Event-Driven Process Chains (EPC).Technical report, Vienna
University of Economics and Business Administration, March 2005.

[MNN05] Jan Mendling, Gustaf Neumann, and Markus Nüttgens. Towards Workflow Pattern
Support of Event-Driven Process Chains (EPC). In Markus Nüttgens and Jan Mendling,
editors,XML4BPM 2005 - XML Interchange Formats for Business ProcessManage-
ment, pages 23–37, 2005.

[MZ05] Jan Mendling and Jörg Ziemann. EPK-Visualisierungvon BPEL4WS Prozessdefini-
tionen. InProceedings of 7th Workshop Software-Reengineering, May 2005.

[Pat99] Fabio Paterno. Model-Based Design and Evaluation of Interactive Applications.
Springer-Verlag, London, UK, 1999.

[TIY03] Koichi Terai, Noriaki Izumi, and Takahira Yamaguchi. Coordinating Web Services
based on business models. InACM International Conference Proceeding Series: Pro-
ceedings of the 5th international conference on Electroniccommerce, volume 50, pages
473–478. ACM Press, 2003.

[TMN04] Hallvard Trætteberg, Pedro J. Molina, and Nuno Jardim Nunes. Making model-based
UI design practical: usable and open methods and tools. In Jean Vanderdonckt,
Nuno Jardim Nunes, and Charles Rich, editors,Intelligent User Interfaces, pages 376–
377. ACM, 2004.

[Træ99] Hallvard Trætteberg. Modelling Work: Workflow and Task Modelling. In Jean Van-
derdonckt and Angel R. Puerta, editors,CADUI, pages 275–280. Kluwer, 1999.

[Wal03] Kenneth R. Walsh. Analyzing the application ASP concept: technologies, economies,
and strategies.Commun. ACM, 46(8):103–107, 2003.

279

280

Structuring Business Nested Processes Using UML 2.0
Activity Diagrams and Translating into XPDL

Barbara Gallina and Nicolas Guelfi and Amel Mammar
Software Engineering Competence Center

Faculty of Sciences, Technology and Communication
University of Luxembourg, L-1359 Luxembourg-Kirchberg, Luxembourg

{barbara.gallina, nicolas.guelfi, amel.mammar}@uni.lu

Abstract: Engineering complex distributed business processes necessitates an inte-
grated use of modeling, verification and validation techniques. This paper presents
a pragmatic approach for such purpose. In particular we present complex business
processes modeled using transactions described with UML 2.0 activity diagrams, in
which we introduce hierarchy as a structuring primitive and exception handling as
a fault tolerance mechanism. The structuring capabilities of our approach allow de-
signers to tackle the complexity of large business transactions, the exception handling
mechanism introduces a novel way to design transactions and to cope with exceptional
behaviors inherent to BPM. Since our transaction models need to be validated during
the development process, we have chosen to integrate the modeling tool together with
a workflow management system that will allow animation of the business transactions.
This is done by model transformation from activity diagrams to XPDL descriptions.
One of the other interesting aspects of our approach is that the UML 2.0 activity di-
agrams models are given in such a way that different execution environments can be
targeted for deployment. These environments (MTS, CORBA, BTP,) differ mainly
on the way they implement the ACID properties and on their underlying exception
handling mechanism. A first prototype supporting this approach, but limited to XPDL
1, has been developed and we also present its possible extension to the new XPDL 2
standard.

Keywords UML 2.0 Activity Diagrams, XPDL, sub-flows, exception handling,
ACID properties.

1 Introduction

This work is part of the Efficient research project of Henri Tudor research center (Luxem-
bourg) in cooperation with our university. The project presents a three layered approach: a
business, a specification and technical layer. At the business layer, transactions, modeling
business processes, are identified; at the specification layer, these transactions are specified
using UML; at the technical layer, the execution of the transactions, trough an adequate
tool called Animator, takes place. Animator is a toolset for designing, animating, validat-
ing and verifying trusted business transactions [DG01, Tud05]. At the specification layer,
UML 2.0 Activity Diagrams (AD) have been chosen since we think they could represent
a reasonable communication trade off between business logic experts and IT experts in

281

order to describe trusted business processes. Business logic experts simply need to ex-
press functional requirements of the system which they are thinking of. For IT experts,
however, every requirement has to be verified and consequently the use of formal methods
is important.

XPDL is a standardized language allowing process definitions interchange between a va-
riety of tools ranging from workflow management systems to modeling and simulation
tools. In the Efficient context, XPDL is the language used at workflow engine level in
order to execute and animate processes to be able to validate them.

Several dimensions have to be considered in order to think about a complete notation for
describing business processes. As deeply argued in [RtHEvdA04, vdAtHKB00], several
typical design patterns characterise business processes. In this work however we are going
to consider basic elements and patterns necessary in order to reach our goal: structuring
complex distributed business processes, modeling them through UML 2.0 activity dia-
grams and translating them into XPDL in order to be able to validate their design through
animation.

The rest of this paper is structured as follows. In section 2, some relevant workflow process
peculiarities are presented; in section 3, a typical business workflow scenario is described
using UML 2.0 activity diagrams. XPDL is briefly introduced in section 4 while in section
5, the translation rules are informally presented . Finally, in section 6, conclusions and
future work are presented.

2 Basic workflow elements

A workflow process is defined as the automatic routing of documents to the users re-
sponsible for working on them. Workflows are concerned with providing the information
required to support each step of the business cycle. These documents may be physically
moved over the network or maintained in a single database with the appropriate users given
access to the data at the required times. Triggers can be implemented in the system to alert
managers when operations are overdue. Similarly, in Efficient project context, a business
transaction is defined as the description of an exchange of a set of information to achieve
a business goal, mostly the delivery of an output to a particular customer or market. The
basic elements that constitute our business transactions are described in the following list.

- Tasks/activities may be elementary or composed of a set of activities. In case of
composed activities hierarchical levels among them may be recognised. Processes
are composed of activities that have to be executed in order to reach a goal.

- Documents/objects represent administrative documents, credit cards and so on. Pro-
cess tasks are based on operations that are executed on objects.

- Decisions and parallelisms are quite crucial points in business processes since they
allow business expert to express alternative (but still normal) paths and parallel
paths.

- Exceptions are nowadays deeply investigated at both levels: modelling and work-
flow engines. Since it is hard to foresee in an exhaustive way the entire spectrum of

282

situations that could happen during the process execution, it is better to avoid freez-
ing a system by trying to define all possible situations. Better is to define particular
circumstances that diverge from the normal ones and try to define a behaviour that
is useful to follow in those cases.

- Roles/participants represent the entity that is going to execute the process. Generally
a role may be a person, a machine or a particular software. Sometimes the process
execution may need the participation of more roles of different typologies at the
same time. Roles (business partners) may cooperate in order to reach the transaction
goal in normal and exceptional cases.

As far as we know, not all these elements have been already taken into consideration. In
particular untill now, among possible tasks, only elementary ones have been considered;
moreover only normal process behaviors have been modeled. The contributions of this
work are the consideration of composed activities and a first theoretical step to investigate
how to represent transactions and exception handling mechanism in UML 2.0 activity
diagrams and also in both XPDL 1.0 and XPDL 2.0.

3 UML 2.0 activity diagrams for nested business processes: a typical
case-study

Activity diagrams, as means to describe business processes, have been chosen also in other
previous works [GCR04]. We still choose activity diagrams since we think that they can be
an efficient communication trade-off between business experts and IT experts but we focus
our attention on UML 2.0 activity diagrams because of their more powerful expressiveness
compared with those of UML 1.5.

In UML 2.0 substantial changes have been made [Obj03] if compared with UML 1.5, in
particular the activity diagram metamodel subset has been redesigned from scratch. The
main concept underlying activity diagrams is now calledActivity and replacesActivity-
Graph in UML 1.5. Activity is not a subclass ofStateMachineany more. The metamodel
defines six levels of increasing expressiveness. Since our aim is to express nesting busi-
ness transactions in a distributed context and exception handling and since business trans-
actions imply the exchange of massages,IntermediateActivitieslevel is involved. In fact
this level supports modeling of activity diagrams that include concurrent control and data
flow. Moreover in order to use partitions we also useCompleteActivities.

SubactivityStateshave vanished, and nesting is now accomplished by calling subordinate
(enclosed) Activities from Actions defined in the enclosing context. These enclosed activ-
ities in UML 2.0 terminology are calledCallBehaviorAction. An AD is a directed graph,
consisting of nodes that are connected via directed edges. Nodes comprise action nodes,
object nodes and control nodes.

Action nodes, as already mentioned, may invoke other behaviours and the related be-
haviour is still an activity diagram. All actions may receive parameters as input and return
parameters as output that are subclasses of object nodes.

In this work, instead of extending UML 2.0 activity diagrams by adding a stereotype for

283

each XPDL activity type, as done in [JMN03], the effort is that to exploit as much as
possible the standard AD elements and adding stereotypes only where they are necessary.
Currently, however, UML doesn’t support transactional concept. We mean that if we want
to underline ACID properties at the moment we can not. In order to do that we have to
stereotype an existing symbol by changing its semantics.

We are going to describe our extension by briefly re-introducing a typical business case-
study (already illustrated in [GCR04]) involving a customer, a wholesaler and a manufac-
turer, detailing how ACID properties and exception handling mechanism (both forward
and backward error recovery) could be designed. A business process in order to be mod-
eled as a transaction should ensure ACID properties. As already mentioned, in UML 2.0
there is no way to express the transaction concept and in this work we are interested in
doing a first step towards it because in order to talk about efficient capture of transactions,
first of all, we have to ensure transactions quality. We then propose to model a nested
process through a CallBehaviorAction Metaclass with stereotype Transaction in cases in
which the underlying protocol assures (relaxed or not) ACID properties. In all other cases
a nested process will be modeled through a CallBehaviorAction without any stereotype.
A transaction may terminate normally (according to the expectations), exceptionally or
aborting the effects. In cases in which an hazard happens we propose a way to also model
this circumstance.

Customer Mercata

«Transaction»
Agreement

o: OrderAgreement «Transaction»
Payment

PaymentFailure

«Transaction»
 Order Confirmation

Compensate
Payment

«BER»

«Exception»

Post conditions are not met

Post conditions are met

 Availability
Evaluation

«Transaction»
ProductionProduct delivery

available
not available

 Product reception

Order
choice

Situation analysis

Payment
 analysis

Confirmation
analysis

delivery
organization

Figure 1: Highest level diagram of Mercata Case-Study.

In Figure 1 a business process, depicted through a UML 2.0 activity diagram, is presented.
There are two roles Customer and Mercata. A customer after having chosen the order
and agreed (successfully executed the sub-process Agreement) about the order details,
sends the order to Mercata. The Payment process, a new sub-process, takes place. Dur-
ing this sub-process an exception may occur. This possibility is depicted by drawing an
interruptible region around the part in which the exception is supposed to happen. If dur-
ing Payment sub-process a Failure Exception occurs and we must roll-back the situation,
apply Backward Error Recovery (BER), because we have no means to go on in another
way, a special sub-process, a UML 2.0 CallBehaviorAction with stereotype BER, has to
be called.

284

Customer Mercata

infirm payment

o: OrderAgreement

o: OrderAgreementrealise

Post conditions are not met

Post conditions are met

«Exception»

Figure 2: Compensation sub-process

In figure 2 the roll-back is shown: the payment is infirmed and the customer receives
the notification. If Payment terminates successfully and the order is also successfully

Manufacturer1 Manufacturer2 Manufacturer3

launch
construction

p2: Piece
Description

p1: Piece
Description

o:
OrderAgreement

build p1 build p2

Material_1_Lack
Exception

Material_2_Lack
Exception «FER»

Material_Lack

finish product
p1:Piece p2:Piece

«Exceptio»
Hasard

Post conditions are not met Post conditions are met

Figure 3: Production sub-process

confirmed, Mercata will deliver the product to the customer in case of availability or will
ask for production. In case of production call, figure 3 shows how the manufacturers
are going to work in order to satisfy Mercata request. Manufacturer2 receives the order
and establishes who has to do what. Manufacturer1 and Manufacturer3 have to produce
a part of the final product. In case of lack of material exception for both parts, the two
exceptions are handled by consulting the exception tree, depicted in figure 5. Exceptions
are represented trough a class diagram. Among exceptions a hierarchical relationship
is underlined. Following this relationship it can be established which exception has to
be handled in case of concurrency. Class diagrams may be mapped into XMLSchema
and passed as parameters to processes. A general Material Lack exception has then to

Manufacturer1 Manufacturer2 Manufacturer3

build p1 using another
type of material

finish product build p2 using another
type of material

p1:piece p2:piece

Post conditions are not met«Exception»
 Hasard

Post conditions are met

Figure 4: FER-Lack of Material.

be handled and a CallBehaviorAction stereotyped FER (Forward Exception Handling) is
called. In Figure 4 the same roles of Production process cooperate in order to face the
exception. If at the end of FER conditions are met, a consistent state will be reached.

285

This UML 2.0 extension seeks to be a first answer to the lack of ACID properties speci-
fication already mentioned in [SD05]. Its purpose is to provide basic building blocks that
may be used in order to model advanced transactional protocols.

Universal Exception i_Material_LackMaterial_lack

Figure 5: Class Diagram describing Excepion Tree.

4 XPDL: a standard workflow process definition language

The Workflow Management Coalition (WfMC) [WfM05] was founded in August 1993 as
a international non-profit organization. The goal of the WfMC is to promote and develop
the use of workflow through the establishment of standards to define workflow terminol-
ogy, to satisfy interoperability and connectivity between workflow products. One of the
main activities since 1993 has been the development of standards for these interfaces. The
WfMC’s reference model identifies five interfaces. Interface 1 is the link between the
so-called “ProcessDefinition Tools“ and the “Enactment Service“. The Process Definition
Tools are used to design workflows while the Enactment Service can execute workflows.
The primary goal of Interface 1 is the import and export of process definitions. To sup-
port the interchange of workflow process definitions, XPDL has been proposed. XPDL
[XPD02] uses an XML-based syntax, specified by an XML schema. The main elements
of the language are:Package, Application, WorkflowProcess, Activity, Transition, Par-
ticipant, DataField, andDataType. Packageelement is the container holding the other
elements.Application is used to specify the applications/tools invoked by the workflow
processes defined in a package.WorkflowProcessis used to define workflow processes or
parts of workflow processes and it also consists of an oriented graph composed of nodes
and edges. Nodes are activities while edges are transitions.

Activity is the basic building block of a workflow process definition. There are three
types of activities:Route, Implementation, andBlockActivity. Activities of typeRoute
are dummy activities just used for routing purposes. Activities of typeBlockActivityare
used to execute sets of smaller activities. ElementActivitySetrefers to a self contained
set of activities and transitions. ABlockActivityexecutes such anActivitySet. Activities
of type Implementationare steps in the process which are implemented by manual pro-
cedures (No implementation), implemented by one of more applications (calledTool), or
implemented by another workflow process (Subflow). Activities may haverestrictionson
the incoming and outcoming transitions. A restriction on the incoming transitions is called
“join“, while a restriction on the outcoming transitions is called “split“. Restrictions may
have a type specification: AND or XOR. If an activity node has a join restriction type
AND, then all incoming edges need to be present in order to start the activity. If an activ-
ity node has a join restriction type XOR, then the activity node is initiated when at least
one of the incoming edges is taken.

Participant is used to specify the participants in the workflow, i.e., the entities that can
execute work. There are 6 types of participant: ResourceSet, Resource, Role, Organiza-
tionalUnit, Human, and System.

Elements of typeDataField and DataTypeare used to specify workflow relevant data.

286

Data is used to make decisions or to refer to data outside of the workflow, and is passed
between activities and subflows.

The XPDL 2.0 version has just been released [XPD05]. Relevant changes have been in-
troduced in the new version. For example the possibility to represent messages exchanged
among participants directly usingMessageFlowentity instead of an indirect representa-
tion. Moreover the concept of transaction is finally introduced that means that an activity
which is specified as transactional may terminate in three ways: normal, compensation or
hazard. This is a step further towards the introduction of transaction and exception han-
dling concepts and encourages our work in the same direction. In XPDL 2.0, in fact, a sub-
process activity (implemented by Subflow) can be set as being a Transaction, which will
have a special behavior that is controlled through a transaction protocol (such as Business
Transaction Protocol or Microsoft Transaction Protocol). In BTP protocol, for example,
participants may use recorded (before or after) images, or compensation operations to pro-
vide the roll-forward, roll-back capacity which enables their subordination to the overall
outcome of an atomic business transaction. It is possible that one of the participants may
end up with a problem that causes a Cancel or a Hazard. In this case, the flow will then
move to the appropriate Intermediate Event, even though it had apparently finished suc-
cessfully. Since our research began before the final release of XPDL 2.0 and transaction
model is still is an open issue (see 7.6.13 in [XPD05]), we focused on XPDL 1.0.

5 From UML 2.0 AD to XPDL

A transformation is the generation of a target model from a source model, according to a
transformation definition. A transformation definition is a set of transformation rules that
together describe how a model in the source language can be transformed into a model in
the target language. A transformation rule is a description of how one or more constructs
in the source language can be transformed into one or more constructs in the target lan-
guage [MG05]. In order to provide transformation rules between UML 2.0 AD and XPDL
a deep knowledge on their expressiveness seems to be necessary. Their expressiveness
may be evaluated by using the workflow patterns proposed in [vdAtHKB00, WvdAD+04,
vdA03, vdA04]. In those papers a more intuitive notion of expressiveness is considered.
The modelling effort is the criterion in order to evaluate the expressiveness: a great effort
in modeling implies a less powerful expressiveness. We use some of the workflow pat-
terns that result to be relevant in our project context in order to cover the basic elements
presented in section 2. In cases in which there is no direct support for the workflow pat-
tern and a workaround solution can not be sketched easily, the language under discussion
results to be not powerful enough in terms of easy-modelling. In XPDL specification we
can read: “using the basic transition entity plus dummy activities, routing structures of
arbitrary complexity can be specified.“ In order to supply to the lack of direct support to
some important patterns, this suggestion has to be followed. We present in the following,
in a declarative way, the translation rules. Some of these rules are already in use in the
context of Efficient project (see [EBD+03] and [Esh03] for more details). In this work,
however, a deep study about the possibility to nest processes has been done. Moreover a
first step towards the inclusion of exception handling mechanism and transaction concept
has been done.

287

AD Construct XPDL Construct
Swimlane. Each role
is modeled through a
swimlane.

a default-value inside the Data Fields in XPDL or further
investigation about the use of Participant type ROLE + par-
ticipant element specification inside the activity.

</DataType><InitialValue>Swimlane
</InitialValue></DataField>

Table 1: Role representation and translation.

AD Construct XPDL Construct
B2B Action node. Activity with No Implementation.

<Activity Id="ActivityID"
Name="ActivityName"><Implementation>
<No/></Implementation>...</Activity>

Table 2: Simple task representation and translation.

Using the toolset, called animator, provided by the Efficient project, users model processes
through activity diagrams and data through class diagrams. There are some constrains that
have to be followed. A project has obviously to be defined and inside it a package for each
activity diagram has also to be defined. The activity diagram is translated into an XPDL
WorkflowProcesselement in [GGM05] a complete example is presented, in particular the
translation of the highest level activity diagram of Mercata case-study. The package in
which an AD is defined has to be translated into the XPDL package. The business domain
described through a class diagram could be part of the XPDL repository. In fact in the
repository it is possible to introduce all the relevant data that the workflow processes may
need.

5.1 Roles

Roles may represent human beings, a piece of software, a machine or something else. A
role is the entity that is responsible of the execution of a task. Playing the different roles
involved in the process, designers may, exploiting Efficient toolset, validate the process
model. In table 1 role concept translation is shown. In particular we see that in UML 2.0
AD roles are represented through swimlanes while in XPDL we propose to use a default-
value inside Data Fields.

5.2 Simple and complex activities

Simple activities represent executable activity nodes that constitute fundamental units of
work in both XPDL and UML 2.0. In the Efficient project context, simple activities have
no implementation and they serve only to show the documents processing, done manually
in most cases. In Table 2 the translation rule is represented.

288

AD Construct XPDL Construct
CallOperationAction.Activity implementation type Tool.

<Activity Id="ID"Name="Operation"
<Implementation>
<Tool Id="IDTool" Type="APPLICATION">
<ActualParameters>...</ActualParameters>
</Tool></Implementation>...</Activity>

Activity node (Call-
BehaviourAction).

Activity implementation type SubFlow (synch).
<Activity Id="ID" Name="Name">
<Implementation>
<SubFlow Execution="SYNCHR"
Id="RelatedWPID">...</SubFlow>
</Implementation></Activity>

Activity node
(CallBehaviourAc-
tion) stereotyped
transaction.

«Transaction»

Activity implementation type SubFlow (synch).The description
element could be used in order to indicate the stereotype nature.

<Description>Transaction</Description>

In XPDL 2 the isTransaction element could be used.

Table 3: Complex tasks representation and translation.

Complex activities, represented in XPDL by Tool activities, have also operations associ-
ated. In this work we provide a UML representation for them because designers could also
be interested in representing Web Services and Web Service invocation. We propose to
represent Tool Activities with UML 2.0 CallOperationAction model element. Composed
activities are very important because they allow designers to encapsulate specific func-
tionalities together. These activities may accept/return parameters. Moreover by splitting
a process into sub-processes we increase the possibility to reuse some of them somewhere.
When a subprocess represent a real transaction concept, we propose to explicit it at design
time by adding a stereotypeTransactionin UML and exploiting the description element
in XPDL. Workflow engines at the moment are not aware about transactions concepts,
however, since XPDL 2.0 will rapidly replace the previous specification, the transaction
concept will be supported and our work will find a concrete application. Table 3 summa-
rizes how complex tasks may be represented and translated.

5.3 Pseudo state nodes (or Control nodes) into Route activities

Initial and final pseudo nodes could also be omitted in XPDL since they result deducible.
In fact an initial node has usually no ingoing arrows, as well as a final node has no outgoing
arrows. But, since in some cases, in which, for example, we are modelling loops, we
could have ingoing arrows on the entry point of the initial node, we prefer translating it

289

AD Construct XPDL Construct
-initial. Route Activity without transition restrictions or noth-

ing (when optimization applyable).
<Activity Id="initialID"
Name="initial"><Route/>...

Table 4: Initial and final nodes representation and translation.

AD Construct XPDL Construct
- fork. Route Activity with transition restriction AND split.

<Activity Id="ID" Name="fork"><Route/>
...<TransitionRestrictions>
<TransitionRestriction>
<Split Type="AND"/></TransitionRestriction>
</TransitionRestrictions></Activity>

- decision. Route Activity with transition restriction XOR split. WfMC defines
a decision as an OR split.

<TransitionRestriction>
<Split Type="XOR"/></TransitionRestriction>

Table 5: Fork and decision representation and translation.

into XPDL by using a route activity. Since final node is dealt with similarly, the reader is
referred to [GGM05].

Remaining control nodes, in some cases, may also be removed, allowing an optimization
in the XPDL specification generation. Afork may be removed in all the cases in which
it is not preceded by a decision node. The removal is possible because its semantics may
be synthesized in the antecedent node. Obviously this synthesis has sense only when the
semantics of the two nodes do not come into conflict. Dually adecisionmay be removed in
all cases in which its antecedent is not a fork node. In cases in which no optimization rule
in order to remove fork/decision nodes is applicable, we propose to represent and translate
them as illustrated in Table 5. Concerningjoin andmergenodes, the reader is referred to
[GGM05].

Deferred choice differs from the “normal“ choice, in that the choice is not made explicitly
(based on existing data) but several alternatives are offered to the environment, and the
choice between them is delayed until an external signal is received. Using the WFMS ter-
minology, this means that the alternative activities are placed in the worklist, but as soon
as one of them starts its execution, the others are withdrawn. This pattern is called implicit
XOR-split. In UML 2.0 AD in order to represent this pattern we use the same solution
proposed in [WvdAD+04, Whi04].

290

AD Construct XPDL Construct
Deferred choice.

Activity1

Signal1

Signal2
Activity3

Activity2

not directly supported’a workaround solution has to
be used. The solution already in use inside the
project context has been kept.

Table 6: Deferred choice representation and translation.

AD Construct XPDL Construct
Object node. The details of
the object and the relation-
ships among all the relevant
objects inside the process are
presented into a class dia-
gram.

Data Field (represented by an XMLSchema)+formal
and actual parameter definition in case an object con-
stitutes input/output parameter of a sub-flow or of an
application. The actual parameter must be the identi-
fier of the corresponding workflow relevant data.

<DataField Id="o_schema"
IsArray="FALSE" Name="object">
<DataType>

Table 7: Documents/Objects representation and translation.

5.4 Documents and Objects

Documents and objects constitute the principal resource that has to be processed. This
resource appears as input to activities, it is transformed and reappears as output. Work-
flow processes orchestrate these documents processing in the best way. In our proposition
UML 2.0 Object nodes are translated into XPDL data fields, as Table 7 shows, which struc-
ture may be detailed in a class diagram and translated into an XML Schema and finally
referenced into the final XPDL generation.

5.5 Transitions or Arcs

Activity diagrams and also the corresponding XPDL Workflow processes are oriented
graphs made of nodes and arcs. After having described the nodes representation, we now
show in table 8 how to represent transitions.

5.6 Exception Representation and Handling

Exceptions represent undesirable events that happen in an unpredictable instant. In order
to face these events, at design time, we should think about a possible behavior to call
in those circumstances. Designing exceptional behavior beside the normal one is one
way in order to improve reliability. In the Efficient project context, the goal is that of
efficiently capturing business transactions. By efficiently capturing, the quality is really
important. Reliability is a non functional requirement that belongs to QoS requirements.

291

AD Construct XPDL Construct
Edge. Transition.

<Transition From="A-ID"
Id=transID" To="B-ID">...
</Transition>

Table 8: Transition representation and translation.

AD Construct XPDL Construct
Accept Event Ac-
tion Object Node
with an outgoing
Interrupting Edge
inside an Interrupt-
ible region.

ExceptionName

Deadline specification inside each activity belonging to a spe-
cific context.

<Deadline Execution="ASYNCHR">
<DeadlineCondition>date
</DeadlineCondition>
<ExceptionName>ExName
</ExceptionName></Deadline>

Transition condition of type Exception

<Transition From="Ax" Id="Trans"
Name="XFailure" To="Ay">
<Condition Type="EXCEPTION">
</Condition>...</Transition>

FER (call be-
haviour action)

Sub-Process Definition (synchronous). The description ele-
ment could be used in order to indicate the stereotype nature.

<Description>FER</Description>
In XPDL 2.0, however, anIntermediate Event Activityof type
Targetcould be used.

BER (call be-
haviour action)

Sub-Process Definition (synchronous). The description ele-
ment could be used in order to indicate the stereotype nature.

<Description>BER</Description>
In XPDL 2.0, however, anIntermediate Event Activityof type
TriggerCancelcould be used.

Exceptional Out-
come

Route Activity with description element Exception.
<Description>Exception</Description>

In XPDL 2.0, End Event Activityare available in order to un-
derline the different possible outcomes of a transaction.

Table 9: Exceptions and exceptions handling representation.

292

As Table 9 summarizes, we propose to use anInterruptibleRegionin UML 2.0 around
the part of the process that may be subject to exceptions. In XPDL, this concept may
be represented by declaring a deadline related to each activity that could be subject to
exceptions. Following anInterruptibleEdge(a transition condition of typeexceptionin
XPDL) we land to the exception handling mechanism that is represented by a stereotyped
CallBehaviorActioncalledFER, in case in which we are able to bring the process to a
consistent state different from the initial one, orBERwhen we only are able to roll back
the situation.To describe an exceptional termination of a process we propose to stereotype
the final node withException. The process will terminate with an exception in all cases
in which the postconditions are not verified. This proposition has been integrated in a
research project, called CORRECT [CGGP05], funded by the Luxembourg Ministry of
Higher Education and Research under the project number MEN/IST/04/04. In CORRECT
the transaction protocol is an advanced one, particularly adapt for facing exceptions in
distributed and concurrent complex transactions.

In this work, since the protocol can not be known, because of the recent introduction of
real transaction concepts inside workflow definition languages, we only propose a first
step towards the inclusion of exceptions description. In XPDL 2.0 not only transaction
concept will be supported but also theEventconcept. In particular Intermediate and End
Event Activities seem to be useful in order to catch exceptions and in order to express
the different possible outcomes of a transaction. These improvements of expressiveness
inside the language make us to keep on thinking that we are moving in the right direction
by working on them.

6 Conclusion and future work

In this work we have presented a way to describe nested business processes and also ex-
ception and exception handling mechanisms in UML 2.0 activity diagrams and the cor-
responding transformation rules in order to generate the XPDL specification from them.
In fact in order to automatically generate an XPDL specification from activity diagrams,
currently, we have improved the plugin developed in the project context. This plugin
has been implemented inside the commercial tool MagicDraw [NM05] and is part of the
toolset Animator. Since however, at the time of writing, the stable release of this tool
does not support UML 2.0 metamodel. We have used UML 1.5 metamodel (Subactivi-
ties instead of CallBehaviorAction, for example) and we have generated automatically the
specification of nested processes without covering the exception handling part because of
the lack of tools. Exploiting MagicDraw open API, the algorithm has been implemented
in the Java language.

In the future, we intend to update to the tenth MagicDraw version in order to exploit the
UML 2.0 metamodel support and to be able to complete implement the proposed transfor-
mation rules. We also intend to take into deep consideration XPDL 2.0 and in particular
the support for ACID properties and exception handling. Using IsATransaction specifica-
tion inside an Activity definition, a subflow, for example, can be set as being a Transac-
tion, which will have a special behavior that is controlled through a transaction protocol.

293

Moreover while the translation of Backward and Forward Error Recovery into XPDL 1.0
necessitates an extension of the available workflow engines; in XPDL 2.0, these concepts
are part of the language and all workflow engine compatible with the new specification
will understand them. Moreover the formalisation research work started in [GM05] will
be kept on by formalizing nested processes and exception handling mechanism. Our goal
in fact is that of verifying not only structural properties of workflow models described in
activity diagrams but also non functional ones in order to ensure step by step more trusted
systems.

References

[CGGP05] A. Capozucca, B. Gallina, N. Guelfi, and P. Pelliccione. Modeling Exception
Handling: a UML2.0 Platform Independent Profile for CAA. InProceedings of
ECOOP 2005 Workshop on Exception Handling in Object Oriented Systems, Glas-
gow (Scotland), Department of Computer Science. LIRMM; Montpellier-II Univer-
sity,, http://se2c.uni.lu/tiki/se2c-bibdownload.php?id=1928, 2005.

[DG01] E. Dubois and N. Guelfi. Demande de Contribution Financière pour la
Réalisation d’un Projet de Recherche: EFFICIENT, Fonds National de la Recherche,
Luxembourg-Kirchberg, Luxembourg., 2001.

[EBD+03] R. Eshuis, P. Brimont, E. Dubois, B. Grégoire, and S. Ramel. EFFICIENT: a Tool Set
for Supporting the Modelling and Validation of ebXML. InProceedings of the 9th
European software engineering conference held jointly with 11th ACM SIGSOFT
international symposium on Foundations of software engineering, pages 359–362,
2003.

[Esh03] R. Eshuis. Activity Diagrams as XPDL Specification, Draft version May 16,2003.

[GCR04] N. Guelfi, G. Le Cousin, and B. Ries. Engineering of Dependable Complex Business
Processes Using UML and Coordinated Atomic Actions. In Springer, editor,Inter-
national Workshop on Modeling Inter-Organizational Systems (MIOS’04), Larnaca,
Cyprus, pages 468–482, 2004.

[GGM05] B. Gallina, N. Guelfi, and A. Mammar. Structuring Business Nested Processes Us-
ing UML 2.0 Activity Diagrams and Translating into XPDL, Technical Report TR-
SE2C-05-07 University of Luxembourg 2005.

[GM05] N. Guelfi and A. Mammar. A Formal Framework to Generate an XPDL
Specification from a UML Activity Diagram, Technical Report available on
http://se2c.uni.lu/users/AM University of Luxembourg 2005.

[JMN03] P. Jiang, Q. Mair, and J. Newman. Using uml to design distributed collaborative
workflows: from uml to xpdl. In12th International Workshop on Enabling Tech-
nologies: Infrastructure for Collaborative Enterprises, Linz, Austria, IEEE Press,
pages 71–76, 2003.

[MG05] T. Mens and P. Van Gorp. A Taxonomy of Model Transformation (s). InInterna-
tional Workshop on Graph and Model Transformation (GraMoT) Tallinn, Estonia
September 28,, 2005.

[NM05] Inc No Magic. MagicDraw 9.0 Version, Commercial tool
http://www.magicdraw.com/ , 2005.

294

[Obj03] Object Management Group (OMG). Unified Modeling Language (UML):
Superstructure version 2.0, final adopted specification (02/08/2003).
http://www.omg.org/cgi-bin/doc?ptc/2003-08-02, 2003.

[RtHEvdA04] N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Workflow
Data Patterns., QUT Technical report, FIT-TR-2004-01, Queensland University of
Technology, Brisbane, 2004.

[SD05] B. A. Schmit and S. Dustdar. Model-driven development of web service transac-
tions. In M. Nüttgens and J. Mendling, editors,XML4BPM 2005, Proceedings of
the 2nd GI Workshop XML4BPM – XML Interchange Formats for Business Pro-
cess Management at 11th GI Conference BTW 2005, Karlsruhe Germany, March
2005, pages 39–54, http://wi.wu-wien.ac.at/˜mendling/XML4BPM2005/xml4bpm-
2005-proceedings-schmit.pdf, March 2005.

[Tud05] Tudor Research center. Animator. http://efficient.citi.tudor.lu/releases/ , 2005.

[vdA03] W.M.P. van der Aalst. Patterns and XPDL: A Critical Evaluation of the XML Process
Definition Language., QUT Technical report, FIT-TR-2003-06, Queensland Univer-
sity of Technology, Brisbane, 2003.

[vdA04] W.M.P. van der Aalst. Business process management demystified: A tutorial on
models, systems and standards for workflow management. In Springer, editor,In
J. Desel, W. Reisig, and G. Rozenberg, editors, Lectures on Concurrency and Petri
Nets, volume 3098 of Lecture Notes in Computer Science, Berlin, pages 1–65, 2004.

[vdAtHKB00] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Ad-
vanced Workflow Patterns. In Springer, editor,In O. Etzion and P. Scheuermann,
editors, 7th International Conference on Cooperative Information Systems (CoopIS
2000), volume 1901 of Lecture Notes in Computer Science, Berlin,, 2000.

[WfM05] WfMC. http://www.wfmc.org/, 2005.

[Whi04] IBM Corp. United States S. A. White. Process Modeling Notations and Workflow
Patterns. InThe Workflow Handbook 2004. WfMC, Future Strategies Inc., Light-
house Point , FL , USA, 2004.

[WvdAD+04] P. Wohed, W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, and N. Russell.
Pattern-based Analysis of UML Activity Diagrams, BETA Working Paper Series,
WP 129, Eindhoven University of Technology, Eindhoven, 2004.

[XPD02] XPDL1.0. http://www.wfmc.org/standards/docs/tc-102510 xpdl 102502.pdf,
2002.

[XPD05] XPDL2.0. http://www.wfmc.org/standards/docs/tc-1025xpdl 2 2005-10-03.pdf,
2005.

295

296

Transformation Strategies between Block-Oriented and
Graph-Oriented Process Modelling Languages

Jan Mendling1, Kristian Bisgaard Lassen2, Uwe Zdun1

1 Institute of Information Systems and New Media
Vienna University of Economics and Business Administration

Augasse 2-6, A-1090 Wien, Austria
{jan.mendling|uwe.zdun }@wu-wien.ac.at

2 Department of Computer Science, University of Aarhus
IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark

k.b.lassen@daimi.au.dk

Abstract: Much recent research work discusses the transformation between different
process modelling languages. This work, however, is mainly focussed on specific pro-
cess modelling languages, and thus the general reusability of the applied transformati-
on concepts is rather limited. In this paper, we aim to abstract from concrete transfor-
mation strategies by distinguishing two major paradigms for representing control flow
in process modelling languages: block-oriented languages (such as BPEL and BPML)
and graph-oriented languages (such as EPCs and YAWL). The contribution of this pa-
per are generic strategies for transforming from block-oriented process languages to
graph-oriented languages, and vice versa.

1 Introduction

Business process modelling (BPM) languages play an important role not only for the spe-
cification of workflows but also for the documentation of business requirements. Even
after more than ten years of standardization efforts [Hol04], the primary BPM langua-
ges are still heterogeneous in syntax and semantics. This problem mainly relates to two
issues: Firstly, various BPM language concepts that need to be specified in terms of con-
trol flow [vdAtHKB03] and data flow [RtHEvdA05] have been identified, and most BPM
languages introduce a different sub-set of these (see [MNN04] for a comparison of BPM
concepts). Secondly, the paradigm for representing control flow used in the BPM langua-
ges is another source of heterogeneity. This issue has not been discussed in full depth so
far, but it is of special importance when transformations between BPM languages need to
be implemented. In essence, two control flow paradigms can be distinguished, graph- and
block-oriented:

• Graph-orientedBPM languages specify control flow via arcs that represent the tem-
poral and logical dependencies between nodes. A graph-oriented language may in-

297

clude different types of nodes. These node types may be different from language to
language. Workflow nets [vdA97] distinguish places and transitions similar to Pe-
tri nets. EPCs [KNS92, MN05] include function, event, and connector node types.
YAWL [vdAtH05] uses graph nodes that represent tasks and conditions. Similar to
XPDL [Wor02], these tasks may specify join and split rules.

• Block-orientedBPM languages define control flow by nesting control primitives
used to represent concurrency, alternatives, and loops. XLANG [Tha01] is an ex-
ample of a pure block-oriented language. BPML [Ark02] and BPEL [ACD+03] are
also block-oriented languages but they also include some graph-oriented concepts
(i.e. links). In BPEL, the control primitives are called structured activities. Due to
the widespread adoption of BPEL as a standard, we will stick to BPEL as an exam-
ple of a block-oriented language. Please note that the concepts presented later are
also applicable for other block-oriented languages, but as our definitions of block-
oriented control flow are rather BPEL-specific, some effort is needed to customize
our concepts to other block-oriented languages.

Transformations between block-oriented languages and graph-oriented languages are use-
ful or needed in a number of scenarios. Many commercial tools support the import and
export in other formats and languages, meaning that transformations in both directions are
implemented by import and export filters. For instance, many graph-oriented tools are re-
cently enhanced to export BPEL in order to support the standard for interoperability and
commercial reasons. Transforming BPEL to Petri nets is done for the purpose of verifica-
tion [HSS05]. BPEL does not have formal semantics and can therefore not be verified. By
defining a transformation semantics for BPEL in terms of a mapping to Petri nets, it is pos-
sible to investigate behavioral properties, such as dead-locks and live-locks. BPEL process
definitions are also transformed to EPCs with the goal to communicate the process behavi-
or e.g. to business analysts in a more visual representation [MZ05]. In the other direction,
model-driven development approaches start from a visual graph-oriented BPM language
such as UML activity diagrams to generate executable BPEL models [Gar03]. These are
only some example scenarios, where BPM transformations are needed. The contribution
of this paper is to abstract from particular graph-oriented or block-oriented control flow
representation, to enable a generic discussion of transformation strategies between both.
The presented transformation strategies are independent from a certain application scena-
rio and can therefore be used in any setting where transformations between graph-oriented
and block-oriented languages are needed.

The rest of the paper is structured as follows. Section 2 defines the abstractions that are
used throughout this paper. In particular, we define an abstraction of graph-oriented BPM
languages calledProcess Graphthat shares most of its concepts with EPCs and YAWL.
Block-oriented languages are abstracted by a language calledBPEL Control Flow. This
language is – as mentioned before – an abstraction of BPEL concepts, but can be map-
ped to the concepts of other block-oriented languages such as BPML. In Section 3 we
discuss strategies for transforming BPEL Control Flow to Process Graph, and in Section
4 the opposite direction. The strategies are specified using pseudo-code algorithms and
their prerequisites, advantages, and shortcomings are discussed. Section 5 discusses rela-
ted work, and finally Section 6 concludes and discusses future work.

298

2 Process Graphs and BPEL Control Flow

2.1 Introductory Example

To discuss transformations between graph-oriented and block-oriented BPM languages in
a general way, we have to abstract from specific languages. Before that, we illustrate some
features of process graphs and BPEL control flow.

Start

A

Start

B C D

E

F

G

H

I J

End End

Pick

empty empty

Switch

empty

Flow

A

Flow

C D

Sequence

B E

F

G

While

H

Flow

I J

termi-
nate

termi-
nate

Sequence

Figure 1: Process graph and BPEL control flow

The left part of Figure 1 shows aprocess graph. As we are interested in syntax transfor-
mations, we give the semantics of process graphs only in an informal manner. A process
graph has at least one start event and can have multiple end events. Multiple start events
represent mutually exclusive, alternative start conditions. End events have explicit termi-
nation semantics. This means that when an end event is reached, the complete process is
terminated. Connectors represent split and join rules of type OR, XOR, or AND, as they
are specified for YAWL [vdAtH05] or EPCs [MN05]. All of these elements are connected
via arcs which may have an optional guard. Guards are logical expressions that can evalu-
ate to true or false. If a guard of an arc from a connector node with type OR or XOR yields
false, the target branch of the arc is not executed. If true, execution continues with the
target function. After an XOR split, the logical expressions of guards of the subsequent
arcs must be mutually exclusive.

The right part of Figure 1 gives aBPEL control flowwith similar control flow semantics
as the process graph. In the example, so-called structured activities are used whenever
possible. There are structured activities to define alternative start conditions (pick), par-
allel execution (flow), sequential execution (sequence), conditional repetition (while), and
alternative branches (switch). Structured activities can be nested for the definition of com-
plex control flow behavior. Basic activities represent atomic elements of work. There are
special basic activities to represent that nothing is done (empty) or that the BPEL control
flow is terminated (terminate). Within a flow activity, complex synchronization condi-

299

tions can be specified via so-called links. Each link can have a transition condition, and
each activity that is a target of links can include a join condition of the type OR, XOR, or
AND. For BPEL control flow, we adopt the semantics defined in the BPEL specification
[ACD+03].

2.2 Definition of Process Graphs

To provide for a precise description of the transformation strategies, we formalize the syn-
tax of process graphs and those aspects of BPEL that are relevant for a transformation of
control flow. We define process graphs to be close to EPCs and YAWL using an EPC-like
notation. The respective syntax elements provide the core of graph-based business process
modelling languages. Furthermore, AND and XOR connectors can easily be mapped to
Petri nets, XPDL, or UML activity diagrams.

Notation 1 (Predecessor and Successor Nodes)Let N be a set ofnodes andA ⊆ N ×
N a binary relation overN defining the arcs. For eachnode n ∈ N , we define the set of
predecessor nodes •n = {x ∈ N |(x, n) ∈ A}, and the set ofsuccessor nodes n• =
{x ∈ N |(n, x) ∈ A}.

Definition 1 (Process Graph PG)A process graphPG = (S,E, F,C, l, A, g) consists
of four pairwise disjoint setsS,E, F, C, a mappingl : C → {AND, OR, XOR}, a
binary relationA ⊆ (S ∪F ∪C)× (E ∪F ∪C), and a mappingguard : A → expr such
that:

– S denotes the set of start events.|S| ≥ 1 and∀s ∈ S : |s•| = 1 ∧ |•s| = 0.
– E denotes the set of end events.|E| ≥ 1 and∀e ∈ E : |•e| = 1 ∧ |e•| = 0.
– F denotes the set of functions.∀f ∈ F : |•f | = 1 ∧ |f•| = 1.
– C denotes the set of connectors.∀c ∈ C : |•c| = 1∧ |c•| > 1∨ |•c| > 1∧ |c•| = 1
– The mappingl specifies the type of a connectorc ∈ C asAND, OR, or XOR.
– A defines the flow as a simple and directed graph. An element ofA is calledarc.

Being a simple graph implies that∀n ∈ (E ∪ F ∪ C) : (n, n) /∈ A (no reflexive
arcs) and that∀x, y ∈ (E ∪F ∪C)} : |{(x, y)|(x, y) ∈ A}| = 1 (no multiple arcs).

– The mappingguard specifies a guard for an arca ∈ A. expr is a non-terminal
symbol to represent a logical expression that defines the guard condition. If and
only if this expression yields true, control is propagated to the node subsequent to
the guard. Guards of arcs afterXOR connector nodes have to be mutually exclusive.
Guards are defined on A, however it is only arcs (c,n), wherec ∈ C, l(c) 6= AND
andn ∈ E∪F ∪C, that can be expressed as any logical expression. All other guard
always yields true; e.g. a guard from an AND-split can never yield false and each
function in a sequence is always executed.

Definition 2 (Transitive Closure) Let PG = (S,E, F, C, l, A, g) be defined as in Defi-
nition 1. ThenA∗ is the transitive closure ofA. That is, if(n1, n2) ∈ A∗ there is a path
from n1 to n2 in the process graph via some arcs ofA.

300

2.3 Definition of BPEL Control Flow

Definition 3 (BPEL Control Flow) A BPEL Control FlowBCF is a tupleBCF =
(Seq, F low, Switch, While, P ick, Scope, Basic, Empty, Terminate, Link, de, jc, tc).
BCF consists of pairwise disjoint setsSeq, F low, Switch,While, P ick, Scope, Basic,
Empty, Terminate. The setStr = Seq ∪ Flow ∪ Switch ∪While ∪ Pick ∪ Scope is
called structured activities, the setBas = Basic ∪ Empty ∪ Terminate is called basic
activities, and the setAct = Str∪Bas activities. Furthermore,BCF consists of a binary
relationLink ⊆ Act × Act, a mappingde : S → P(A) \ ∅, a mappingjc : A → expr,
and a mappingtc : Link → expr, such that

– Seq defines the set of BPEL sequence activities.
– Flow defines the set of BPEL flow activities.
– Switch defines the set of BPEL switch activities.
– While defines the set of BPEL while activities.
– Pick defines the set of BPEL pick activities.
– Scope defines the set of BPEL scopes.
– Basic defines the set of BPEL basic activities without terminate and empty ac-

tivities. As we are only interested in control flow, the distinction of various basic
activities can be neglected here.

– Empty defines the set of BPEL empty activities.
– Terminate defines the set of BPEL terminate activities.
– Link defines a directed graph of BPEL links. These need not to be coherent, but

acyclic, and not be connected across the borders of a while activity.
– The mappingde denotes a decomposition relation from structured activities to set

of nested activities modelled as the power setP(A). de is a tree, i.e. there is no
recursive decomposition.

– The mappingjc defines the join condition of activities.
– The mappingtc defines the transition condition of links.

Definition 4 (Join condition) The join condition, jc, on activities is defined as ajc : A →
expr using operations such as∧, ∨ andY. For an activity x, where•x = {y1, . . . , yn}
including its predecessor in a structured activity, we use the shorthand AND, OR and XOR
for the boolean expressions

jc(x) = tc(y1, x) ∧ . . . ∧ tc(yn, x) (AND)

jc(x) = tc(y1, x) ∨ . . . ∨ tc(yn, x) (OR)

jc(x) = tc(y1, x) Y . . . Y tc(yn, x) (XOR)

Definition 5 (Subtree Fragment) Let Struct ⊆ Act × Act be relation with(a1, a2) ∈
Struct if and only if a2 ∈ de(a1). Struct∗ is the transitive closure ofStruct. This
implies thata2 is nested in the subtree fragment ofa1.

Notice that Definition 2.3 do not describe event-, fault-, and compensation handlers. This
is because our strategies do not take these into consideration. Also, we do not allow links
to cross scope boundaries.

301

For the purpose of discussing control flow transformations, other BPEL elements than
those included in the definition can be neglected. For details on BPEL semantics refer to
[ACD+03]. Note that e.g. BPML has similar syntax elements with comparable semantics
[Ark02]. Accordingly, the strategies discussed in the following section can also be applied
to define transformations between BPML and process graphs.

2.4 Structural Properties of Process Graphs and BPEL Control Flow

Various transformation choices are bound to certain structural properties of the input
model. A process graph can be structured or unstructured and acyclic or cyclic. We define
a process graph to be structured by the help of reduction rules. They provide not only a
formalization of structuredness but also a means to define a transformation strategy from
process graphs to BPEL control flow. Details on this will be explained in Section 4.

Definition 6 (Structured Process Graph) A process graph PG is structured if and only
if it can be reduced to a single node by the reduction rules formally defined in [MLZ05],
otherwise it is unstructured. All the reduction rules describe a certain component that
is part of the process graph and then how to replace it by a single function. There are
reduction rules for sequences, connector pairs, XOR-loops, and start- and end-blocks. For
details refer to [MLZ05].

Definition 7 (Cyclic versus Acyclic Process Graph)Let F ∪ C be the set of functions
and connectors of a process graphPG. If ∃n ∈ F ∪ C : (n, n) ∈ A∗, thenPG is cyclic.
If ∀n ∈ F ∪C : (n, n) /∈ A∗, thenPG is acyclic. As a process graph is a simple graph, it
holds that(n, n) /∈ A (no reflexive arcs). But if(n, n) ∈ A∗, there must be a path fromn
to n via some further nodesn1, ..., nm ∈ (E ∪ F ∪ C).

Definition 8 (Structured BPEL Control Flow) A BPEL Control FlowBCF is struc-
tured if and only if its setLink = ∅. OtherwiseBCF is unstructured.

Furthermore, we define the point wise application of mapping functions which we need in
algorithms for the transformation strategies.

Definition 9 (Point Wise Application of Functions) If a function is defined asf : A →
B then we extend the behavior to sets so thatf(X) = ∪x∈Xf(x), X ⊆ A.

3 BPEL Control Flow to Process Graph Transformation Strategies

3.1 Strategy 1: Flattening

Before we present the transformation algorithms, we need to define the mapping function
M that transforms a BPEL basic activity to a process graph function.

Definition 10 (Mapping Function M) Let F be a set of functions of a process graphPG
andBasic a set of basic activities of aBCF . The mappingM : Basic → F defines a
transformation of a BPEL basic activity to a process graph function.

302

Algorithm 1 Pseudo code for Flattening strategy
procedure: Flattening(BCF)

1: Struct ← Seq ∪ Flow ∪ Switch ∪While ∪ Pick ∪ Scope
2: S ← {s}; E ← {e}; F ← ∅; C ← ∅; A ← ∅
3: root ← a, wherea ∈ Struct ∧ @s ∈ Struct : de(s) = a
4: BCFtransform(root, s, e, PG)
5: for all (l1, l2) ∈ Link do
6: A ← A ∪ {(c1, c2)}
7: guard(c1, c2) = tc(l1, l2)
8: end for
9: return PG

Thegeneral ideaof the Flattening strategy is to mapBCF structured activities to respec-
tive process graph fragments. The nestedBCF control flow then becomes a flat process
graph without hierarchy. For this strategy, there areno prerequisites, both structured and
unstructured BPEL control flow can be transformed according to this strategy. Thead-
vantageof Flattening is that the behavior of the whole BPEL process is mapped to one
process graph. Yet, as adrawbackthe descriptive semantics of structured activities get
lost. Such a transformation strategy is useful in ascenariowhere a BPEL process has to
be communicated to business analysts.
Thealgorithm for the Flattening strategy takes aBCF as input and returns aPG. It re-
cursively traverses the nested structure of BPEL control flow in a top-down manner. This
is achieved by identifying the root activity and invoking theBCFtransform(activity, pre-
decessor, successor, partialResult)procedure (see Algorithm 1, line 4) which is reinvoked
recursively on nested elements. The respective code is given in Algorithm 2 in [MLZ05].
The first parameteractivity represents the activity to be processed followed by the prede-
cessor and successor node of the output process graph between which the nested structure
is hooked in; i.e.predecessor andsuccessor. For the root activity these are the start and
end eventss ande. The parameterpartialResult is used to forward the partial result of
the transformation to the procedure. In lines 5–8 links are mapped to arcs and respective
join and split connectors around the activity are added.
The BCFtransform procedure (see Algorithm 2 in [MLZ05]) starts with checking
whether the current activity serves as target or source for links. If so, respective con-
nectors are added at the beginning and the end of the current activity block. There are four
sub-procedures to handle the five structured activitiesSeq, Flow, Switch, While, and
Pick. Here, it is assumed thatPick is only used to model alternative start events.1 The
transformation ofScopes simply calls the procedure for its nested activity.2 Terminate
is mapped to an end event. Moreover,Basic activities are mapped to functions usingM
and hooked in the process graph.Empty activities map to an arc between predecessor and

1In BPEL, Pick can be used at any place where the process waits for concurrent events. As we do not
distinguish message-based and other basic activities, decisions are captured by aSwitch in BCF .

2Please note thatScopes play an important role in BPEL as a local context for variables, handlers, and also
Terminate activities. In the algorithm we abstract from the fact thatTerminate only terminates the current
Scope but not the whole process. Furthermore, we abstract from the fact that a BPEL terminate leads to improper
termination.

303

successor nodes.
The proceduresBCFtransformSeq, BCFtransformBlock, BCFtransformPick,
andBCFtransformWhile used in theBCFtransform procedure generate the pro-
cess graph elements that correspond to the respectiveBCF structured activities. The
BCFtransformSeq procedure connects all nested activities of a sequence with pro-
cess graph arcs. Although not explicitly defined, this transformation requires an order
defined on the nested activities. For each sub-activities theBCFtransform procedure
is invoked again. This is similar toBCFtransformBlock. Here, a split and a join
connector are generated. Depending on the label given as a fourth parameter the proce-
dure can transform bothSwitch or Flow. TheBCFtransformPick replaces the start
event of the process graph with one start event for each nested sub-activity. Finally, the
BCFtransformWhile procedure generates a loop between an XOR join and XOR split.

3.2 Strategy 2: Hierarchy-Preservation

Many graph-based BPM languages allow to define hierarchies of processes. EPCs for
example include hierarchical functions and process interfaces to model sub-processes. In
YAWL tasks can be decomposed to sub-workflows. Process graphs can be extended to
process graph schemas in a similar way to allow for decomposition.

Definition 11 (Process Graph Schema PGS)A process graph schemaPGS = {PG, s}
consists of a set of process graphsPG and a mappings : F → {∅, pg}with pg ∈ PG. The
mappings is called subprocess relation. It points from a function to a refining subprocess
or, if the function is not decomposed, to the empty set. The relations is a tree, i.e. there is
no recursive definition of sub-processes.

Thegeneral ideaof the Hierarchy-Preservation strategy is to map eachBCF structured
activity to a process graph of a process graph schema. The nesting of structured activ-
ities is preserved as functions with subprocess relations. The algorithm can be defined
in a top-down way similar to the Flattening strategy. Changes have to be defined for the
transformation of structured activities as each is mapped to a new process graph. Aprereq-
uisiteof this strategy is that theBCF is structured: links across the border of structured
activities cannot the expressed by the subprocess relation. Theadvantageof the Hierarchy-
Preservation strategy is that the descriptive semantics of structured activities can be pre-
served. Furthermore, such a transformation can correctly map the BPEL semantics of
Terminate activities that are nested inScopes. As adrawback, the model hierarchy has
to be navigated in order to understand the whole process. This strategy might be useful in
ascenariowhere process graphs have to be mapped back to BPEL structured activities.

3.3 Strategy 3: Hierarchy-Maximization

One disadvantage of Strategy 2 is that it is bound to structured BPEL. The Hierarchy-
Maximization Strategy aims at preserving as much hierarchy as possible with also being
applicable to any BPEL control flow – anyway if structured or unstructured. Thegeneral

304

ideaof the strategy is to map thoseBCF structured activitiess to subprocess hierarchies
if there are no links nested that cross the border ofs. Accordingly, this strategy is not
subject to any structuralprerequisites. The advantage is that as much structure as possible
is preserved. Yet, the logic of both Strategy 1 and Strategy 2 need to be implemented.

4 Process Graph to BPEL Control Flow Transformation Strategies

4.1 Strategy 1: Element-Preservation

In this section we will describe the first strategy for going from process graphs toBCF .
The following Definitions 12 (Annotated Process Graph) and 13 (Annotated Process Graph
Node Map) are also relevant of further strategies. Before we go through the strategies we
will make some definitions where we introduce the notion of an annotated process graph
to ease the notation in strategy.

Definition 12 (Annotated Process Graph)Let APG = (S,E, F,C, l, A, B) define an
annotated graph, where S, E, F, C and l are defined as Definition 1. We define A and B as

– A is a flow relation on the nodes in PG,A = (S ∪F ∪C ∪B) × (E ∪F ∪C ∪B).

– B is a node in PG that holds an annotation in BCF.

One could think of the set B in the annotated graph, Definition 12, as the set of already
translated parts of the process graph. Definition 13 shows how to translate the nodes
in an annotated process graph. Thegeneral ideaof this strategy is to map all process
graph elements to aFlow and map arcs toLinks. In particular, start events are mapped
to Basic,3 function are mapped to elements ofBasic, and connectors are mapped to
elements ofEmpty, and end events are translated to elements ofTerminate. M defines
the identity on BPEL constructs.

Definition 13 (Annotated Process Graph Node Map)Let M define a mapping:E∪S∪
F ∪ C ∪B → Basic ∪ Empty ∪ Terminate ∪B and M is defined as

M(x) =





Empty(x), if x ∈ C;
Basic(x), if x ∈ F ∪ S;
Terminate(x), if x ∈ E;
x, if x ∈ B.

an injective translation from the nodes in the graph to activities in BPEL.

It is a prerequisiteof this strategy that the process graph needs to be acyclic, i.e.(x, x) /∈
A∗. This is because it is not possible to create an activity that logically precedes itself
[ACD+03]. I.e., if X precedes Y then Y cannot precede X. Theadvantageof the Element-
Preservation strategy is that it is simple to implement and the resulting BPEL will be very
similar to the original process graph since there is a one-to-one correspondence between

3As a consequence, all alternative start branches are activated when the process is started. Specific transition
conditions could be defined to have only one branch being activated. In the algorithm we abstract from this issue.

305

the nodes. As adrawback, the resulting BPEL control flow includes more elements than
actually needed: connectors are explicitly translated to empty activities in BPEL instead of
join condition on nodes. This means that the BPEL code might have a lot of nodes which
simply act as synchronization points. Furthermore, the resulting BPEL might be more
difficult to understand than if structured activities, such as the Switch, where chosen to
represent some part of the translated graph. If the BPEL code is used in ascenariowhere
readability is important, then it should be applied only for small process graphs since all
elements of the process graph are mapped toBCF .

Algorithm 2 Pseudo Code for Element-Preservation strategy

procedure: Element-Preservation(PG)
1: Empty ← M(C)
2: Basic ← M(F ∪ S)
3: Terminate ← M(E)
4: Flow ← flow
5: de(flow) ← Empty ∪Basic ∪ Terminate
6: Link ← ∅
7: for all (x, y) ∈ A do
8: Link ← Link ∪ (M(x),M(y))
9: end for

10: jc(x) =





AND, | •M−1(x)| > 1 ∧ l(M−1(x)) = and;
XOR, | •M−1(x)| > 1 ∧ l(M−1(x)) = xor;
OR, otherwise.

11: tc(x, y) = guard(M−1(x), M−1(y))
12: return (BCF)

The algorithm for the Element-Preservation strategy takes a process graph as input and
generates a respectiveBCF as output. The Algorithm 2 applies the mapM as defined
in Definition 13 in lines 1–3. Then, a flow element is added that nests all other activities
(lines 4–5). For each arc in the process graph between two nodes a link is added in the BCF
between the corresponding two BCF nodes (lines 6–9). The join condition of activities is
determined from their corresponding node in the process graph. If it is a connector it will
get a similar join condition, i.e. AND for and, OR for or and XOR for xor. Other nodes
will get an OR join condition (line 10). If two nodes are connected by a guarded arc then
this guard will also be present in the BPEL (line 11).

4.2 Strategy 2: Element-Minimization

This strategy simplifies the generatedBCF of strategy 1. Thegeneral ideais to re-
move the empty activities that have been generated from connectors and instead represent
splitting behavior by transition conditions of links and joining behavior by join condi-
tions of subsequent activities. As aprerequisitethe process graph needs to be acyclic,
i.e. (x, x) /∈ A∗, in order to make dead path elimination of BPEL work. Theadvantage
of the resulting BCF specification is, at least to a greater extent than strategy 1, that it is

306

in the spirit of BPEL Flow, since it removes empty activities generated from connectors.
As adrawback, it is less intuitive to identify correspondences between the process graph
and the generated BCF specification. This strategy should be used inscenarioswhere the
resulting BPEL code needs to have as few nodes as possible. This might be the case when
performance of the BPEL process matters. In contrast to strategy 1, the amount of nodes
is decreased since all empty activities translated from connector nodes are skipped .

Algorithm 3 Pseudo code for Element-Minimization strategy

procedure: Element-Minimization(PG)
1: BCF ← Element-Preservation(PG)
2: while ∃x ∈ Empty : M−1(•x) ∩ C = ∅ do
3: Link ← Link ∪ {(y1, y2) | y1 ∈ •x ∧ y2 ∈ x•}
4: for all y ∈ x• do

5: jc ←
(

jc′(y′) =
{

jc(y′), y′ 6= y;
jc(y′) ∧ jc(x), otherwise.

)

6: end for
7: Link ← Link \ ({(x, y) | y ∈ x•} ∪ {(x, y) | y ∈ •x})
8: Empty ← Empty \ {x}
9: end while

10: return (BCF)

The algorithm translates aPG into a BCF using Algorithm 2 (line 1). Then, there is
a loop iterating over all empty activities that have been generated from connectors (line
2) and do not have other translated connector nodes as input links. Finally all translated
connector nodes will be removed. For each empty activityx, the nodes having a link to
it, are connected to nodes having a link from it. Then, the join conditions of the activities
subsequent tox need to be updated. The join condition of an activity is the old join
condition it had, before removingx, in conjunction with the join condition of x (lines 4–
6). Lines 7–9 defines the actual removal ofx. This involves removing all link relations
thatx occurs in and removingx from the set of Empty activities.

4.3 Strategy 3: Structure-Identification

The general ideaof this transformation strategy is to identify structured activities in the
process graph and apply mappings that are similar to the reduction rules given in Definition
6 on them. As aprerequisitethe process graph needs to be structured according to Defi-
nition 6. Theadvantageof this strategy is that all control flow is translated to structured
activities. For understanding the resulting code this is the best strategy since it reveals
the structured components of the process graph. As adrawbackthe relation to the original
process graph might not be intuitive to identify. This transformation strategy is appropriate
in ascenariowhen theBCF is to be edited by a BPEL modeling tool or, generally, when
understanding the control flow of the process graph is important.
Ouralgorithmuses the reduction rules of Definition 6, but instead of substituting a pattern
with a function it is replaced by an annotated node containing the BPEL translation of

307

the process graph fragment. This means, in reducing the process graph we generate an
annotated process graph that finally includes only one single annotated node. A single
function is mapped toBasic in the resultingBCF , whereas annotated nodes are mapped
to the set which their annotation is a member of; e.g.Switch if a Switch annotation. Each
of the rules identifies structure that has an equivalent representation in BPEL as follows:

– A sequence of elements is translated to aBCF sequence with activities in the same
order as nodes of the process graph sequence.

– An AND-block is translated to a flow in theBCF . The nodes of the AND-block
are translated to nested activities of the flow.

– An OR-block is translated to a flow in theBCF . The nodes of the OR-block are
translated to nested activities of the flow with an additional empty activity. This
points to each alternative branch and transition conditions are used to activate only
a subset of branches. Notice that this translation makes theBCF unstructured.

– An XOR-block is translated to a switch in theBCF . Each branch of the XOR-block
is mapped to a nested activity of the switch including the respective guard.

– A mixed loop has no direct representation in theBCF . As the rule in Definition
6 state the graph has the structurec1• = {a1}, •c1 ∩ c2• = {a2, . . . , an}. The
condition to leave the loop iscond , i.e. the boolean expression(Yx∈Aguard(x))∧
¬(Yx∈Bguard(x)), A = {(c2, x)|x ∈ •c1∩c2•} andB = {(c2, x)|x /∈ •c1∩c2•}.
However, since exactly one of the arcs from an XOR connector node is true at a
time the boolean expression can be reduced to both the left and the right part in the
conjunction. Guards in PG are mapped to transition conditions in theBFC. The
mixed loop can be mapped to the following BPEL pseudo code:

1: assign(continueLoop,true);
2: while(continueLoop) {
3: M(a1);
4: switch {
5: case cond: assign(continueLoop,false);
6: case tc(c2,a2)): M(a2);
7: ...
8: case tc(c2,an)): M(an);
9: }
10:}

– A while-do loop is translated into a while activity with a switch inside it. It is
mapped as the mixed loop with the difference that lines 1, 3, and 5 are omitted and
the condition,cond , for looping replaces thecontinueLoop in line 2.

– A repeat-until loop has no direct representation in theBCF . It is mapped in a
similar way as the mixed loop – lines 6 through 8 in the pseudo code are omitted.

– An empty loop is translated to an empty activity.
– A start-block is mapped to a Pick containing empty activities for each branch.
– An end-block is translated to a respective AND-, OR-, or XOR-block with each

branch followed by a terminate activity.

Algorithm 4 describes the Structure-Identification transformation strategy. Line 1 initial-
izes the annotated process graph. After that, a loop is iterated until the annotated process
graph is reduced down to one activity. The reduction rules of Definition 6 are used to

308

Algorithm 4 Pseudo code for Structure-Identification strategy

procedure: Structure-Identification (PG)
1: APG ← (S, E, F,C, l, A, ∅)
2: while |F ∪ C ∪B| > 1 do
3: APG′ ← match(APG) {Using rules in Definition 6}
4: b ← translate(APG′) {Using the described translations above}
5: Reduce APG substituting APG’ with b{Using rules in Definition 6}
6: end while
7: return (BCF)

substitute components of the process graph by correspondingBCF structured activities
in the same way as the functionfC substituted components in Definition 6.

4.4 Strategy 4: Structure-Maximization

Thegeneral ideaof this strategy is to apply the reduction rules of the Structure-Identification
strategy as often as possible to identify a maximum of structure. The remaining anno-
tated process graph is then translated following the Element-Preservation or Element-
Minimization strategy. Theadvantageof this strategy is that it can be applied for arbitrary
unstructured process graphs as long as its loops can be reduced via the reduction rules of
Definition 6. Still this strategy is also not able to translate arbitrary cycles, i.e. cycles with
multiple entrance and/or multiple exit points. Adrawbackof this strategy is that both the
Structure-Identification strategy and at least the Element-Preservation strategy needs to be
implemented. The strategy could be used inscenarioswhere models have to be edited by
a BPEL modeling tool that uses structured activities as the primal modeling paradigm.

5 Related Work

A lot of work exists on transformation between BPEL and other process languages. We
highlight only a part and refer to [MLZ05] for a more complete discussion of related work.
One branch of related work is dedicated tomodel-driven developmentof executable BPEL
process definitions. In [Gar03] a BPM-specific profile of UML is used to generate BPEL
code. The aim is rather to prove the feasibility of such an approach than the discussion
of different transformation alternatives. It is not clear from the paper which strategy the
author choose. The code fragments suggest that an Element-Preservation strategy is taken
and sequences are mapped to BPEL sequence. The Element-Preservation strategy can also
be found in a mapping from EPCs to BPEL [ZM05]. The BPMN specification [Whi04]
comes along with a proposal for a mapping to BPEL. As BPMN is a graph-oriented BPM
language similar to process graphs, the strategies of Section 4 can be applied. The sub-
section 6.17 of BPMN spec presents a mapping that is close to the Structure-Identification
strategy proposed in this paper. The authors introduce so-called conceptual tokens to iden-
tify structure. Yet, the mapping is given rather in prose, a precise algorithm and a definition

309

of required structural properties is missing. Further work using a Structure-Identification
strategy is reported in [vdAJL05] where Workflow nets, and in [KvM05] where XML nets
are mapped to BPEL.
A second branch of research is related toconceptual mappingsin order to better understand
BPEL behavior and its relation to other BPM languages. In [HSS05] a transformation from
BPEL to Petri Nets is presented in order to give BPEL formal semantics. The authors use a
Flattening strategy to generate a Petri Net that covers BPEL behavior including exceptional
behavior. The generated Petri Net is used for formal static analysis of the BPEL model.

6 Conclusion and Future Work

In this paper, we addressed the problem of transformations between graph-oriented and
block-oriented BPM languages. In order to discuss such transformations in a general
way, we defined process graphs as an abstraction of graph-oriented BPM languages and
BPEL control flow as an abstraction of BPEL that shares most of its concepts with block-
oriented languages like BPML. Our major contribution is the identification of different
transformation strategies between the two BPM modelling paradigms and their specifi-
cation as pseudo code algorithms. In particular, we identify the Flattening, Hierarchy-
Preservation, and the Hierarchy-Maximization strategy for transformations from BPEL
control flow to process graphs. In the other direction we identify Element-Preservation,
Element-Minimization, Structure-Identification, and Structure-Maximization strategy. As
such, the strategies provide a useful generalization of many current X-to-BPEL and BPEL-
to-Y papers not only for identifying design alternatives but also for discussing design de-
cisions. We checked the applicability of these strategies in two case studies which are
reported in [MLZ05].
In future research, we aim to conduct further case studies in order to identify how aspects
that are not captured by process graphs and BPEL control flow can be addressed in a
systematic way. Another issue is the upcoming new version of BPEL which is expected to
be issued as a standard in the beginning of 2006. It will be interesting to discuss in how far
that new version simplifies or complicates the mapping to and from graph-oriented BPM
languages.

References

[ACD+03] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic and S. Weerawarana. Business Process
Execution Language for Web Services, Version 1.1. Specification, BEA Systems,
IBM Corp., Microsoft Corp., SAP AG, Siebel Systems, 2003.

[Ark02] A. Arkin. Business Process Modeling Language (BPML). Spec., BPMI.org, 2002.

[Gar03] Tracy Gardner. UML Modelling of Automated Business Processes with a Mapping
to BPEL4WS. InProceedings of the First European Workshop on Object Orientation
and Web Services at ECOOP 2003, 2003.

310

[Hol04] David Hollingsworth.The Workflow Handbook 2004, chapter The Workflow Refer-
ence Model: 10 Years On, pages 295–312. Workflow Management Coalition, 2004.

[HSS05] Sebastian Hinz, Karsten Schmidt and Christian Stahl. Transforming BPEL to Petri
Nets. InProceedings of BPM 2005, LNCS 3649, pages 220–235, 2005.

[KNS92] G. Keller, M. Nüttgens and A. W. Scheer. Semantische Prozessmodellierung auf
der Grundlage “Ereignisgesteuerter Prozessketten (EPK)”. Heft 89, Institut für
Wirtschaftsinformatik, Saarbrücken, Germany, 1992.

[KvM05] Agnes Koschmider and Marco von Mevius. A Petri Net Based Approach for Pro-
cess Model Driven Deduction of BPEL Code. In Robert Meersman, Zahir Tari and
Pilar Herrero, editors,OTM Workshops, volume 3762 ofLecture Notes in Computer
Science, pages 495–505. Springer, 2005.

[MLZ05] J. Mendling, K. Lassen and U. Zdun. Transformation Strategies between Block-
Oriented and Graph-Oriented Process Modelling Languages. Technical Report JM-
2005-10-10, WU Vienna, October 2005.

[MN05] Jan Mendling and Markus N̈uttgens. EPC Markup Language (EPML) - An XML-
Based Interchange Format for Event-Driven Process Chains (EPC). Technical Re-
port JM-2005-03-10, WU Wien, Austria, 2005.

[MNN04] Jan Mendling, Markus N̈uttgens and Gustaf Neumann. A Comparison of XML
Interchange Formats for Business Process Modelling. In F. Feltz, A. Oberweis and
B. Otjacques, editors,Proceedings of EMISA 2004, LNI 56, pages 129–140, 2004.

[MZ05] J. Mendling and J. Ziemann. EPK-Visualisierung von BPEL4WS Prozessdefinitio-
nen. InProc. of Workshop on Software Reengineering, Germany, 2005.

[RtHEvdA05] Nick Russell, A.H.M. ter Hofstede, D. Edmond and Wil M.P. van der Aalst. Work-
flow Data Patterns: Identification, Representation and Tool Support. InProc. of the
24th International Conference on Conceptual Modeling (ER 2005), LNCS, 2005.

[Tha01] S. Thatte. XLANG. Specification, Microsoft Corp., 2001.

[vdA97] W. M. P. van der Aalst. Verification of Workflow Nets. In Pierre Azéma and Gi-
anfranco Balbo, editors,Application and Theory of Petri Nets, LNCS 1248, pages
407–426, 1997.

[vdAJL05] Wil M.P. van der Aalst, Jens Bæk Jørgensen and Kristian Bisgaard Lassen. Let’s Go
All the Way: From Requirements via Colored Workflow Nets to a BPEL Implemen-
tation of a New Bank System. In R. Meersman and Z.Tari, editors,Proceedings of
CoopIS/DOA/ODBASE 2005, Agia Napa, Cyprus, LNCS 3760, pages 22–39, 2005.

[vdAtH05] Wil M. P. van der Aalst and Arthur H. M. ter Hofstede. YAWL: Yet Another Work-
flow Language.Information Systems, 30(4):245–275, 2005.

[vdAtHKB03] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, Bartek Kiepuszewski and Alis-
tair P. Barros. Workflow Patterns.Distributed and Parallel Databases, 14(1):5–51,
July 2003.

[Whi04] S. A. White. Business Process Modeling Notation. Specification, BPMI.org, 2004.

[Wor02] Workflow Management Coalition. Workflow Process Definition Interface – XML
Process Definition Language. Document Number WFMC-TC-1025, October 25,
2002, Version 1.0, Workflow Management Coalition, 2002.

[ZM05] J. Ziemann and J. Mendling. EPC-Based Modelling of BPEL Processes: a Pragmatic
Transformation Approach. InProceedings of MITIP 2005, Italy, 2005.

311

312

Automated Derivation of Executable Business Processes
from Choreographies in Virtual Organizations

Ingo Weber1, Jochen Haller1, Jutta A. Mülle2

1SAP Research
2IPD, Universität Karlsruhe (TH)

Karlsruhe (Germany)
{ingo.weber, jochen.haller}@sap.com, muelle@ipd.uka.de

Abstract: In this paper, we address the challenge of deriving both, executable WS-
BPEL processes and their respective WSDL interface specifications from choreogra-
phies written in WS-CDL for business processes in Virtual Organizations (VOs). The
major issues hereby are the differences in the vocabulary of WS-CDL and WSBPEL as
well as the information gap between a choreography and an executable orchestration.
The information gap results from the requirement imposed by the VO environment
to establish a process-based collaboration in a top-down fashion. High-level chore-
ography descriptions are hereby the basis for the derivation of detailed executable
processes. The first issue is addressed with a detailed translation table; the second,
more severe one requires the use of a role specific knowledge base. This knowledge
base delivers process subsets modeling detailed role internal activities while avoiding
their exposure to collaborating roles. The combined solution is a CDL2BPEL algo-
rithm.

1 Introduction

In today’s business world, there is a strong need for information technology integration
across organizational boundaries. Following the trend of Service Oriented Architectures
(SOAs), enterprises will continue exposing well-defined communication interfaces to their
respective business partners, in order to enable the information exchange and thus the co-
operation of applications on geographically distributed information systems. Emerging
standards mainly from OASIS1 and W3C2, especially in the Web service area, allow for a
cross-domain business collaboration based on open standards. However, there have to be
some explicit, harmonized facts and coherency in the interactions between the systems of
several partnering roles: For application interoperation, a non-legally binding contractual
agreement has to be followed, guaranteeing a common understanding of which informa-
tion has to be communicated and when. This contractual agreement can take the form of a
choreography, specifying the interactions and local activities between all roles involved in
a collaborative business process at a higher level. I.e., only the interaction points and their
respective order are defined in the choreography and not the details of the local activities.

1http://www.oasis-open.org/
2http://www.w3.org

313

Figure 1: The Analysis-Storage choreography part

A simple example from Collaborative Engineering is shown in Figure 1. The graph, mod-
eled as an UML activity diagram3, shows an excerpt of a choreography that involves the
roles Analysis (AP) and Storage Partner (SP). Assume, the Analysis Partner receives the
request to perform an analysis on engineering data stored within the Storage Partner’s do-
main. The raw data is referenced uniquely, and AP has the reference information. Now,
AP requests data from SP, who retrieves it from the local storage facility and sends it to
AP. AP then locally performs the actual analysis work. The results are transmitted back to
SP, who in turn stores them in the local database. This example will be further developed
throughout the remainder of the paper.

At the choreography level, the partners specify the global view of their co-operation in-
stances. That is, each time when a business objective arises, a new instance of a collabo-
rative business process is created and executed by each collaborating role involved in the
choreography template. However, a choreography can be seen as the combination of a set
of public interfaces and is not executable as process: it only contains the public knowledge
for all roles required to participate in a collaboration, but not the private knowledge spec-
ifying the detailed activities performed by each single role within its own domain. E.g.,
in Figure 1 the interactions between the two roles are stated, but the knowledge on how
the activity ’Analyze Data’ is to be done is of no relevance to the choreography and thus
not modeled at this level. Therefore, an executable representation of the business process
of each role or partner needs to be created. In any of the cases, the local business process
representations have to contain the local knowledge that is not present in the choreography.

This research work was conducted in the context of Virtual Organizations (VOs) within
the European Union funded IST project TrustCoM, which imposes specific requirements:
A VO is formed in response to a business objective that can not be addressed by just one
partner alone. A swift reaction to the emerging business need, fast partner consortium
formation, and quick, automatic adaptation of IT infrastructures are of essence. Thus, an
automated solution deriving executable business processes from a choreography was de-

3Unified Modeling Language, see http://www.uml.org/

314

sired, following a top-down approach which is aligned with the VO formation and partner
selection processes [RKH05].

Business application logic is hereby encapsulated in a service implementation. Therefore,
a business process at one role can be seen as the ordering structure around local web ser-
vice invocations, also called orchestration. Orchestration captures the local, role specific
view on business processes, which orders the calls on available services and guarantee a
defined execution order. In contrast, the global view encompasses the collaborative busi-
ness process, which orders the interactions between the involved roles.

Given a choreography, the presented approach generates executable processes for each role
along with public views on them. The underlying process model follows the view based
process model as introduced in [SO02], where private, executable processes maintain their
confidentiality by only exposing views in terms of public processes to collaborating roles.
The required local knowledge for role specific processes is introduced via a Knowledge
Base (KB). Although the approach focusses on the specific needs of virtual organizations,
it is applicable in most other scenarios as well. The VO environment imposes in that sense
more challenges on the solution, since all aspects of executable processes, including the
local knowledge of the partners, have to be available and specified already at derivation
time.

The remainder of this paper is structured as follows: The problem statement, i.e., chore-
ography support for VOs along with basic definitions form Section 2. Section 3 describes
our solution comprising the local knowledge bases and the CDL2BPEL algorithm, which
is based on the transformation rules available in the full version of this work in [Web05].
Related work is presented in Section 4. Section 5 outlines future work and concludes.

2 Choreography support for Virtual Organisations

Definition 1: A Virtual Organization is a combination of various parties (persons and/or
organisations) located over a wide geographical area which are committed to achieving a
collective goal by pooling their core competencies and resources. The partners in a Vir-
tual Organisation enjoy equal status and are dependent upon electronic connections (ICT
infrastructure) for the co-ordination of their activities. (From [BvW98]). The conducted
research was motivated by the VO environment introduced within the EU-funded project
TrustCoM. TrustCoM focuses on VOs tackling collaborative projects in swift reaction to
an emerging business opportunity. The life cycle of a VO is typically divided into four
phases (from [SLS98]):

• During the VO Identification Phase, the opportunity is identified, evaluated, and
selected.

• The VO Formation Phase comprises of the partner identification, evaluation, and
selection.

• In the VO Operation & Evolution Phase, services and resources of the single VO
partners are integrated, and VO-wide collaborative processes aim at the achievement

315

of shared business objectives. Membership and the structure of VOs may evolve
over time in response to changes of objectives or to adapt to new opportunities in
the business environment.

• The VO Dissolution Phase is initiated when the market opportunity is fulfilled or
has ceased to exist. Here, the distribution of results and products takes place, along
with billing and the like.

Initially, in Identification and Formation phase the VO is assembled. This involves that
a VO initiator, e.g. an aerospace industry system integrator, selects suitable partners to
fill the roles required to enact business processes during the operational phase. Such roles
may range from simple storage providers to specialised experts in subsystem, for instance
wing, fuel tank or antenna, design and manufacturing. The partners are not required to
have an existing business relationship of any kind. Departing from the highest level, fit-
ting real partner organizations to roles during identification phase, the subsequent VO for-
mation becomes more detailed when ICT, security, trust, and various other infrastructures
and systems of the partners have to be connected [RKH05]. Consequently, the top-down
approach also holds for the establishment of collaborative business processes. Departing
from a high-level choreography description available to the VO initiator, it is required to
derive executable business processes for each participating role. Since VOs are dynamic
environments which are intended to act and form fast upon emerging business opportuni-
ties, an automatic derivation methodology is highly desired.

Definition 2: A choreography describes collaborations of parties by defining from a
global viewpoint their common and complementary observable behavior, where informa-
tion exchanges occur, when the jointly agreed ordering rules are satisfied. [...] The Chore-
ography offers a means by which the rules of participation within a collaboration can be
clearly defined and agreed to, jointly. Each entity may then implement its portion of the
Choreography as determined by the common or global view. (from [W3C05]).

In TrustCoM, the view based collaborative business process model is used, as presented
by Schulz et al in [SO02], [SO01], which, in turn, is based on the specifications of the
WfMC4. There, the needs for confidentiality of entire processes or workflows of the re-
spective partners and the integration of multiple private workflows into a global view are
identified as critical for successful operation of virtual enterprises, extended enterprises
and virtual organizations. On the one hand, an organization may not be willing to share
detailed information about a complete business process, since the information in it rep-
resents an asset to its owner. On the other hand, enough information has to be provided
to the coalition (or the VO in our context) in order to get a coherent and stable public
workflow. The TrustCoM approach introduces a coalition model with three tiers: private
processes, public views of these processes, and a (global) public process. These three tiers
correspond to the notions of private business processes, the interfaces of these processes,
and choreographies, respectively.

Applying the collaborative business process model to the VO environment, the collaborat-
ing members are informed about the VO objective through the shared choreography. They

4Workflow Management Coalition, among others see [WfM99] and [WfM02]

316

can thus infer the behavior that is expected from them during the VO operation phase
which corresponds to their public process. A partner is only required to expose the public
process to the VO which serves as the interface for the confidential private process.

Following the Service Oriented Architecture (SOA) paradigm, implemented modular pieces
of application logic are assumed to be available as services. Therefore, the private business
process can be seen as a stateful wrapper around the services, guaranteeing the defined or-
der of calls to the services. Thus, it is also called orchestration, providing a local, role
specific view on a private/public process pair, in contrast to the choreography which cap-
tures the global view on a collaboration among different roles.

2.1 The Information Gap

The information gap is our term of different levels of detail within the described collabo-
rative business process model. Choreographies model the interplay between the multiple
parties in a collaborative business process and are not concerned about the details of each
individual role’s activities. Orchestrations, however, need to contain all details required for
the execution of a single partner’s business process. Thus, the sum of the orchestrations
contains more knowledge than the respective choreography.

In detail, the information gap contains the following points of information differences
between the choreography and the orchestrations:

1. The internal or private actions for each role, which are of no interest to the choreog-
raphy.

2. Branching conditions in the orchestration, which are not observable on the collabo-
rative level.

3. Extensions, specifying e.g. annotating security requirements and transactional be-
havior.

4. Details in error and compensation handling, which are not treated at the choreogra-
phy level.

5. Runtime details, such as initial and glueing activities, which monitor e.g. service
endpoint behaviour.

While the points 1 and 2 are addressed by the work presented in the following section, 3
is subject to future work. Point 4 should in our opinion be addressed by best practices for
choreography design, and 5 tackles runtime behaviour which is considered out of scope
for the presented work.

317

2.2 Language Differences

From the extensive set of available languages5, we made the following three choices ad-
dressing the requirements and constraints as presented above in this section:

• The Web Service Choreography Description Language (WS-CDL) [W3C05] is
used to specify choreographies. Although it is still in the process of standardiza-
tion and severe structural critique was expressed [BDO05], it represents the most
promising and expressive approach currently available.

• For executable (private) processes, the Web Service Business Process Execution
Language (WSBPEL) is employed. All generated private processes are executable
BPEL processes. This language was chosen, because it is mature, widely known
and used, and draws strong attention from industry.

• The public views are expressed in the Web Service Description Language (WSDL).
Other possibilities such as abstract BPEL processes were considered and would
have been more flexible than static WSDL descriptions. This choice was taken,
since WSDL is a rather mature and stable standard, at the same time supporting
the choice of executable BPEL. Abstract BPEL is specified, but its intended usage
and coherent runtime mapping to executable BPEL is still under discussion in the
OASIS Technical Group standardizing WSBPEL.

In order to qualify elements and functions in the remainder of this paper, the following pre-
fixes are employed: cdl refers to language items from WS-CDL, bpel refers to WSBPEL,
and wsdl to WSDL language elements.

Although the WS-CDL specification intends to be compliant with executable process lan-
guages as WSBPEL, the language elements differ in many respects. Where BPEL offers a
set of atomic activities which can be combined elegantly to the desired behavior, WS-CDL
knows certain elements which are far from being atomic: The cdl:interaction activity com-
bines actual interactions with transactionality, timeouts, and assignments. cdl:WorkUnits
are the sum of loops, conditional execution, variable value evaluation, and potential partial
ordering of parallel activities. These and other differences make the actual derivation of ex-
ecutable BPEL processes hard, since the complex semantics of very expressive WS-CDL
activities are not matched in the goal language. In certain cases, workarounds are possible.
But in a subset of these cases, the workarounds cannot guarantee that the behavior of the
generated processes is fully equivalent to the intended behavior from the choreography.
The resulting semantic differences are outlined in the evaluation section.

In this section, the introduced terms were defined and the problems addressed by this paper
were stated. Namely, there is the issue of the information gap as a result of the different
points of view taken by choreographies and orchestrations, and the problem of language

5As for XML-based standard languages (or languages in the process of becoming standardized), there are
multiple alternatives for each category, such as WSCI, WSCL, BPSS, and WfXML for choreographies and
BPML, XPDL, XLANG, WSFL, and BPDM for executable private processes.

318

differences resulting from the chosen set of languages. The next section is concerned with
the solutions to these problems.

3 Technical Solution

In order to achieve an automated derivation of executable processes, the elements of a WS-
CDL document are translated in a depth-first search through the XML tree. For each role
in the choreography, a process is derived. Each element in the source document is added
only to the processes of the roles for which it is relevant. If a part of the choreography
cannot be translated, i.e. it falls into one of the categories of the information gap, it is
sent as a request to a Knowledge Base (KB). In the KB, the private, local, or confidential
details of a private process are placed. If there are elements of a choreography which still
cannot be translated, a list of these elements (and potentially other errors) is returned.

Figure 2 shows a graphical representation of the outcomes of the BPEL derivation from
the choreography in Figure 1. Clearly, the orchestrations are far more detailed, and the
local substitutes for the high-level, private activities from the choreography are in place
(the local service calls, which depend on the environment).

Also, the executable processes are concerned with initialization of the processes, which
always means incoming messages in BPEL6, as well as gluing activities. The latter include
variable and message initialization, and apparent assignment statements. These runtime
requirements are not to hard to meet, and the details of how this can be done are omitted
here.

The derivation of BPEL and WSDL from WS-CDL is achieved in a 5-step algorithm,
which is outlined in section 3.2. In short, the algorithm is an extended compiler, in that
it reads a source document and generates an object tree for it, performs validation and
transformation on the tree, and serializes the resulting object trees to a set of documents
in the target languages. We call it ’extended’, because it includes a dynamic part - the
Knowledge Base - in addition to the static program code.

3.1 The Knowledge Base

The KB contains CDL patterns and their respective replacements in terms of BPEL ac-
tivities as well as optional WSDL elements and even deployment artifacts for all roles of
interest. When queried, the KB tries to find a pattern matching the WS-CDL part from
the request. If such a pattern is found, the respective BPEL and WSDL parts and the de-
ployment information are retrieved. Since the patterns can be generic in that they contain
placeholders for variable or partner names, the KB then replaces these placeholders with
the instances from the query. Subsequently, the results are returned to the CDL2BPEL
algorithm, which weaves them into the goal documents.

6Note, that here only the AnalysisProvider’s process needs to be invoked from outside. It then calls the SP
process synchronously, so that one can be sure, all processes are available before starting the work.

319

(a)

AnalysisPartner

Initial Receive

Initial Assignments

Synchronous

Init StoragePartner

Receive ACK

Scope

Assign Before Send

Request Raw Data From SP

Receive Raw Data

Assign After Receive

Synchronous

Invoke Local Service: Analyze Data

Receive Results

Assign Before Send

Assign After Receive

Send Result Data To SP

Receive Result Data Address

(b)

StoragePartner

Initial Receive

Initial Assignments

Scope

Assign Before Send

Send Result Data Address To AP

Receive Raw Data Request

Assign After Receive

Synchronous

Invoke Local Service:Get Raw Data

Receive Raw Data

Assign Before Send

Assign After Receive

Send Raw Data To AnalysisPartner

Receive Result Data

Synchronous

Invoke Local Service: Store Result Data

Receive Result Data Address

Reply ACK

Figure 2: The resulting BPEL processes, derived from the Analysis-Storage choreography part in
Figure 1. (a) The process for the AnalysisPartner role. (b) The process for the StorageProvider role.

320

Using this technique encourages the reuse of both choreographies and patterns and intro-
duces a dynamic element into the derivation. The KB can be deployed and accessed solely
locally at each member of a VO, satisfying the confidentiality requirement that comes with
optimized process parts and internal implementation. The KB also enables a late binding-
like way to connect local services to a process. In that sense, the Knowledge Base can be
seen as the material filling up the information gap.

3.2 The CDL2BPEL Algorithm

We did not attempt using XSLT7 for the transformations due to its limitations. XSLT
is designed for generating XML result documents out of XML source documents in a
straight-forward manner. Here, we need more sophisticated mechanisms e.g. for valida-
tion: WS-CDL channel variables with a usage set to ’once’ may actually be used more
than once, and unrolling all the possible contingent execution paths that a choreography
can take is a virtually impossible quest for XSLT. However, the implementation needs to
be able to detect such errors in the choreography.

3

<process>
…

</process>

BPEL

5

4

WSDL

<definitions>
…

</definitions>

5

<package>
<choreography>

…
</choreography>

</package>

WS-CDL

1

2

ErrorLog

Failure
Notification

5

33

CDL-KB

3

3

Figure 3: The five steps of the CDL2BPEL algorithm

Figure 3 shows the various steps of the algorithm graphically. In detail, the five steps are:

1. Read the choreography, create and initialize the corresponding Java objects from the
WS-CDL elements.

7Extensible Stylesheet Language Transformations, see XSLT 1.0 [W3C99] and XLST 2.0
(http://www.w3.org/TR/xslt20/ , work in progress)

321

2. Validate the choreography (Correct variable and channel usage, the correct number
of child elements with appropriate attributes and conditions such as guards)

3. Translate from CDL to BPEL and WSDL

• Traverse the XML tree from the root choreography, adding each activity to the
BPEL process of involved roles (Structuring activities, such as sequence or
parallel, are added to the processes of all roles)

• If the current element cannot be translated directly, try a KB lookup with the
non-translatable part as input

• For activities or sets of activities which still cannot be transformed, make an
error note (Report all errors back after traversing the whole tree, see step 5)

• Extract WSDL files from interactions and tokens / token locators (Generate op-
erations, port types, message schemas, bpel:partner link types, bpel:properties)

4. Validate the generated BPEL processes from the holistic perspective, focussing on
the partner links, operations, port types and exchanged variables. This static check
ensures that the set of BPEL processes can be executed together based on their
sequence of exchanges.

• Add necessary gluing activities where obvious, e.g. assignments.

• Remove superfluously structuring activities (e.g. a sequence with one child)
which are leftovers from step 3).

5. Generate the BPEL and WSDL code from the objects OR return failure note

The results of this algorithm are a set of documents, namely for each cdl:roleType a private,
executable BPEL process and the public view on it as a WSDL definition. Note that WS-
CDL knows an element called participant, which groups together multiple role types that,
during execution, must be played by a single entity. Therefore, another approach could
be to generate one process per participant. However, we decided on the above solution,
because one organization representing a participant with multiple roles could work with
multiple BPEL engines for the differing purposes of the roles. E.g. in a buyer-seller-
shipper choreography where the seller and shipper roles have to be played by one entity,
the company who plays these roles could have distinct departments with each maintaining
an own BPEL engine. Thus, this decision can be seen as enabling more flexibility, but
shifting the enforcement of the participant-role constraints to another spot.

For further reading, the details of the translation are listed in the translation table in
[Web05]. For most of the WS-CDL elements, a match in BPEL was found. In particular,
the cdl:silentAction and cdl:choice with non-observable conditions are cases for which, by
design of WS-CDL, no match can be found in BPEL. One other construct has to be men-
tioned here as well: A cdl:choice with both, blocking and non-blocking cdl:workUnits as
children can only be translated to a workaround - a set of activities in BPEL which can
differ in their execution from the intended behavior in the choreography. This is only the
case if certain complex interdependent sets of guard conditions fall together with events

322

taking place at particular points in time. It is the most challenging case of language differ-
ences between WS-CDL and BPEL, and only for that we did not find a perfectly satisfying
solution.

3.3 Prototypical Implementation and Evaluation

For both, the CDL2BPEL algorithm and the KB, a proof-of-concept prototype has been
implemented as Java Web Services based on Axis (1.2RC3) ([Fou05]). The Knowledge
Base builds on a relational database. The business processes in Figure 2 demonstrate
graphically the result of applying the implementation to the CDL document belonging to
the choreography from Figure 1.

[Web05] gives a conceptual mapping for all WS-CDL elements to BPEL and WSDL.
The CDL2BPEL algorithm uses this mapping and the Knowledge Base in order to derive
executable processes and their interfaces from choreographies. The prototype proves the
validity of this approach for the addressed problem by applying the implementation to a
set of Collaborative Engineering choreographies within a TrustCoM VO. The outputs are
processes which are indeed executable.

However, for certain cases of the cdl:choice element, no semantically equivalent construct
was found. That is, a possible workaround could differ in its behavior as follows:

• Timing issues can switch the order of condition evaluation, since there are no event-
based BPEL constructs matching the cdl:isVariableAvailable and cdl:variablesAligned
functions.

• Communication delays in Web Service invocations can cause a duration-based time-
out to happen later than intended or even missing an event completely.

A solution to these issues requires basically changes or extensions in BPEL, thus being
postponed until the next version8 of BPEL becomes available.

As already mentioned above, the implementation was tested with TrustCoM choreogra-
phies, stemming from collaborative engineering examples. The choreographies we used
departed from simple examples with two roles and eleven activities up to more complex
examples with five roles and 40 activities, not counting interactions. In principle, the ap-
proach of the CDL2BPEL algorithm is valid beyond the TrustCoM related samples. The
translation table is independent of any application scenario as is the Knowledge Base con-
cept. To apply a particular implementation instance in an application scenario, the only
application specific dependency relates to the Knowledge Base content. An occurring
cdl:silentAction to ”Analyze data” for instance will be resolved by a Knowledge Base
query and therefore, its content has to deliver the fitting process part. ”Analyze data” may
be relevant for an aerospace choreography as wells as an automotive one, but the process
parts will differ depending on the example.

8The OASIS WSBPEL Technical Committee plans two further versions of the BPEL standard, before handing
over the control to W3C.

323

The evaluation has shown, that in most practically relevant cases the algorithm yields ex-
ecutable processes. Exceptions, besides above cdl:choice example, may arise with the
use of the align attribute in cdl:interactions which express required transactional behav-
iour. Translated to BPEL, this involves the usage of compensation handlers and rollback
variables storing the used variable’s initial state. While BPEL alone can cope with simple
transactions, we believe that in complex collaborations involving for instance long running
or dynamic transactions among multiple roles would require the use of other WS standards
such as WS-Transaction in conjunction with WS-Coordination. Another exception is the
channel concept in WS-CDL which has no direct counterpart in BPEL. Furthermore, to-
kens can be declared in WS-CDL which relate to correlation sets in BPEL. In contrast to
CDL, an activity which initialises a correlation set has to be explicitly defined [Web05].

4 Related Work

The main issue of this paper is the automated derivation of executable business processes
specified in WSBPEL and WSDL from WS-CDL modelled business choreographies in an
interorganizational environment.

There are several publications on issues related to interorganizational workflows ([ACea04,
CCJL04, vdA00, vdAW01]). The overlapping and differing aspects of orchestrations and
choreographies were already identified in [Pel03], but focussing on WSCI [W3C] and not
on WS-CDL.

The tranformation of choreographies to WSBPEL is part of a comprehensive design method-
ology. Several approaches exist that propose such architectures for Business Process Mod-
eling. As one of these, [Hav05] provides an exemplary BPM architecture, which is built on
three standards: WS-CDL, the Business Process Modeling Notation (BPMN), and BPEL.
This theoretical architecture envisions automated mappings from WS-CDL to BPMN (and
compliance checks in the opposite direction), as well as from BPMN to BPEL. This ap-
proach is motivated as a good BPM solution for single companies, whose processes must
comply to agreed-on choreographies for the interaction with business partners. Their ar-
chitecture is more of a bottom-up approach, whereas our solution is meant for VOs, with
intrinsic necessity for top-down solutions. Also, the author states that ”BPMN has no
behind-the-scenes open XML representation”9 which could be used for automated BPMN
generation, based on a given WS-CDL definition.

The ebXML BPSS10 offers a public view on business processes during design time which
has some similarities to the choreographies used in our approach. In contrast to WS-CDL,
the ebXML business processes can only specify binary relations, posing restrictions to
the expressive power for ordering constraints of multi-party choreographies. Furthermore,
ebXML does not explicitly address executable business processes, e.g. modeled in BPEL.
Businesses mutually agree to follow a BPSS in a CPA11. Instead of striving for automation

9[Hav05], p. 41
10ebXML: Electronic Business using eXtensible Markup Language (http://www.ebxml.org/), BPSS: Business

Process Specification Schema. See [Ira01], [Mar03], and [NDE+01]
11Collaboration Protocol Agreement, part of ebXML

324

in setting up a collaboration, ebXML rather expects people to agree upon a CPA, taking
existing executable processes into account.

In [MNN04], 15 different XML-based specifications for business process modeling are
compared. The authors state, that WSBPEL is one of the most complete language in terms
of available features, that supports our choice of BPEL as target language. The already ob-
solete BPML12 co-exists, but receives far less support from the industry, possibly because
it is not directly related to Web Service orchestration.

A conceptual model for the mapping from WSBPEL to WS-CDL is presented in [MH05].
Additionally, a proof-of-concept implementation of the mapping was realized with the Ex-
tensible Stylesheet Language Transformations (XSLT), enabling the generation of BPEL
stubs from WS-CDL documents. Although the goal seems similar to our approach at a first
glance, there are notable differences: our goal is to derive executable BPEL processes that
can be deployed without human interaction and are executable in the sense that they really
run through when called, and we provide a complete translation table not only a partial one
as in [MH05]. Also, the prototypical implementation of our mapping is implemented as
an extended compiler, offering dynamic translation opportunities and sophisticated consis-
tency and correctness validation - qualities that XSLT cannot provide without extensions.

5 Conclusion and Future Work

The paper describes the task of deriving executable public and private processes from a
high-level choreography, and presents a solution in form of the CDL2BPEL algorithm. In
conclusion, the main challenges initially pointed out, namely overcoming in the first place
the information gap when departing from high-level choreography descriptions could be
solved with the introduction of the knowledge base. The latter fills the gaps between
the global and the local collaboration perspective with partner-internal local knowledge.
Both, knowledge base and the Web service oriented implementation of the CDL2BPEL
algorithm achieve the remaining goal of an automated derivation approach within highly
dynamic VO environments.

Future work is planned to build incrementally upon the presented derivation approach. As
an immediate extension, we planned automatic process, private and public, deployment
within a process execution environment. Technologywise, the choice of BPEL for private
and WSDL for public processes introduces a large number of possible BPEL engines for
this purpose. In the case at hand, the open source ActiveBPEL (http://www.activebpel.org)
engine was chosen after careful testing due to its stable implementation and sensible ar-
chitecture. Furthermore, TrustCoM aims at provisioning of secure collaborative business
processes. The confidentiality of private processes can be enforced through their deploy-
ment environment. Process execution at runtime needs to be reactive to security subsystem
decisions taken outside the process execution environment, but within the same adminis-
trative domain. A security control concept for collaborative business processes is already
available and was published by one of the authors [HRK05]. It will be implemented based
on the presented work.

12Business Process Modeling Language, [Ark02]

325

Far-term future work could include basing the knowledge base on BP-focussed semantic
descriptions of the tasks to be fulfilled. Therefore, the patterns could be generic, in that
they would be compared with a functional description of a part of the choreography.

References

[ACea04] G. Alonso, F. Casati, and et al. Web Services - Concepts, Architectures and Applications.
Springer, 2004.

[Ark02] Assaf Arkin. Business Process Modeling Language. San Mateo, CA: BPMI.org, 2002.
Proposed Final Draft.

[BDO05] Alistair Barros, Marlon Dumas, and Phillipa Oaks. A Critical Overview of the Web
Services Choreography Description Languages (WS-CDL). BPTrends Newsletter, Vol.
3, March 2005.

[BvW98] René Bultje and Jacoliene van Wijk. Taxonomy of Virtual Organisations, based on
definitions, characteristics and typology. VoNet: The Netwsletter @ http://www.virtual-
organization.net/, 1998.

[CCJL04] L.F. Cabrera, G. Copeland, J. Johnson, and D. Langworthy. Coordinating Web Services
Activities with WS-Coordination, WS-AtomicTransaction, and WS-BusinessActivity,
2004.

[Fou05] Apache Software Foundation. Web Services - Axis, November 2005.

[Hav05] Mike Havey. Essential Business Process Modeling. Copyright 2005 O’Reilly Media,
Inc, 2005.

[HRK05] Jochen Haller, Philip Robinson, and Yuecel Karabulut. Security Controls in Collabora-
tive Business Processes. In 6th IFIP Working Conference on VIRTUAL ENTERPRISES
(PRO-VE’05), 2005.

[Ira01] Romin Irani. Collaborative Electronic Business is here to stay: An Introduction to
ebXML. http://www.webservicesarchitect.com/content/articles/irani02.asp, 2001.

[Mar03] Benoit Marchal. An Introduction to the ebXML CPP.
http://www.developer.com/xml/article.php/2247851, 2003.

[MH05] Jan Mendling and Michael Hafner. From Inter-Organizational Workflows to Process
Execution: Generating BPEL from WS-CDL. In Proceedings of OTM 2005 Workshops.
Lecture Notes in Computer Science 3762, pages 506–515. Springer Verlag, October
2005.

[MNN04] Jan Mendling, Markus Nüttgens, and Gustaf Neumann. A Comparison of XML Inter-
change Formats for Business Process Modelling, 2004.

[NDE+01] Duane Nickull, Jean-Jacques Dubray, Colleen Evans, Pim van der Eijk, Vivek Chopra,
David A Chappell, Betty Harvey, Marcel Noordzij, Jan Vegtand, Tim McGrath, and
Bruce Peat. Professional ebXML Foundations. Wrox Press, 2001.

[Pel03] C. Peltz. Web Services Orchestration and Choreography. Computer, 36(10):46–52,
2003.

326

[RKH05] Philip Robinson, Yuecel Karabulut, and Jochen Haller. Dynamic Virtual Organization
Management for Service Oriented Enterprise Applications. In to appear: The First
International Conference on Collaborative Computing: Networking, Applications and
Worksharing (CollaborateCom 2005), 2005.

[SLS98] Troy J. Strader, Fu-Ren Lin, and Michael J. Shaw. Information Infrastructure for Elec-
tronic Virtual Organization Management. Decis. Support Syst., 23(1):75–94, 1998.

[SO01] Karsten A. Schulz and Maria E. Orlowska. Architectural Issues for Cross-
Organisational B2B Interactions, 2001.

[SO02] Karsten A. Schulz and Maria E. Orlowska. Towards a Cross-Organizational Workflow
Model. In PRO-VE ’02: Proceedings of the IFIP TC5/WG5.5 Third Working Conference
on Infrastructures for Virtual Enterprises, page 652. Kluwer, B.V., 2002.

[vdA00] W. M. P. van der Aalst. Loosely Coupled Interorganizational Workflows: Modeling and
Analyzing Workflows Crossing Organizational Boundaries. Information and Manage-
ment, 37:67–75, 2000.

[vdAW01] W.M.P. van der Aalst and M. Weske. The P2P Approach to Interorganizational Work-
flows, pages 140–156. Springer, 2001.

[W3C] W3C. Web Service Choreography Interface (WSCI) 1.0. W3C Note 8 August 2002.

[W3C99] W3C. XSL Transformations (XSLT) Version 1.0, 1999. W3C Recommendation 16
November 1999.

[W3C05] W3C. Web Services Choreography Description Language, 2005. W3C Latest Working
Draft from October 8th, 2005, work in progress.

[Web05] Ingo Weber. Automation in Collaborative Business Process Instantiation. Master thesis
at the department of informatics, Universität Karlsruhe, Germany, November 2005.

[WfM99] WfMC. Interface 1: Process Definition Interchange Process Model. Document number
wfmc-tc-1016-p version 1.1 final, Workflow Management Coalition, 1999.

[WfM02] WfMC. Workflow Process Definition Interface - XML Process Definition Language.
v1.0 Final Draft. Document number wfmc-tc-1025, Workflow Management Coalition,
October 2002.

327

328

Integrating Process and Organization Models of
Collaborations through Object Petri Nets

Kamyar Sarshar1, Thomas Theling1, Peter Loos1, Mirko Jerrentrup2

Institute for Information Systems at the German DFKI
Stuhlsatzenhausweg, Geb. 43.8

D-66123 Saarbruecken, Germany
{sarshar|theling|loos}@iwi.uni-sb.de

Interactive Software Solutions
Saarterrassen, Hochstr. 63

D-66115 Saarbruecken, Germany
jerrentrup@interactive-software.de

Abstract: The management of virtual enterprises needs extended and integrated
approaches of business modeling. While most formal approaches to business
process modeling consider only the control-flow perspective, it is essential in an
inter-organizational context to link tasks with the enterprise responsible for their
execution. This paper presents the concept of the transforming BPMN-conform
XML representation of process models and a proprietary OMN-XML
representation of organization models into a special type of object Petri nets called
Reference net. The benefit of our approach is that by using Reference nets, the
control-flow and the inter-organizational perspective of a business process can be
integrated into a unique formalism ready to by analyzed and simulated by
appropriate Petri net tools like RENEW. After introducing the transformation
concept its application will be demonstrated by an example.

1 Introduction

To manage virtual enterprises and the collaboration of businesses, existing concepts for
business process management need to be adapted and extended. A theoretical framework
for collaborations is the theory of transaction costs based on the work of Coase [Co38;
Wi95]. Institutions of the market like corporations, governmental organizations, or legal
conditions are analyzed in this theory. Rights, goods, or outputs are transferred
(delivered) between organizations by transactions, which are based either on contracts or
hierarchies. Therefore the modeling notation used in our approach must be able to depict
these contracts and deliveries resp. hierarchies in an adequate way.

329

Within the project ArKoS1, a core team of eight universities and companies have
determined requirements for the design, implementation and evaluation of an
architecture appropriate for collaborative businesses. An essential component of the
established architecture [Th05a; Th05b] is a distributed repository, which provides
collaboration-wide process and organizational models. A challenge is the interoperability
of different modeling notations within the architecture: On the one hand, collaborating
corporations may use different modeling tools applying different modeling languages.
On the other hand, collaboration-wide and enterprise-intern models are notated in
different modeling languages. For this reason, all collaboration-wide required models are
transformed and stored in repository-wide unique data formats. By using converters,
different modeling software and modeling notations can be integrated. The data format
applied to the repository is a BPMN-conform [Wh04] XML format for business
processes, while inter-organization models are stored in a proprietary XML format,
called OMN-XML. Both formats have been defined within the project ArKoS and are
described below.

Another task of the established architecture is to support management and controlling of
collaborations. In early collaboration phases, organizational and process models can be
used to simulate the collaboration’s behavior a priori. A formal notation of
organizational and process models is an Object Petri net [Va04]. Object Petri nets allow
to formalize and to integrate process and organizational models within one notation
which can be used for analysis as well as simulation by according Petri net tools like
RENEW [Ku04]. The major advantage of our approach is that it has a broader view on
business processes by formalizing not only their control-flow but also considering their
organization perspective. This enables to consider aspects like capacity utilizations, to
estimate lead-times by process simulation, or to deliver useful data for improving
collaborations’ processes and organizational structures.

This paper presents the concept on how to transform the repository-wide XML-formats
for semi-formal process and organization models into two interrelated PNML files (Petri
Net Markup Language) [Bi03] representing a Reference net [Ku02] which is a special
type of object Petri nets [Va04].

The remainder of this paper is organized as follows: After this introduction, the next
section will give an overview of related work and assorts used modeling languages of the
established architecture. Chapter 3 introduces briefly the object Petri nets and Reference
nets. Chapter 4 presents the developed transformation concept, while chapter 5 shows an
example for the conversion by a converter implemented based on the introduced
concept. Chapter 6 gives a summary and an overview of future work.

1 http://www.arkos.info

330

2 Previous Research

The concepts of virtual enterprises and collaborative business [Wi95] are discussed on
the basis of several economical theories like transaction costs [Wi95; Co38], the market-
based view proposing strategic groups to evaluate cooperations’ effects on the market
[CP77], or the resource-based view emphasizing competencies of corporations [HP90].

In order to setup and maintain collaboration between enterprises to jointly produce goods
and services, it is essential to represent workflow and business processes by appropriate
notations [Aa02; EM00; RKC98]. For the purpose of business process modeling, several
notations have been discussed within literature. Petri nets, originating from the early
work of Carl Adam Petri [Pe62] have successfully been applied to process modeling,
analysis and simulation by several authors [AHH94; Zi77]. A further approach to
process modeling is BPMN (Business Process Modeling Notation) [Wh04], which is a
graphical notation and defines activities as well as control flows to visualize business
process operations.

However, the focus of business process modeling is the representation of the execution
order of activities which is described through constructs for sequence, choice,
parallelism or synchronization. When business processes are jointly performed in an
inter-organizational context, it is also essential to link tasks with the enterprise
responsible for its performance. Numerous authors have investigated such an integrated
approach to process and organization models. Zur Muehlen [Mu04] proposes a workflow
lifecycle considering an organizational (or resource) perspective in each stage. Van der
Aalst describes an organizational model in UML and converts it into an XML DTD in
order to integrate it with XML based representations of workflows [AKV03].

The idea of mapping system and object nets to the organization and process perspective
of business processes has been sketched by a minor case study of the Dutch Justice
department [Va98]. Van der Aalst generalizes the idea and introduces based on
Reference nets a conceptual framework for inter-organizational workflow enactment by
which different perspectives of workflows including control-flow, resource, data, task
and operation can be represented by reference nets [Aa99].

An alternative approach is to use elementary Petri nets like Place/Transition nets for the
purpose of representing the control-flow and the organizational perspective of a business
process [AH02]. However, using elementary Petri nets for business process modeling
purposes would lead to complex models with reduced readability. This has led to prefer
high level petri nets for business process modeling purposes. And this is even more the
case when in addition to control-flow the organizational perspective is considered. The
advantage of the object Petri net approach is to have a formalism which integrates both
perspectives while each perspective is represented by a distinct Petri net (system and
object net). These are integrated by their dynamic behavior.

331

3 Object Petri Net Approach

Petri net is a generic term for a number of modeling techniques, graphical
representations and notational conventions that are all based on the concept of net
formalism introduced by Carl Adam Petri [Pe62]. Since their introduction Petri nets have
been extensively investigated within the scientific community, whereby different
extensions and applications were introduced [RR98]. A significant difference between
the Petri net types is their token concept. Within elementary Petri nets, undistinguishable
black tokens represent the availability of pre-condition of transitions, while at high-level
Petri nets, tokens represent passive data structures which are transformed by transitions.
The use of structured tokens permits the representation of more complex systems, while
they are still passive and have no dynamic behavior. However, with the emergence of
object-orientation some research has been conducted to combine Petri net models with
the object-oriented paradigm [GV03]. The object Petri nets approach adds dynamic
behavior to tokens by defining them as Petri nets again [Va04]. The approach has its
origins in works describing the execution of task systems in systems of functional units
[JV87]. It allows a multi-level modeling technique whereby one or more so called object
nets move through a system net as ordinary tokens.

p6

<i4>
t7

t1

t2 t4

t3 t5

t6

<i2> <i3>

<i3> <i2>

p5

p1 p2

p3 p4
e1

e2

e3

e4

e5

<i2>

<i3>

<i4>b1

b2

b4

b3

b5

b6

SNON

Figure 1: Object Petri Net Example [Va98]

Figure 1 gives an example of three possible interaction relations between the system and
object nets of object Petri nets [Va98]. The object net (ON) illustrated on the left is
located at the place p1 of the system net (SN). A label <in> synchronizes steps between
the respective transitions of the object net and system net; a missing label indicates
mutually autonomous steps. Since there is no such label at transition e1 and t1 an object
autonomous step of the object net and a system autonomous step of the system net is
possible. After theses steps, object and system net have reached a point where an
interaction between the two levels at e2 and t2 as well as e3 and t4 are possible next
steps.

A central characteristic of the approach is the distinction between reference and value
semantics. The reference semantics restricts the system net to refer to identical copies of
object nets. The dynamic behavior of the reference semantic is formalized by the bi-
marking. On this basis, Reference nets have been developed and implemented by the

332

RENEW-Tool [Ku04]. The value semantics which allow instances of an object net to be
independent copies use the p-marking in order to execute consistently. For more details
on the object Petri net approach we refer to the referred literature.

To be able to simulate the object and system nets in a simulation engine, we have
decided to apply the Reference nets and use the RENEW-Tool which has an import
interface for PNML files. We interpret the elements of the Reference nets in the
following way:

The object net represents a process. Transitions of the object net correspond to tasks and
the states the conditions, which have to be fulfilled in order to execute a task. Token of
the object net illustrate the case (process object) that is transformed by the execution of
the process [Aa98]. The system net represents the organization structure. In this context,
each place of the system net is interpreted as a single enterprise connected with other
enterprises through contract and delivery relations (transitions of the system net). The
object autonomous step stands for the execution of the process within an organization. A
system autonomous step transports the process (object net) from one organization to
another without changing the state of the object net. By an interaction, a task of the
process is executed while it is transported to another organization. In other words, an
interaction causes transitions of the object and system nets to fire synchronously. The
synchronous execution of Reference nets is realized by labeling the according transitions
with downlinks in case of the system net and corresponding uplinks at the transitions of
the object net.

4 Transformation Concept

4.1 Conceptual Framework

Within the ArKoS-architecture, inter-organizational process and organization models are
stored in a common repository. Figure 2 illustrates different notations and their
application within the ArKoS-project. It distinguishes between different conceptual
levels. At a visualization level the ARIS-Toolset [Da01] is used for modeling inter-
organization structures of the dependencies of collaborating enterprises as well as the
processes performed jointly by them. In order to prevent the repository from being
dependent from the ARIS-Toolset and the Event-driven Process Chain (EPC), process
models are exported into BPMN-XML, while organization models are exported into
OMN-XML. These formats which are introduced in detail in section 4.2 are used to store
the models in the common, collaboration-wide available repository. The transformation
concept we introduce in this contribution uses these two XML files as input and
produces two interrelated PNML files representing an Reference net, which will be
introduced briefly within the next section.

333

Figure 2: Selected Modeling Notations used in ArKoS

4.2 XML Representation of the Input Files

Table 1 illustrates the XML-representation of BPMN elements which is the format for
process models. The included elements reflect basically the elements needed by the EPC
since this was the notation used to model business processes with the ARIS-Toolset.
Hence, from BPMN only events, activities, AND gateway and XOR gateway have an
XML-representation. The only exception we made so far was to exclude the OR-
connector because it has a non-local behavior [ADK02] and we have not developed a
proper solution for its transformation yet.

BPMN Graphical
Representation BPMN-XML-Representation

Element
EVENT
Subtypes
START,
INTERMEDIATE,
END

<ControlFlowObjectDefinition
 controlflow-object-type="EVENT"
 controlflow-object-definition-id="E1"
 controlflow-object-subtype=
 "start|intermediate|end"
 artifact-idlist="..."
 lane-idlist="..."
 linked-process-id="...">
</ControlFlowObjectDefinition>

Element
ACTIVITY

<ControlFlowObjectDefinition
 controlflow-object-type="ACTIVITY"
 controlflow-object-definition-id="F2"
 controlflow-object-subtype="task"
 artifact-idlist="..."
 lane-idlist="..."

334

 linked-process-id="...">
</ControlFlowObjectDefinition>

Element
GATEWAY
Subtypes
AND, XOR,

<ControlFlowObjectDefinition
 controlflow-object-type="GATEWAY"
 controlflow-object-definition-id="AND1"
 controlflow-object-subtype="AND|XOR"
 artifact-idlist="..."
 artifact-dirlist="..."
 lane-idlist="..."
 linked-process-id="...">
</ControlFlowObjectDefinition>

Table 1: XML-Representation of the Input BMPN Elements for the Process View

Equivalent to the processes which are modeled within ARIS-Toolset and exported into
the BPMN-XML explained above, a proprietary OMN-XML is used to represent the
organization model of ARIS-Toolset. The elements for representing the organization are
the organization unit and three relations between them: the hierarchy, the delivery and
the contract relation. The hierarchy relation would be sufficient as long as the
organization units within one organization have to be represented. However, the relation
between whole organizations can also be organized as a hierarchy or alternatively as a
network. This was the idea behind adding contract and delivery relations to the OMN-
XML in order to be able to represent network organization. With these two additional
forms of relations we can indicate where the execution of a business process is passed
from one organization to another.

OMN Graphical
Representation OMN-XML-Representation

Organization
unit

<OMN-ObjectDefinition id="OE1"
 type="ORGUNIT"
 subtype="CONSORTIUM">
</OMN-ObjectDefinition>

Hierarchy
between
organizations

<OMN-EdgeDefinition id="E1"
 type="ORG"
 source-object-definition-id="OE1"
 target-object-definition-id="OE2">
</OMN-EdgeDefinition>

Contract
resp.
delivery
relation
between
organizations

<OMN-EdgeDefinition id="E2"
 type="ORG"
 subtype="CONTRACT|DELIVERY"
 source-object-definition-id="OE1"
 target-object-definition-id="OE2">
</OMN-EdgeDefinition>

Table 2: XML-Representation of the Input OMN Elements for the Organization View

4.3 Transformation Rules

Table 3 and 4 intend to illustrate the transformation concept which is based on the
semantics of the elements. Since a graphical representation of the transformation is

335

easier to read then XML-code, we present the transformation rules in table 3 graphically.
The XML-representation of the input elements can be derived easily by table 1 and 2.
For output elements see table 4 where the PNML representation of each Petri net
element is demonstrated. Table 4 also includes the characteristic of Reference nets of
adding uplinks and downlinks to transitions in order to enable them to fire
synchronously.

BPMN-XML PNML

Element EVENT

Subtype START

Subtypes
INTERMEDIATE, END

Element ACTIVITY

Element GATEWAY

AND-
Split

Subtype AND

AND-Join

XOR-Split

Subtype XOR

XOR-Join

OMN-XML PNML

Organization

336

Relations
between
organizations

Table 3: Converting Rules for the Process and Organization Perspective

Petri Net
Element

Graphical
Representation

PNML-Representation

Unmarked place
<place id="...">
 <text>...</text>
</place>

Marked place

<place id="...">
 <initialMarking>
 <text>...</text>
 </initialMarking>
</place>

Transition

<transition id="...">
 <name>
 <text>...</text>
 </name>
</transition>

Arc <arc id="E1_F1" source="E1" target="F1" />

Refence Net
Chracteristic

Graphical
Representation

PNML-Representation

Uplink

uplink-
name

<transition id="...">
 <name>
 <text>...</text>
 </name>
 <uplink>
 <text>...</text>
 </uplink>
</transition>

Downlink

downlink-
name

<transition id="...">
 <name>
 <text>...</text>
 </name>
 <downlink>
 <text>...</text>
 </downlink>
</transition>

Table 4: PNML-Representation of Petri Net Elements

337

5 Showcase

5.1 Visualizing Level

Figure 3: Example for Visualization of an Inter-Organizational Process and Organization Model

To demonstrate our concept we designed a business process concerning three companies,
which are hierarchically organized. The organization model of the collaboration is
depicted in the upper part of figure 3. The process is depicted as an EPC (cf. lower part
of figure 3) and describes an abstract process. In this example a company Main
coordinates the processes executed by Sub 1 and Sub 2. After a Start Event, Function 1
and Function 2 are executed by Main. Afterwards, the process splits into two alternative
parts: either Function 3 is performed by Sub1 or Function 6 and Function 7 are
concurrently executed by Main. After Function 3 in the left part, Sub 1 performs also
Function 4 and Function 5 concurrently. In the right path Function 6 and Function 7 are
synchronized. Afterwards Function 8 is performed by Sub 2. In any case, the process
ends with Function 9 performed by Main, and the End Event.

338

After visualizing, the process model as well as the organization model are exported into
BPMN-XML and OMN-XML and stored in the repository. To implement the
transformation rules introduced above, we have developed a JAVA-based converter
which uses these files as input and creates two interrelated output files.

5.2 Interrelating the two PNML output files

The interrelation between the two PNML files is based on uplinks and downlinks
indicating which transitions of the two models have to fire synchronously within object
and system net. Hence, we first have to adopt a convention for naming the labels of such
synchronous channels connecting the states of the system net and use them appropriately
for the object net. This is illustrated by an example in figure 4. Main, Sub1 and Sub2 are
connected by transition. Each transition of the system net has a downlink. The naming
convention is that the label illustrates to which organization unit the transition transports
the process when it is fired. For instance the label of the transition passing a process
from Main to Sub” is x:SUB_1() (the syntax is based on the RENEW-Tool). In order to
interlink the dynamic behavior of process and organization models we have to add these
labels to appropriate transitions of the object net. To detect where an interlink is needed,
every two successive functions of the process model represented by the object net have
to be compared on their organization assignments. If they differ, an uplink has to be
assigned to the event lying in between the two functions. This has lead to add the uplink
:SUB1() to the Event 2 which is located between function 2 and function 3 of the output
PNML file representing the object net as shown in table 5.

Object Net (Process View) System Net (Organizational View)

<pnml>
 <net type="RefNet" id="1">
 <name>
 <text>objectnet</text>
 </name>
 […]
 <transition id="Event 2">
 <name>
 <text>Event 2</text>
 </name>
 <uplink>
 <text>:SUB1()</text>
 </uplink>
 </transition>
 […]
 </net>
</pnml>

<pnml>
 <net type="RefNet" id="1">
 <name>
 <text>systemnet</text>
 </name>
 […]
 <transition id="MAIN_SUB1">
 <name>
 <text>contract</text>
 </name>
 <downlink>
 <text>x:SUB1()</text>
 </downlink>
 </transition>
 […]
 </net>
</pnml>

Table 5: Interrelating the Output PNML Files

339

5.3 Graphical Representation of the output PNML files

Figure 4 depicts the graphical representation of both PNML files after importing and
manually adjusting their representation in the RENEW-Tool.

Object Net
(Process Model)

System Net
(Organization Model)

Figure 4: Transformation of the Models in Figure 3 into an Object Petri Net

The upper part represents the system net, which stands for the organization view. The
lower part represents the process view. Relations between organization units are
modeled by delivery and contract transitions. After instantiating the process model from

340

the organization model with x:new objectnet, the model can be simulated. A validation
has the potential to prove the resulting models concerning their correctness, e. g.
interdependencies between organization units or established communications. The
structure and behavior of the Object Petri net can be verified, so e. g. if the net is
terminated correctly or deadlocks are reached. Different performance indicators such as
process times, process costs, or the number of produced output can be ascertained. These
can be used to detect bottle necks, deadlocks, or livelocks, so finally process and
organizational models can be changed without having trouble in runtime processes.

The step-by-step simulation of the RENEW-Tool allows the tracking how in each
organization the process is partly executed and then passed to the next organization.
However, currently only one instance exists at a time and can be passed. Hence no
process concurrencies involving multiple organizations can be realized with this design.
The reason for this is that currently only one copy of the process instance is available.
Multiple copies of the process instance would lead to the possibility to execute
concurrent process tasks spitted by an AND-connector by different organizations.
Additional limitation is based on the Reference net formalism deployed which is
restricted to have one individual object net only in order to avoid inconsistent execution.
To model the execution of different parts of the process within multiple organizations
independently, we need to have multiple individual copies of the same process. This
would cause to apply the value semantic of object Petri nets and the p-marking which is
not possible with the RENEW-Tool.

6 Conclusion

This paper presented the concept of the transforming BPMN-conform XML for process
models and a proprietary OMN-XML representing organization models into two
interrelated PNML files representing a Reference net which is a special type of object
Petri nets. The output PNML files can be imported into the RENEW-Tool and simulated
considering control-flow as well as resource perspective of a business process.

Based on the introduced concept we have implemented a JAVA based converter using
the BPMN-XML and OMN-XML and creating according PNML files. Currently the
concept and our implementation are at a prototype stage. While it can demonstrate the
general concept of interrelating process and organization models to a singe formal
notation, there is still lot more to do. Firstly we need to broaden the concept of the
system net to have multiple copies of one process instance. This would lead to model
concurrent execution of tasks derived from an AND-split. Secondly, we need to add
further BPMN elements including the OR-connector. Since Petri nets allow analyzing
processes, it would be helpful to deliver processing time, resource availability, path
probability and market demand information with the BPMN input processes. The
converter could use this information to generate timed Petri nets which can be used for
performance analysis and capacity planning or elementary Petri nets to apply common
verification techniques. However, it has to be determined how these analysis techniques
can be applied to the object Petri net approach.

341

Acknowledgement

The research project ArKoS – Architecture of Collaborative Scenarios – has been funded
by the German Federal Ministry of Education and Research. The authors gratefully
acknowledge the support of Ingo Taraske und Dariusz Kleczek with the implementation
of the converter.

References

[Aa02] van der Aalst, W. M. P.: Making Work Flow: On the Application of Petri Nets to
Business Process Management. In: J. Esparza; C. Lakos (Eds.): Applications and Theory
of Petri Nets 2002: Proc. of 23rd International Conference (ICATPN). Bd. 2360,
Adelaide, Australia 2002, pp. 1-22.

[Aa98] van der Aalst, W. M. P.: The Application of Petri Nets to Workflow Management. In:
The Journal of Circuits, Systems and Computers 8 (1998) 1, pp. 21-66.

[Aa99] van der Aalst, W. M. P.; van der Moldt, D.; Valk, R.; Wienberg, F.: Enacting
Interorganizational Workflow Using Nets in Nets. In: J. Becker; M. zur Muehlen; M.
Rosemann (Eds.): Workflow Management '99. Münster, Germany 1999, pp. 117-136.

[ADK02] van der Aalst, W. M. P.; Desel, J.; Kindler, E.: On the semantics of EPCs: A vicious
circle. In: F. J. Rump (Eds.): EPK 2002 - Geschäftsprozessmanagement mit
Ereignisgesteuerten Prozessketten. Trier, Germany 2002, pp. 71-79.

[AH02] van der Aalst, W. M. P.; van Hee, K. M.: Workflow Management : Models, Methods,
and Systems. Cambridge 2002.

[AHH94] van der Aalst, W. M. P.; van Hee, K. M.; Houben, G. J.: Modelling and analysing
workflow using a Petri-net based approach. In: G. D. Michelis; C. Ellis; G. Memmi
(Eds.): 2nd Workshop on Computer-Supported Cooperative Work, Petri nets and related
formalisms. Zaragoza, Spain 1994, pp. 31-50.

[AKV03] van der Aalst, W. M. P.; Kumar, A.; Verbeek, H. M. W.: Organizational Modeling in
UML and XML in the context of Workflow Systems. In: J. Carroll (Eds.): Symposium
on Applied Computing (SAC) 2003. Melbourne, Florida, USA 2003, pp. 603-608.

[Bi03] Billington, J.; Christensen, S.; van Hee, K. M.; Kindler, E.; Kummer, O.; Petrucci, L.;
Post, R.; Stehno, C.; Weber, M.: The Petri Net Markup Language: Concepts,
Technology, and Tools. In: E. Best (Eds.): Applications and Theory of Petri Nets 2003,
24th International Conference, ICATPN 2003. Bd. 2679, Eindhoven, The Netherlands
2003, pp. 483-505.

[Co38] Coase, R. H.: The Nature of Firm. In: Economica 4 (1938), pp. 386-405.
[CP77] Caves, R. E.; Porter, M. E.: From entry barriers to mobility barriers: conjectural

decisions and contrived deterrence to new competition. In: Quarterly Journal of
Economics 91 (1977) 2, pp. 241-261.

[Da01] Davis, R.: Business process modelling with ARIS : a practical guide. London et al. 2001.
[EM00] Evaristo, R.; Munkvold, B. E.: Collaborative Infrastructure Formation in Virtual

Projects. Sixth Americas Conference on Information Systems (AMCIS). Long Beach,
California, USA 2000, pp. 1705-1710.

[GV03] Girault, C.; Valk, R.: Petri Nets for System Engineering : A Guide to Modeling,
Verification and Applications. Berlin et al. 2003.

[HP90] Hamel, G.; Prahalad, C. K.: The Core Competence of the Corporation. In: Harvard
Business Review (1990) May 1991, pp. 79-91.

[JV87] Jessen, E.; Valk, R.: Rechensysteme: Grundlagen der Modellbildung. Berlin et al. 1987.
[Ku02] Kummer, O.: Referenznetze. Berlin 2002.

342

[Ku04] Kummer, O.; Wienberg, F.; Duvigneau, M.; Schumacher, J.; Köhler, M.; Moldt, D.;
Rölke, H.; Valk, R.: An extensible editor and simulation engine for Petri nets: Renew.
In: W. Reisig (Eds.): 5th International Conference on Application and Theory of Petri
Nets (ICATPN 2004). Bd. 3099, Bologna, Italy 2004, pp. 484-493.

[Mu04] zur Muehlen, M.: Organizational Management in Workflow Applications - Issues and
Directions. In: Information Technology and Management 5 (2004) 4.

[Pe62] Petri, C. A.: Kommunikation mit Automaten. Bonn 1962.
[RKC98] Rittenbruch, M.; Kahler, H.; Cremers, A. B.: Supporting Cooperation in a Virtual

Organization. In: R. Hirschheim; M. Newman; J. I. DeGross (Eds.): Nineteenth
International Conference on Information Systems (ICIS). Helsinki, Finland 1998, pp. 30-
38.

[RR98] Reisig, W.; Rozenberg, G.: Lectures on Petri Nets I: Basic Models. Bd. 1491, Berlin et al
1998.

[Th05a] Theling, T.; Zwicker, J.; Loos, P.; Adam, O.; Hofer, A.: Enabling Dynamic Networks
using an Architecture for Collaborative Scenarios. In: R. J. Scherer; P. Katranuschkov;
S.-E. Schapke (Eds.): CIB W78 - 22nd Conference on Information Technology in
Construction. Bd. 304, Dresden, Germany 2005, pp. 83-90.

[Th05b] Theling, T.; Zwicker, J.; Loos, P.; Vanderhaeghen, D.: An Architecture for Collaborative
Scenarios applying a common BPMN-Repository. In: L. Kutvonen; N. Alonistioti (Eds.):
Distributed Applications and Interoperable Systems: 5th IFIP WG 6.1 International
Conference (DAIS). Bd. 3543, Athen, Greece 2005, pp. 169-180.

[Va04] Valk, R.: Object Petri Nets - Using the Nets-within-Nets Paradigm. In: G. Rozenberg
(Eds.): Lectures on Concurrency and Petri Nets: Advances in Petri Nets. Bd. 3098,
Berlin et al. 2004, pp. 819-848.

[Va98] Valk, R.: Petri Nets as Token Objects - An Introduction to Elementary Object Nets. In: J.
Desel; M. Silva (Eds.): 19th Int. Conf. on Application and Theory of Petri Nets,
ICATPN'98. Bd. 1420, Lisbon, Portugal 1998, pp. 1-25.

[Wh04] White, S. A.: Introduction to BPMN.
http://www.bpmn.org/Documents/Introduction%20to%20BPMN.pdf, Abruf 2005-11-17.

[Wi95] Williamson, O. E.: Organization Theory: From Chester Barnard to the Present and
Beyond. Oxford 1995.

[Zi77] Zisman, M. D.: Representation, Specification and Automation of Office Procedures.
Philadelphia, Pennsylvania 1977.

343

344

Wrapping Legacy Software for Reuse in a SOA

Harry M. Sneed

AneCon GmbH, Wien

E-mail: Harry.Sneed@anecon.com

Abstract: Legacy programs, i. e. programs which have been developed with an

outdated technology make-up for the vast majority of programs in many user

application environments. It is these programs which actually run the information

systems of the business world. Moving to a new technology such as service

oriented architecture is impossible without taking these programs along. This

contribution presents a tool supported method for achieving that goal. Legacy code

is wrapped behind an XML shell which allows individual functions within the

programs, to be offered as web services to any external user. By means of this

wrapping technology, a significant part of the company software assets can be

preserved within the framework of a service oriented architecture.

Keywords: Service Oriented Architecture, legacy software, system integration,

wrapping, web services, XML, WSDL

1 Legacy Software

Legacy programs can be divided into three basic categories in regard to the degree of

dependence on their environment.

• programs which are not dependent on their environment,

• programs which are partially dependent on their environment,

• programs which are totally dependent on their environment [1]

The first category includes programs written in the conventional languages Fortran,

COBOL, and C/C++. These programs can be readily reused in any environment which

has a compiler to compile them. The second category encompasses programs written in a

language which uses run time or link time functions. To this category belong PL/I,

Smalltalk, and Forté. These programs can be reused in another environment, but only if

their runtime routines are substituted by compilable modules written in the host language

itself.

The third category consists of all of the 4th generation language programs, such as ADS-

Online, Natural, CSP and Oracle Frames, requiring a specific environment to run in.

Such software can not be reused in another environment. It is environment dependent.

Therefore, the only way to reuse these programs is to keep them in their native

environment and to build runtime links to that environment.

345

One can summarize from this observation, that the more elementary a programming

language is, i.e. the less bells and whistles it has, the easier it is to reuse. This is

something that managers should consider when choosing a development technology.

They must choose between short range productivity and long range reusability and

portability. [2]

2 Service oriented architecture

The main goal of a service oriented architecture is to make the software functionality

available to all who need it and who are authorized to use it. Not only that, they should

also be able to combine the functionality in any way they deem appropriate, i.e. to

embed it as steps in their business processes. By invoking the methods offered by the

service architecture they can fulfill the functions referred to within their business process

language – BPEL – procedures without having to code and test them themselves. The

price for that is modeling the evolution of legacy systems to the WSDL interface, setting

the parameters according to the interface specification. [3]

Seen from this perspective, the service oriented architecture is similar to a giant

subroutine library, with the difference that the user must not copy it onto his computer,

compile it and link it with his own programs. He can access it at execution time via the

internet. This way he is assured of always using the latest versions and does not have to

worry about continual updates. The price he has to pay is twofold.

First, there is a performance price. Sending subroutine calls with long parameter lists

across the networks requires time. The more services that are invoked and the more

parameters passed, the longer will be the transmission times. An XSLT-based

transformation as a single WSDL interface can take up to 500 milliseconds. Therefore, it

is advisable to minimize both the number of calls and the number of parameters. [4]

The second price is that of complexity, resulting in more effort to use the service. The

greater the functionality of the individual web service, the more complex is the interface

to it. Not only will the service method require more input parameters, it will also

produces more results, all of which have to be specified in the interface. The web service

B u s i n e s s P r o c e s s

W D S L I n t e r f a c e s

F i r s t L e v e l W e b S e r v i c e s

S e c o n d L e v e l W e b S e r v i c e s

P u r c h a s e d

c o m p o n e n t s

O p e n S o u r c e

c o m p o n e n t s

S e l f d e v e l o p e d

c o m p o n e n t s

S a l v a g e d

c o m p o n e n t s

S e r v i c e O r i e n t e d A r c h i t e c t u r e

F i g u r e 1 : S o u r c e s o f W e b S e r v i c e s

346

call becomes increasingly complicated, with layers of nested data and parameter lists

until it becomes more and more like a program itself. At some point, one must ask if it

were not simpler to code the service oneself rather than spending so much time and

effort to build up a WSDL interface. On top of that, complex interfaces require many test

cases to validate and are error prone. It could well be, that it requires more effort to test

the web service interface than it does to program the service oneself. [5]

The conclusion here is that web services must remain simple in order to be readily

usable and to be built into the user’s business processes with a minimum of effort and a

maximum of performance. In this respect service oriented architectures are similar to

other technological solutions of the past. They can reduce the development and

maintenance effort of the user by offering ready made software functionality, but they

extract a price in comprehending and testing as well as in performance. The goal of the

SOA designer should be to keep these costs as low as possible by offering a large

number of simple elementary services with interfaces that are easy to serve and to test.

The designer should strive to minimize the number of input parameters and to return no

more results than necessary for any one invocation. In other words, the web services

should be limited and their interfaces as narrow as possible. [6]

Having set these design goals the question then comes up as to where the web services

come from, i.e. how are they supplied. As with all standard components there are four

basic sources:

• they can be bought from a web service vendor,

• they can be borrowed from the open source community,

• they can be developed individually or

• they can be taken from existing applications.

There are several vendors which now offer off the shelf web services including the major

software producers Microsoft, IBM, SUN and SAP. [7] For a user company bent on

building up a service oriented architecture it is advisable to consult the catalogues of

these vendors and to purchase those services which fit their requirements. Of course, the

user then becomes dependent on the vendor to maintain the services purchased, but this

has always been the price of standard solutions.

The same applies to the open source community. Here too scores of individual software

services are available and the number is constantly increasing. The draw back here is

that the user must maintain the services himself, i.e., he is dependent on the ability of his

own programming staff to comprehend the foreign code and to adjust it to his local

needs. That requires knowledge, time and tools. The comprehension problem with web

services is no less than with any other foreign software components. [8]

Developing the web services oneself is always an alternative. Large user organizations

can set up a special development group to produce such common services, just as was

the case with the common subroutine libraries and the common class libraries. There is

no real difference here, only the interface languages changes. Instead of processing

parameter lists or linkage sections, the developers now have to deal with WSDL

schemas. Besides developing the services, the user also has too test them. This could be

347

an obstacle to many users who are not versed in testing technology. Testing a WSDL

interface is more demanding than testing a GUI. The GUI can be created and validated

visually at test time. The WSDL is basically invisible. The interface has to be generated

by a program and sent to the target service via a middleware product. The results have to

be received by a program, recorded and validated against the expected results. All of this

requires tools and experienced testers, something most user organizations do not have.

[9]

The fourth and final source of web services is the existing software. Every user

organization which has been using information technology for any length of time will

have accumulated a significant amount of legacy software. Some of this software will be

tightly coupled to the environment for which it was developed, in particular the

presentation software which is presenting maps or GUIs. Other parts of the software will

be tightly coupled with a particular database system, namely the data access software. In

so far as the same database is used for web applications, this software can be reused. A

third and significant part of the application software will be devoted to processing the

business logic, which have to be mined out of the existing code. [10]

Locating and salvaging such business-oriented software is referred to as code mining or

software recycling. It is similar to salvaging valuable building blocks from the ruins of

an old building in order to reuse them in a new edifice. The technology for doing this has

been available since the mid 1990’s and has been well covered in the reengineering

literature. [11] What is new here, is the attempt to reuse these old code blocks as web

services in a service oriented architecture. The technology for doing that is the subject of

this paper.

The advantage of reusing one’s own code as opposed to the other sources of web

services is obvious. Using off the shelf web services is inexpensive, but such services

will seldom fulfill the exact requirements of any particular user organization. At best

they can be used to supplement the user’s own unique services. Besides, since they do

not belong to the user, the user is dependent upon the supplier to maintain and evolve

them. Developing new web services from scratch is an enticing alternative, especially for

developers eager to experiment with the new technology, but one always underestimates

the effort required to test new services and to bring them up to a quality standard where

they can be relied upon. [12]

The costs of developing high quality web services are for many users simply too high.

Even large organizations cannot or will not afford it. So, developing one’s own web

services is a long range goal which can be achieved in the course of many years, but it is

not something that can be achieved within a short run. That leaves the user with a choice

of either retrofitting his business processes to accommodate the standard web services

available or reusing his existing software which was built from the beginning to fit his

particular business processes.

348

3 Candidates for web services

According to the marketing director of the Software A.G., the core functionality of most

public administration offices is buried deep in their existing application software. [13] It

is futile to attempt to reproduce it in another form. The only practical solution is to wrap

it and make it available as a universal public service. What is not mentioned here is that

this functionality must first be salvaged and brought up from the depth in order to reuse

it. E-government has become a prime candidate for the techniques of software recycling.

The same applies to the functionality in business administration. There are scores of

individual company specific tasks unique to every enterprise. Typical examples are the

modes of payment, the granting of credit, the computation of interest rates and the

handling of privileged customers. Conventional business processes are full of such user

specific solutions which have been evolved and tuned over many years. They are an

essential part of the company operation.

The problem is that this customized business logic is not readily accessible. It must be

identified through various mining techniques as pointed out by Aversano and Tortorella

in their work on salvaging public administration systems for eGovernment applications.

[14] One is fortunate to even find a particular business function in a single module. In a

bank application reengineered by the author the opening of an account was scattered

across five different components, thus violating the principle of locality of reference.

None the less, the functionality was present and distinguishable from the other functions

around it, even though they shared some common code.

In reusing existing code, the first task is to identify the candidates for a web service.

User organizations wanting to move to a service oriented architecture must make a

portfolio analysis of their existing applications and to list out the essential application

operations. In doing so, it will be necessary to break the complex operations down into

elementary operations which are self contained logical units. In an order entry

application the basic operations might be

• confirming the credibility of the customer,

• reducing the stock,

• billing the customer and

• handling back orders.

The elementary business operations such as reducing the stock can be reused directly in

another context. The billing of the customer is, however, a too complex operation, which

has to be further broken down into

• aggregating the billing items

• computing the sales tax

• obtaining the customer address data

• producing the bill

• dispatching the bill.

349

These elementary operations are candidates for web services. They have a limited

number of arguments, i.e. input variables and a single compound result. As such they can

be fitted conveniently into any business process.

The second step is to assess the business value of these reuse candidates. Ben-Menachem

suggests a classification scheme, which involves categorizing the items, calculating each

item’s value and assigning a value coefficient. Existing software components can be

categorized by language, purpose, type and criticality. Calculating an item’s value is

based on cost analysis of the development costs, the maintenance costs, the estimated

replacement costs and the annual business value contributed by that item. In assigning a

value coefficient, the business value over a three year period minus the maintenance

costs is divided by the costs of replacement, i.e redevelopment of that item.

Business_Value – Maint_Costs

Cost of Replacement

The reusable code items are then ranked based on their value coefficient. The ranking

shows which business operations have the highest potential as web services. [15]

The key to defining suitable web services is the granularity of the services. They must be

broken down to a level of granularity where each service performs a single well defined

transformation or computation upon a limited set of parameters to provide a singular

result. Furthermore, they should be stateless. A web service should not be required to

maintain it’s own state. If a web service is invoked a second time, the user cannot expect

for it to remember what the result of the last invocation was. The preservation of

persistent objects such as the article data in the order entry example is the responsibility

of the overlying business process. Prior to invoking the web service “Stock – reduction”,

the article data would have to be retrieved from the article data base and afterwards

restored in the altered state.

It is true that the business processes will become over burdened with the many web

service invocations, but this way it will not be necessary to constantly change the web

services. One has to choose here between two evils. Either the control logic is included

in the web services or it is contained within the business process. The web services

should remain as constant as possible. All changes should be made at the business

process level, by changing the order of web service invocation, by altering the

parameters or by invoking additional services.

The essence of a successful service oriented architecture is according to Prof. Scheer, the

father of the ARIS business process modelling system, flexibility. [16] The architecture

must be adaptable to changes in the business environment with a minimum of effort and

time. This goal can only be achieved if the underlying services are kept at a low level of

complexity. The complexity should be built into the business processes where it can be

more readily managed.

350

4 Creating web services from legacy code

There are three basic steps required to create web services from legacy code.

• salvaging the legacy code

• wrapping the salvaged code and

• making the code available as a web service.

These three steps will be described in the following sections.

4.1 Salvaging the legacy code

To be able to salvage code from an existing legacy code base it is first necessary to

locate that code and to determine if it is worth reusing. It is not a problem to analyze and

evaluate the code of a few small programs. That can be done by any programmer

familiar with the code using a comfortable text editor. It is quite different to analyze

several hundred large programs in search of a few reusable blocks of code. Here too a

domain expert is required, but he must be supported by automated reverse engineering

tools.

The key to discovering the business operations are the results which they produce. By

identifying the variables which are returned by the functions processing the business

operations one can also identify the functions. If the programs were structured in such a

way that the business functions were assigned to one code block such as a function in C,

an internal procedure in PL/I, a subroutine in Natural, or a paragraph in COBOL, then

this task would be simple, but they seldom are. More likely a business function is

scattered throughout several blocks of code in several modules. On the other hand, one

block of code may be processing several business functions. So there is a n:m

relationship between code blocks and business operations.

By making a data flow analysis based on the final results, it is possible to trace the result

back through all of the statements which contributed toward producing it. Once the

statements are identified, then it is possible to locate in what code units, i.e. procedures,

paragraphs, subroutines, etc., they are in. Only those units are then copied from the

original source together with the variables they refer to. This technique is known as

“Code stripping”. It was originally used in testing to verify the path leading to a given

output. However, it applies equally well to the task of extracting elementary business

operations. [17]

The essential point here is that a business operation is defined as an algorithm for

computing a given result. This result may be a yes or no answer for instance to

determine whether a customer is a VOP customer or not. There may also be several

results produced in different places, for instance an order entry process which not only

confirms the fulfillment of that order, but also updates the amount of the item ordered

and generates a billing position and a dispatch order. To extract the code for processing

an order, it would be necessary to identify all of the data objects affected as a result of

that processing.

351

The next step after identifying the code of a business operation, is to extract that code

and to reassemble it as a separate module with its own interface. This is done by copying

the impacted code units into a common framework and by placing all of the data objects

they refer to into a common data interface. In C the interfaces are parameters of the type

structure, in Cobol the objects are level 1 items in the linkage section, in PL/I the objects

are based data structures with the pointers to them as parameters to the main procedure.

The end result will be, in all cases, a subroutine with a call interface. The original input

arguments will be input parameters and the original output arguments output parameters.

In this respect the business logic code will have been disconnected from the original user

interface and made into a self contained subprogram. This is a prerequisite to wrapping

it. [18]

A useful byproduct of this code reengineering process is a documentation of the existing

business operations. For each data result of a particular use case, the conditions,

assignments, computations and IO operations required to produce that outcome are

presented in the form of a data flow tree. The final result state builds the root node of the

tree. The other nodes are the arguments and intermediate variables which flow into that

final result. The branches of the tree represent the state transitions, which are triggered

by conditional statements such as if, case- and loop statements. Since a business

operation is an intersection of control and data flow, it is necessary to depict both

perspectives.

With the aide of these diagrams, it becomes possible for the user to decide whether an

existing operation, implemented within a legacy system is worth reusing as a public

function in a service oriented architecture. The decision requires a full comprehension of

the current operation as well as a notion of its economic value. If an operation has a high

economic value and a low level of implementation, it may be better to rewrite it again as

a separate entity. Operations with an acceptable implementation and a medium to high

economic value are the prime candidates for reuse.

4.2. Wrapping the legacy code

Once a business operation has been located, documented and found worthy of reuse, the

next step it to wrap it. The goal of the wrapping process is to provide the component

extracted from the legacy code with a WSDL interface. The technique used is to

transform each entry into a method and to transform each parameter into an XML data

element. The data structures will become complex elements with one or more sub-

elements. The methods will have their arguments and results as references to the data

element descriptions. Both the methods and the parameters will be built into an XML

schema.

(see Sample 1: Input Interface Schema)

The tool SoftWrap has been developed to automate this transformation for the languages

PL/I, COBOL, and C/C++. Besides, creating the WSDL interface description, it also

enhances the wrapped component with two additional modules. One module is for

parsing the incoming message and extracting the data from it. The extracted values are

352

then assigned to the corresponding arguments in the wrapped component. The other

module is for creating the return message from the results produced by the wrapped

component. In this way an elementary operation can be reused as a web service without

having to change the code. The two generated subroutines act as a bridge between the

WSDL interface and the call interface of the original code.

(see Sample 2: Output Interface Schema)

In PL/I these two subroutines are implemented as external procedures, in COBOL as

subprograms and in CPP as separate classes. The purpose is to avoid manual

manipulation of the legacy code, since manual intervention is not only costly, but also

error prone. To be effective wrapping must be automated. This simple fact has been

acknowledged by the major EAI vendors, who offer wrapping solutions for entire

programs and databases. [19] The approach proposed here differs from these other

commercial solutions, in that it deals not with the original online transactions, screens

and programs, but with artificially constructed segments of code extracted from the

original programs for the sole purpose of being used as web services.

The motivation of the EAI vendors is to enable the user to link together diverse

applications via a hub software. The goal of a service oriented architecture is to replace

the existing applications altogether by a series of fine grained components which the

user can assemble into dynamic applications on demand. This difference in strategy

makes it impossible to reuse the old programs as they are. Nevertheless, the logic they

contain can be reused, but only if it is extracted from the original contact and

transformed into another web compatible one.

WSDL Interfaces

Service

Request

Generated Wrapper Routines

Input

Parameters

Output

Parameters

Procedural Code

(section, Procedure or Function

Figure 3: Wrapping Salvaged Components

Generate

from

Outputs

Generate

from

Inputs

353

4.3 Linking the web services to the business processes

The third and final step in creating web services from legacy code is to link the web

services to the overlying business processes. This is made by means of a proxy

component. The business process actually invokes the proxy which is available in the

same address space as the process definition. Like in CORBA the proxy checks the

parameters and generates the WSDL interface which is then dispatched by some

message service such as MQ-Series to the application server. This proxy technique has

been referred to by Aversano and Canfora in a previous paper discussing the wrapping of

legacy application for web access. [20]

On the application server there is a scheduler, which receives the incoming message,

determines which web-service is to be performed and forwards the WSDL contents to

that particular service, in our case the wrapped legacy code. The wrapper of the code

parses the XML input data and moves the values to the appropriate addresses in the

wrapped component.

Once the wrapped component has been executed, it’s result is transformed by the

wrapper into an XML output data structure, which goes back to the scheduler to be

transmitted back to the web client. In this way the business process can be executed on

any client anywhere and still is able to access the legacy functions on the original

application server. [21]

5 Case Study of a legacy web service

The example selected to demonstrate the integration of legacy components into a service

oriented architecture is that of a calendar function extracted from the legacy software of

a Swiss bank. The function accepts a date, a language code and an adjustment parameter.

It returns the day of the week in the language indicated by the language code, adjusted

either to the left or the right of the text line depending on the text adjustment parameter.

This function was originally implemented in Assembler and was later converted to

COBOL within the scope of a major migration project. Later it was decided to reuse it as

a service in a web architecture.

5.1 Extracting Business Operations

Within the COBOL code, the function was a separate section, so the first step in

wrapping it was to extract it from the source text of the program and to place it in a

separately compilable module with its own data division and linkage section. The result

of the business operation for computing the name of the week-day-name , the variable

referred to as DAY-NAME, was used to locate the code that computed it. The first

reference to DAY-NAME was found in an initialization paragraph where it was set to

spaces, the second reference in the leap year processing paragraph where it was set to a

default value and the third reference in a paragraph which prepared the output.

A trace of the input arguments showed that they were only referenced in these three

sections of code. Therefore, there three paragraphs were cut out of the original procedure

354

division and placed in a new procedure. The variables they used – the arguments, the

result, the intermediate variables and the constants – for instance the table of weekdays

in the three Swiss languages were scattered throughout the original Data Division. They

were collected together to form a new Working-Storage section. The three input

parameters and the one output parameter were placed in the Linkage-Section. The result

of this reengineering process was a new COBOL module with its own Data-Division,

working-storage, linkage-section and procedural code.

The procedural code consisted of the three paragraphs extracted from the original

program – initialization, leap year handling and output setting. All of these reengineering

steps are performed automatically by the SoftWrap tool. The user need only identify the

input and output variables of the operations he wants to extract. The tool SoftWrap has

been described in previous reports. [22]

5.2 Wrapping Business Operations

The second step, also performed by SoftWrap, is to wrap the new module extracted from

the old code. This entailed generating a driver module which reads the input parameters

– date, language and adjustment – from a WSDL input file and writes the result – the day

of the week or error message – into a WSDL output file. In addition, SoftWrap also

produces an XML schema both for the input and the output file.

The schema describes the structure and the attributes of the parameters. Besides the

usual XML attributes such as name, type and occurrence, each data element has some

additional attributes necessary to convert the XML data types into COBOL data types

and to set them into or to receive them from the corresponding COBOL address. For

example, it is necessary to know that the DAY-NAME is at the 10th position in the

parameter string, that it is 10 bytes long and that it is a character field.

The generated driver module parses the schema in order to interpret the incoming WSDL

message with the date, the language code and the adjustment code, and to create an

outgoing WSDL message with the day of the week or an error message.

In this way, the calendar function has been wrapped. It can be invoked via a WSDL

interface with the three input parameters and the name of the method to be executed.

When the calendar method has been executed, it will then return the result to the

business process requesting it.

5.3 Integrating Business Operations

It remains now to implement the business operation by invoking it from a business

process. The language for implementing business processes is BPEL4WS. BPEL4WS

establishes links to partners, defines the link types, declares the parameters to be sent and

the results to be received, and invokes the web services. [23] The sample process script

sets the parameters for the date, language and adjustment and then identifies the service

by name as depicted in Sample 3. (see Sample 3: User Business Process)

355

A WSDL interface is generated by the BPEL interpreter with the input and output

parameters, the function name, the messages, the port type with its input and output

messages and finally, the SOAP binding description. This is all created from a standard

template so that the author of the business process has nothing to do with it. He only sees

the result which is returned, namely the day of the week. It is important that all of these

technical details be hidden from the designer of the business processes to a great an

extent as possible. (see Samples 3 & 4.: WSDL Messages)

6 Conclusion

Web Services offered within the framework of a Service Oriented Architecture promise

to make applications more flexible, easier to compose and cheaper to develop. [24] In

this paper it has been demonstrated how legacy code can be reused to help construct

such web services. It would be unwise to ignore the vast amount of proven legacy

software available within corporations and public administrations, when migrating to a

service oriented architecture. Before developing or purchasing new service components,

one should try to reuse the old ones. The technology for doing so is available. The

approach presented in this paper is only one of several similar ones developed at the

RCOST research institute in Benevento, at the University of Bari and at the IBM

Research Institute in Toronto. [25] It has been proven there and elsewhere that specific

business functions can be extracted from existing programs, wrapped and integrated into

an eBusiness application framework. Doing so avoids the cost and risks of having to

develop them from scratch. The savings is the difference between the cost of salvaging

and wrapping the legacy functions as opposed to the cost of designing, coding and

testing. It promises to be significant.

The approach described in this paper has been applied successfully for the integration of

both COBOL and C++ programs.[26] There exists a Pl/I version, but it has yet to be

proven in practice. The main problem has turned out to be reentrancy. The state of the

data contained within a wrapped web service is that of the last caller. Thus, if different

processes are using the same service, their data will be mixed. One solution is to store

the internal data state in a temporary database under the id of that user. The other

solution is to have a scheduler. Both solutions have advantages and disadvantages.

However, this is not a problem specific to wrapped legacy code, but to all web services.

It has to be solved in order for this technology to be accepted.

References

[1] Miller, H.: Reengineering Legacy Software Systems, Digital Press, Boston, 1998, p. 13

[2] Warren, Ian: The Renaissance of Legacy Systems, Springer Pub., London, 1999, p. 2

[3] Lavery,J./Boldyreff,B./Ling,B./Allison,C.: “Modelling the evolution of legacy systems

to Web-based systems”, Journal of Software Maintenance and Evolution,Vol.16, Nr.

1,2004, p.5

[4] Litoiu, M.: “Migrating to Web Services – a performance engineering approach” Journal

of Software Maintenance and Evolution, Vol. 16, Nr. 1, 2004, p. 51

356

[5] Tonella, P./ Ricca, F.: Statistical Testing of Web Applications, Journal of Software

Maintenance and Evolution, Vol. 16, Nr. 1, 2004, p. 103

[6] Krafzig,D./Banke,K./Slama,D: Enterprise SOA, The Coad Series, Prentice-Hall Pub.,

Upper Saddle River, N.J., 2004, p. 6

[7] Egyed, A./Müller, H./Perry, D.: “Integrating COTS into the Development Process”,

IEEE Software, July, 2005, p. 16

[8] Gold, N./Bennett, K.: “Program Comprehension for Web Services”, Proc. of 12th IWPC,

IEEE Computer Society, Bari, June, 2004, p. 151

[9] Sneed, H.: “Testing a Web Application”, Proc. of 6th Web Site Evolution, IEEE

Computer Society, Chicago, 2004, p. 3

[10] Bovenzi, D./ Canforna, G./ Fasolina, A.: “Enabling Legacy System Accessibility by Web

Heterogeneneos Clients”, Proc. of 7th CSMR-2003, IEEE Computer Society Press,

Benevento, March, 2003, p. 73

[11] Bodhuin, T./Guardabascio, E./ Totorella, M.: “Migrating COBOL Systems to the WEB”,

Proc. of 9th WCRE-2002, IEEE Computer Society, Richmond Va., Nov. 2002, p. 329

[12] Tilley, S./ Gerdes, J./ Hamilton, T./ Huang, S./ Müller, H./Smith, D./Wong, K.: “ On the

business value and technical challenges of adapting Web services”, Journal of Software

Maintenance and Evolution, Vol. 16, Nr. 1, 2004, p. 31

[13] Vorsamer, A.: “Java Tools help with Host-Integration”, in Computer Zeitung, Nr. 32,

August, 2005, s. 19

[14] Aversano, L./ Tortorella, M.: “An Assessment Strategy for identifying legancy system

evolution requirements in eBusiness Context”, Journal of Software Maintenance and

Evolution, Vol. 16, Nr. 4, 2004, p. 255

[15] Ben-Menachem, M.: “Web Metadata Standards – Observations and Prescriptions”, IEEE

Software, February, 2005, p. 78

[16] Scheer, A.W.: “Where will the Program Code remain”, in Computerwoche, Nr. 15,

April, 2005, p. 22

[17] Sneed, H./ Erdoes, K.: “Extracting Business Rules from Source Code”, Proc. of 4th

IWPC-1996, IEEE Computer Society, Berlin, March 1996, p. 240

[18] Sneed, H.: Extracting Business Logic from existing COBOL Programs as a Basis for

Reuse”, Proc. of 9th IWPC-2001, IEEE Computer Society, Toronto, May, 2001, p. 167

[19] Hasselbrink, W.: “Information System Integration” Comm. Of ACM, Vol. 43, No. 6,

June 2000, p. 33

[20] Aversano, L./Canfora, G./Cimitile, A./ DeLucia, A.: “Migrating Legacy Systems to the

Web” Proc of 5th CSMR, IEEE Computer Society Press, Lisabon, March 2001, p. 148

[21] Sneed, H.: “Wrapping Legacy COBOL Programs behind an XML Interface” Proc. of 8th

WCRE-2001, IEEE Computer Siciety Press, Stuttgart, Oct. 2001, p. 189

[22] Sneed, H.: “Program Interface Reengineering for Wrapping”, Proc. of 4th WCRE, IEEE

Computer Society Press, Amsterdam, Oct. 1997, p. 206

[23] Juric, M./Mathew, B./ Poornachandra, S.: Business Process Execution Languge for Web

Services, Packt Pub., Birmingham, U.K., 2004, p. 17

[24] Jones, S.: “Towards an acceptable Definition of Services”, IEEE Software, May 2005, p.

87

[25] Zou, Y./ Lau, T./ Kontogiannis, K.: “Model Driven Business Process Recovery”, Proc.

of 11th WCRE-2004, IEEE Computer Society Press, Delft, N.L. Nov. 2004, p. 224

[26] Sneed, H./ Sneed, S.: Web-based System Integration, Vieweg Verlag, Wiesbaden, 2004,

p. 257

357

Sample 1 : Input Schema generated from COBOL Module

<schema name = "xm059i"

 xmlns= "XSDCOB">

 <XSDCOB:complexType type = "#file" name = "xm059i"

 content = "eltOnly" model = "closed">

 <XSDCOB:complexType type = "#params" name = "DayofWeekRequest"

 content = "eltOnly" model = "closed" level = "02"

 occurs = "ONEORMORE" minOccurs = "0001" maxOccurs = "unbounded">

 <XSDCOB:element type = "#dec" name = "DAY"

 content = "TextOnly" model = "closed" level = "03"

 occurs = "ONEORMORE" minOccurs = "0001" maxOccurs = "0001"

 pos = "0001" lng = "0002"

 pic = "99" usage = "DISPLAY"/>

 <XSDCOB:element type = "#dec" name = "MONTH"

 content = "TextOnly" model = "closed" level = "03"

 occurs = "ONEORMORE" minOccurs = "0001" maxOccurs = "0001"

 pos = "0003" lng = "0002"

 pic = "99" usage = "DISPLAY"/>

 <XSDCOB:element type = "#dec" name = "YEAR"

 content = "TextOnly" model = "closed" level = "03"

 occurs = "ONEORMORE" minOccurs = "0001" maxOccurs = "0001"

 pos = "0005" lng = "0004"

 pic = "9999" usage = "DISPLAY"/>

 <XSDCOB:element type = "#dec" name = "LANGUAGE"

 content = "TextOnly" model = "closed" level = "03"

 occurs = "ONEORMORE" minOccurs = "0001" maxOccurs = "0001"

 pos = "0009" lng = "0001"

 pic = "9" usage = "DISPLAY"/>

 <XSDCOB:element type = "#char" name = "ALIGNMENT"

 content = "TextOnly" model = "closed" level = "03"

 occurs = "ONEORMORE" minOccurs = "0001" maxOccurs = "0001"

 pos = "0010" lng = "0001"

 pic = "X" usage = "DISPLAY"/>

 </XSDCOB:complexType>

Sample 2 : Output Schema generated from COBOL Module

<schema name = "xm059o"

 xmlns= "XSDCOB">

 <XSDCOB:complexType type = "#file" name = "xm059o"

 content = "eltOnly" model = "closed">

 <XSDCOB:complexType type = "#params" name = "DayofWeekResponse"

 content = "eltOnly" model = "closed" level = "02"

 occurs = "ONEORMORE" minOccurs = "0001" maxOccurs = "unbounded">

......<XSDCOB:element type = "#char" name = "RETURN-CODE"

 content = "TextOnly" model = "closed" level = "02"

 occurs = "1" minOccurs = "0001" maxOccurs = "0001"

 pos = "0000" lng = "0002"

 pic = "XX" usage = "DISPLAY"/>

 <XSDCOB:element type = "#char" name = "DAYOFWEEK"

 content = "TextOnly" model = "closed" level = "03"

 occurs = "ONEORMORE" minOccurs = "0001" maxOccurs = "0001"

 pos = "0011" lng = "0010"

 pic = "X(10)" usage = "DISPLAY"/>

 </XSDCOB:complexType>

 </XSDCOB:complexType>

</schema>

Sample 3 : User Business Process in BPEL4WS (Fragment of Code)

<process name = "Calender"

 xmlns:calender = "http://anecon.com/sneed/sample/" >

 <partnerLinks>

 <PartnerLink name = "CalenderUser"

358

 partnerLinkType = "calender:User"

 myRole = "Provider"

 partnerRole = "User" />

 </partnerLinks>

 <variables>

 <!-- inputs for Calender Functions -->

 <variable name = "Day" messageType = "calender:DayofWeekRequest"/>

 <variable name = "Month" messageType = "calender:DayofWeekRequest"/>

 <variable name = "Year" messageType = "calender:DayofWeekRequest"/>

 <variable name = "Language" messageType = "calender:DayofWeekRequest"/>

 <variable name = "Alignment" messageType = "calender:DayofWeekRequest"/>

 <!-- outputs for Calender Functions -->

 <variable name = "ResponseCode" messageType = "calender:DayofWeekResponse"/>

 <variable name = "DayofWeek" messageType = "calender:DayofWeekResponse"/>

 </variables>

 <assign>

 <copy>

 <from variable = "Current_Day" part = "Date" />

 <to variable = "Day" part = "DayofWeekRequest" />

 </copy>

 <copy>

 <from variable = "Current_Month" part = "Date" />

 <to variable = "Month" part = "DayofWeekRequest" />

 </copy>

 <copy>

 <from variable = "Current_Year" part = "Date" />

 <to variable = "Year" part = "DayofWeekRequest" />

 </copy>

 </assign>

 <!-- call Calender Service to provide Day -->

 <invoke partnerLink = "CalenderUser"

 portType = "CalenderStatusPT"

 operation = "GetDayofWeek"

 inputVariable = "DayofWeekRequest"

 output Variable = "DayofWeekResponse" />

 <assign>

 <copy>

 <from variable = "DayofWeek" part = "DayofWeekResponse" />

 <to variable = "WeekDay" part = "LetterHeader" />

 </copy>

 </assign>

</process>

Sample 4 : Input Message from User Business Process

<?xml version = "1.0" encoding = "ISO-8859-1"?>

<!DOCTYPE "xm059i" SYSTEM "xm059i.xsd">

<xm059i>

 <DayofWeekRequest>

 <DAY>12</DAY>

 <MONTH>10</MONTH>

 <YEAR>1977</YEAR>

 <LANGUAGE>3</LANGUAGE>

 <ALIGNMENT>1</ALIGNMENT>

 </DayofWeekRequest>

</xm059i>

Sample 5 : Output Message to User Business Process

<?xml version = "1.0" encoding = "ISO-8859-1"?>

<!--DOCTYPE XM059O SYSTEM "XM059O.xsd"-->

<XM059O>

 <DayofWeekResponse>

 <RETURN-CODE>00</RETURN-CODE>

 <DAYOFWEEK>MERCOLEDI</DAYOFWEEK>

 </DayofWeekResponse>

</XM059O>

359

360

