



# Postponement-Strategien

in Distributionsnetzwerken bei stochastischer Nachfrage

Prof. Dr. Stefan Voß, Dr. Frank Schwartz, Institut für Wirtschaftsinformatik, Von-Melle-Park 5, 20146 Hamburg

## Postponement-Strategien

### **Herausforderungen in Supply Chains**

- Zunahme der Variantenvielfalt
- Kürzer werdende Produktlebenszyklen
- Kundenbedarfe zunehmend schwieriger prognostizierbar

### Lösungsansatz:

Hinauszögern von Fertigungsschritten, um dann mit besseren Informationen planen zu können → Wesen des Postponement

| Postponement-<br>Typ | Anwendung (Beispiel)                                                                                                                                                                   |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Labeling             | Verkauf identischer Produkte unter verschiedenen Namen                                                                                                                                 |
| Packaging            | Verkauf identischer Produkte in verschiedenen<br>Verpackungsvarianten/-größen                                                                                                          |
| Assembly             | Im Wesentlichen identische Produkte mit wenigen<br>kundenspezifischen Komponenten<br>Produkte, die nicht endmontiert deutlich platzsparender<br>zu transportieren sind als endmontiert |
| Manufacturing        | Produkte mit ubiquitären Bestandteilen                                                                                                                                                 |
| Time                 | Warten mit Fertigung, bis Auftrag eingegangen ist,<br>erst dann Direktbelieferung des Kunden                                                                                           |

### Grundsätzliche Eignung von Postponement bei:

- Hohen Produktwerten
- Sehr kurzen Produktlebenszyklen

## Modellformulierung

Zielfunktion (= Erlöse - Transportkosten - Produktionskosten - Fixkosten)

$$\begin{aligned} \max \theta &= \sum_{\alpha \in \Omega} \pi_{\alpha} \left[ \sum_{k=1}^{S-1} \sum_{\substack{p \in P \\ (i,j) \in SI_{S-k}^k}} e_{pj} z_{p(S-k)kji\alpha} - \right. \\ & \left. \sum_{k=1}^{S-1} \sum_{\substack{p \in P \\ s \in \{1,2,\dots,S-k\} \\ (i,j) \in SI_{S}^k}} c_{ps}^S d_{skij} z_{pskiji\alpha} - \sum_{\substack{p \in P \\ s \in \{1,2,\dots,S-1\} \\ i \in IOC_s \\ l \in II_{p}}} c_{sil} x_{pp'sili\alpha} \right. \\ & \left. \sum_{\substack{s \in \{1,2,\dots,S-1\} \\ i \in IOC_s \\ l \in II_{p}}} c_{sil}^F y_{sil} \right. \end{aligned}$$

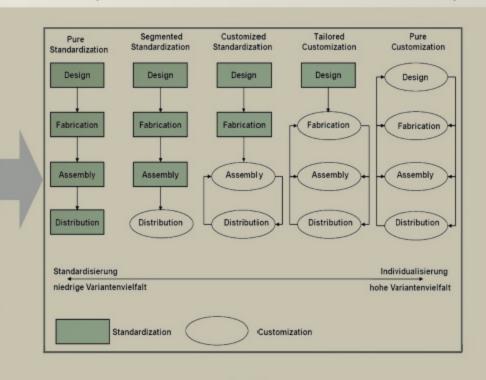
 $v_{poj\alpha} + \sum_{l \in TL_p} \sum_{p' \in TP_{0r}} x_{pp'sjl\omega} = \sum_{k=1}^{s-1} \sum_{(i,j) \in SL_{s-k}^k} z_{p(s-k)kij\omega} \quad \forall p \in P, s = 2, 3, j \in LOC_s, \omega \in \Omega \qquad \text{In} \qquad \text{Standort}$ 

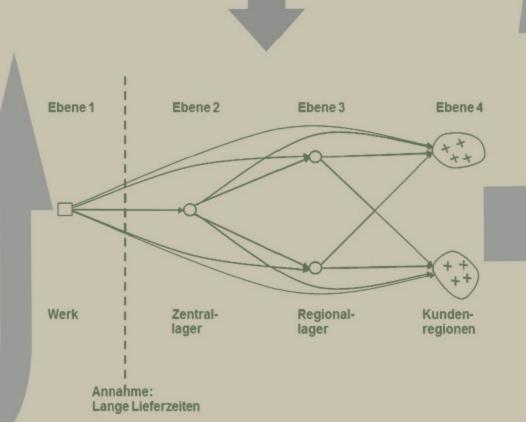
eingehende Flüsse

$$\sum_{l \in L} \sum_{\left\{p \in P; \; p' \in T_{\left\{p\right\}}\right\}} x_{pp':rilos} = u_{p':rilos} + \sum_{k=1}^{S-s} \sum_{\left\langle i, j \right\rangle \in Sl_{s}^{k}} z_{p':rkijos} \quad \forall p' \in P, s \in \left\{1,.2,...,S-1\right\}, i \in LOC_{s}, o \in \Omega \text{ Aus } i \in LOC_{s}, o \in \Omega$$

Standort herauskommende Flüsse

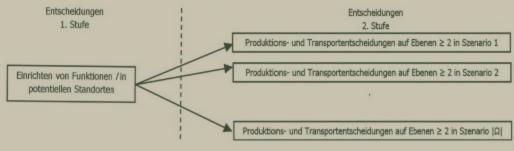
Weiter: Non-anticipativity-Constraints


$$\begin{split} Dem_{pj\omega} & \geq \sum_{k=1}^{S-1} \sum_{(i,j) \in SL_{s,k}^k} z_{p(s-k)klj\omega} \ \, \forall p \in P, s = S, j \in LOC_s, \omega \in \Omega \qquad \text{Nachfrage (stochastisch)} \\ Sup_{pj} & \geq \sum_{l \in T_{s,k}} \sum_{p' \in T_{b}} x_{pp'sil\omega} \qquad \forall p \in P, s = 1, i \in LOC_s, \omega \in \Omega \qquad \text{Angebot} \end{split}$$


 $z_{\textit{publy}\omega} \leq U_{\textit{publy}}^{S} \quad \forall p \in P, s \in \left\{1, 2, ..., S - k\right\}, (i, j) \in SL_{s}^{k}, k = 1, 2, 3, \omega \in \Omega \qquad \text{Transportkapazität}$ 

 $\sum_{p' \in TF_{br}} x_{pp'silo} \leq U_{pril} y_{sil} \quad \forall p \in P, s \in \left\{1, 2, ..., S-1\right\}, i \in LOC_s, l \in L, \omega \in \Omega \qquad \text{Kapazit\"{a}t der Anlagen}$ 

Literatur


- F. Schwartz, S. Voß: Distribution network design with postponement. In: A. Oberweis, C. Weinhardt, H. Gimpel, A. Koschmider, V. Pankratius and B. Schnizler (Hrsg.) e-Organisation: Service-, Prozess- und Market-Engineering, Universitätsverlag Karlsruhe, Karlsruhe (2007), 373 - 390.
- F. Schwartz, S. Voß: Designing distribution networks taking into account aspects of postponement. In: J.A. Ceroni (Hrsg.) The Development of Collaborative Production and Service Systems in Emergent Economies, Proceedings of the 19th International Conference on Production Research, IFPR, Valparaiso, Chile (2007), Tu3.4-6, 6 Seiten.
- S. Guericke, A. Koberstein, F. Schwartz, S. Voß: A stochastic model for implementing postponement strategies. In: R.H. Sprague (Hrsg.) Proceedings of the 44th Annual Hawaii International Conference on System Sciences, IEEE, Piscataway (2011), 10 Seiten.
- S. Guericke, A. Koberstein, F. Schwartz, S. Voß: A Stochastic Model for the Implementation of Postponement Strategies in Global Distribution Networks. Erscheint in Decision Support Systems. DOI: 10.1016/j.dss.2012.01.010

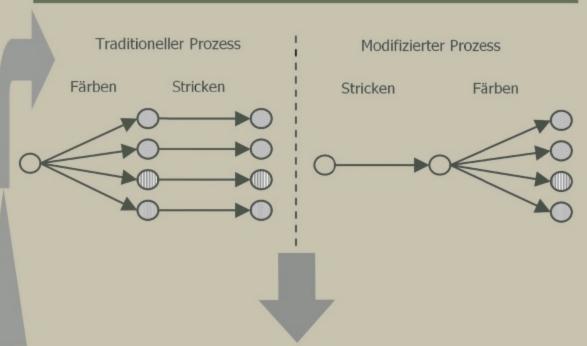


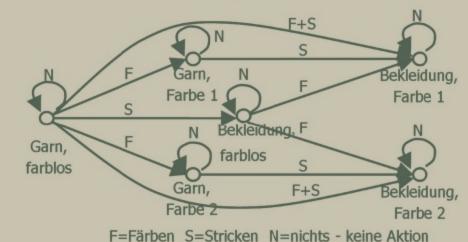


### Zweistufiges stochastisches Modell

- → Erste Stufe (deterministisch): Entscheidung über Implementie rung von verzögert auszuführenden Funktionen des Fertigungsprozesses (Färben, Stricken) in potentiellen Standorten → Entscheidung über Umsetzung einer Postponement-Strategie
- → Zweite Stufe (stochastisch): Entscheidung über Höhe der Transportmengen der Halb- bzw. Fertigprodukte zwischen Standorten sowie der Bearbeitungsmengen in Standorten für alle berücksichtigten Szenarien ω
- → Zielfunktion enthält neben Erlösen Kosten der erster Stufe (Infrastrukturkosten) und erwartete Kosten der zweiten Stufe (Betriebskosten)

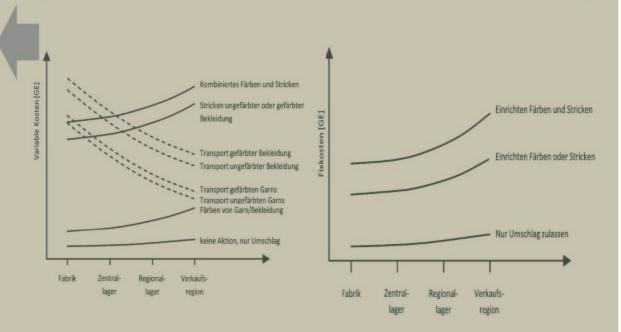



Lösung


## Lösung: Prozessstrukturen von drei verschiedenen Testinstanzen

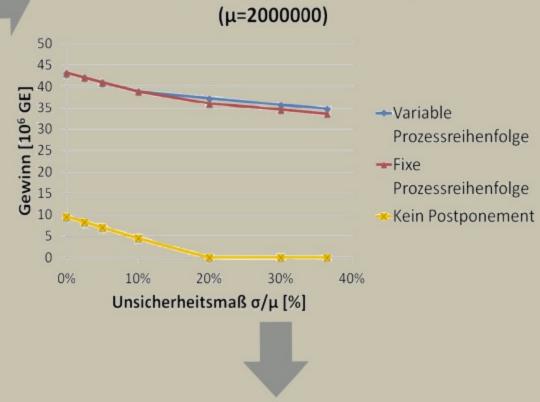
|                                | μ<br>[10 <sup>6</sup> ] |        |       |      | σίμ    |         |     |       |
|--------------------------------|-------------------------|--------|-------|------|--------|---------|-----|-------|
| Instanz-Typ                    |                         | 0,0    | 0,025 | 0,05 | 0,1    | 0,2     | 0,3 | 0,365 |
| Kein<br>Postponement           | 0,8                     |        |       |      |        |         |     |       |
|                                | 1,0                     | FS_x_x |       |      |        |         |     |       |
|                                | 2,0                     | FS_x_x |       |      |        |         |     |       |
|                                | 4,0                     | FS_x_x |       |      |        |         |     |       |
|                                | 10,0                    | FS_x_x |       |      |        |         |     |       |
| Fixe<br>Prozessreihenfolge     | 0,8                     | F_x_S* |       |      |        | x_FS_x* |     |       |
|                                | 1,0                     | F_x_S* |       |      |        | x_F_S*  |     |       |
|                                | 2,0                     | F_x_S* |       |      |        | x_F_S*  |     |       |
|                                | 4,0                     | F_x_S* |       |      | x_F_S* |         |     |       |
|                                | 10,0                    | F_x_S* |       |      | x_F_S* |         |     |       |
| Variable<br>Prozessreihenfolge | 0,8                     | F_x_S* |       |      |        | x_FS_x* |     |       |
|                                | 1,0                     | F_x_S* |       |      |        | x_S_F*  |     |       |
|                                | 2,0                     | F_x_S* |       |      |        | x_S_F*  |     |       |
|                                | 4,0                     | F_x_S* |       |      | x_S_F* |         |     |       |
|                                | 10,0                    | F_x_S* |       |      | x_S_F* |         |     |       |

 $\mu$ : Erwartungswert der Nachfrage,  $\sigma/\mu$ : Unsicherheitsmaß. F\_x\_S: Färben auf Ebene 1, keine Aktion auf Ebene 2, Stricken auf Ebene 3. \* Anwendung einer Postponement-Strategie


## Prozessstrukturen








## Kostenstrukturen



## Gewinn

### Gewinn in Abhängigkeit der Unsicherheit $(\mu = 2000000)$



## Ergebnis

- Modell für kleine Probleminstanzen gut lösbar für größere Instanzen schwieriger.
- Postponement-Strategien insbesondere in Umgebungen hoher Unsicherheit zweckmäßig
- Vorgestelltes Modell stellt Basis für weitere Forschungen dar. Es könnte z.B. berücksichtigt werden:
  - Mehrere Perioden
  - Lagerbestände
  - Alterung/Verderblichkeit
  - Alternative Technologien bei Transporten
  - und Fertigungsschritten Komplexere (z.B. nichtlineare) Kostenstrukturen
  - Verfeinerte Modellierung von Entscheidungsprozessen und Unsicherheit