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Continuous flow-shop scheduling problems circumscribe an important

class of sequencing problems in the field of production planning. The

problem considered here is to find a permutation of jobs to be processed

sequentially on a number of machines under the restriction that the pro-

cessing of each job has to be continuous with respect to the objective of

minimizing the total processing time (flow-time). This problem is NP-
hard. We consider the application of different kinds of metaheuristics

from a practical point of view, examining the trade-off between running

time and solution quality as well as the knowledge and efforts needed

to implement and calibrate the algorithms. Computational results show

that high-quality results can be obtained in an efficient way by applying

metaheuristics software components with neither the need to understand

their inner working nor the necessity to manually tune parameters.

Keywords: Metaheuristics, Heuristics, Tabu Search, Simulated Anneal-

ing, Continuous Flow-Shop Scheduling

1 Introduction

Flow-shop scheduling problems focus on processing a given set of jobs, where all

jobs have to be processed in an identical order on a given number of machines.

The continuous flow-shop scheduling problem has the additional restriction that the
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processing of each job has to be continuous, i.e., once the processing of a job begins,

there must not be any waiting times between the processing of any consecutive tasks

of this job. Such a no-wait constraint is usually due to technological restrictions of

the production process.1 Dudek et al. (1992) emphasize the practical importance of

this problem type (e.g., in chemical or steel production processes).

In a statistical review of flow-shop scheduling research, Reisman et al. (1997)

conclude that there is a lack of relevance to practice for the overall majority of

research in this field. They emphasize “that flow-shop scheduling research is in dire

need of a paradigm shift to enhance its probability of ever becoming a tool for the

practice of OR/MS. [. . . ] The literature should also seek out and recognize work that

is satisfied with less elegant but implementable, better yet implemented, solutions.”

As Nievergelt (1994) has stated, “No systems, no impact!” That is, in practice we

need easy-to-use application systems that incorporate the results of basic research in

the corresponding fields. Therefore, we also have to deal with the issue of efficiently

building and using such systems to bridge the gap between research and practice.

Most scheduling problems, like the continuous flow-shop scheduling problem con-

sidered in this paper, are NP-hard, so heuristics are the primary way to tackle
these problems. Simple heuristic strategies may be based on applying priority based

dispatching rules. More effective heuristics represent specific algorithms which are

developed for some special type of problem. Since problems from practice mostly em-

brace distinctive characteristics, applying heuristics may imply a costly development

of a specialized algorithm which hinders the application of such methods in the real

world. This major problem might be partly solved by applying metaheuristics, which

are widely generic with respect to the type of problem. That is, metaheuristics are

general schemes which must be completed by problem-specific aspects; see Osman

and Kelly (1996), Reeves (1993) and Voß et al. (1999). So in practice one would like

to apply metaheuristics by using metaheuristics software components which have

to be adapted to the specific problem at hand in some well-defined manner. We

have developed such reusable metaheuristics software components which aid in ap-

plying metaheuristics in practice according to the goal discussed in the preceding

paragraph; cf. Fink (2000), Fink and Voß (1999a, 2002) and Fink et al. (1999, 2000).

The adaptation of metaheuristics to some type of problem may concern both

the static definition of problem-specific concepts such as solution space or neighbor-

hood structure and the tuning of run-time parameters (calibration). With respect

1Lack of any intermediate storage capacity between consecutive machines leads to a similar but

less constrained problem type, since jobs can wait on machines (while blocking these machines)

until the next machine becomes available; cf. Hall and Sriskandarajah (1996), who survey machine

scheduling problems with blocking and no-wait characteristics.
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to the latter aspect, we need robust problem solvers that are applicable to a wide

range of problems without the need for careful and time consuming calibration.

Ideally, a metaheuristic is auto-adaptive, i.e., one is not forced to manually adjust

some sensitive parameter setting. Auto-adaptivity means an automatic calibration

of parameters by some sort of intelligence.

In this paper, we discuss, from a practical point of view, the effectiveness of

applying reusable metaheuristics software components to the continuous flow-shop

scheduling problem. This includes analyzing the knowledge and efforts needed to

adapt the metaheuristics and analyzing by experiments the trade-off between run-

ning time and solution quality. Our goal is to gain general insights in the effectiveness

of applying different types of metaheuristics with respect to different demands for so-

lution quality and different amounts of available resources such as knowledge about

algorithms, implementation efforts and running time. In Section 2, we first describe

the continuous flow-shop scheduling problem. Then, in Sections 3 and 4, we review

different kinds of construction methods and metaheuristics. The implementation is

briefly discussed in Section 5. In Section 6, we provide and discuss extensive com-

putational results. Finally, we draw some conclusions and give directions for future

research.

2 Problem review

Flow-shop scheduling problems are defined by a set of n jobs, where each job has to

be processed in an identical order on a given number of m machines. Each machine

can process only one job at a time. The parameters tij, 1 ≤ i ≤ n, 1 ≤ j ≤m, denote
the processing time of job i on machine j. For continuous flow-shop scheduling prob-

lems the processing of each job has to be continuous, which means that there must

not be any waiting times between the processing of any consecutive tasks of this job.

To allow processing of a job without interruption on all machines, the order in which

the jobs are processed on a machine is the same for all machines (assuming non-zero

processing times). If a job does not have to be processed on some machine (zero

processing time on this machine), passing could occur without violating continuous

processing. However, the continuous flow-shop problem is generally understood as

a permutation flow-shop problem with the characteristic that the machine order is

the same for all jobs.

Continuous processing of a job generally determines an inevitable delay dik,

1 ≤ i ≤ n, 1 ≤ k ≤ n, i �= k, on the first machine between the start of job i and
the start of job k when job k is processed directly after job i. The delay may be
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computed as

dik = max
1≤j≤m



j∑
h=1

tih −
j∑
h=2

tk,h−1


 .

Consider the following example with three jobs and three machines as illustration.

The processing times tij are given as matrix T , which results in a corresponding

asymmetric delay matrix D:

T =



1 3 3

1 2 2

4 1 4


 D =



− 4 2

2 − 1

5 6 −




For example, for the job sequence < 1, 3, 2 > this leads to the schedule sketched in

Figure 1.
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Figure 1: Job/machine schedule with continuous flow characteristic.

The objective is to construct a permutation Π =< π1, . . . , πn > of the jobs (πi
denotes the job that is positioned at the i-th position of a schedule) that minimizes

some given objective function. The objective considered in this paper is to minimize

the total processing time (flow-time)2

F (Π) =
n∑
i=2

(n+ 1− i)dπ(i−1),π(i) +
n∑
i=1

m∑
j=1

tij .

2Alternatively, one may strive to minimize the makespan of the schedule, i.e., the duration from

the start of the first job on the first machine until the end of the last job on the last machine. This

goal leads to a problem that can be formulated as an asymmetrical traveling salesman problem (cf.

Reddi and Ramamoorthy (1972) and Wismer (1972)) and, therefore, may be tackled by correspond-

ing methods from the stock of algorithms for traveling salesman problems. Contrary to flow-time

oriented problems, there has been a substantial body of research for continuous flow-shop scheduling

problems with makespan objective; see, e.g., Bonney and Gundry (1976), King and Spachis (1980),

Gangadharan and Rajendran (1993) and Rajendran (1994).
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In this formula, besides the total sum of processing times, the delays incurred on the

first machine are added depending on the number of jobs that follow. For example,

the delay between the start of the job positioned first and the succeeding job affects

all but the first job and accordingly must be included in the sum with a multiplier

of n− 1. Alternatively, one could compute the total processing time as the sum over
all completion times of the jobs. For the example given above the total processing

time is computed as F (< 1, 3, 2 >) = 2 · 2 + 1 · 6 + 21 = 7 + 13 + 11 = 31.
The continuous flow-shop scheduling problem with the objective to minimize to-

tal flow-time was posed by van Deman and Baker (1974). Rajendran and Chaudhuri

(1990) study the continuous flow-shop scheduling problem with flow-time objective

and present a simple construction heuristic with two different priority rules and re-

spective computational results. Chen et al. (1996) present a genetic algorithm for

these problems including computational experience. Theoretical aspects of continu-

ous flow-shop scheduling problems are investigated by Gupta (1976), Papadimitriou

and Kanellakis (1980), Szwarc (1981), Adiri and Pohoryles (1982) and van der Veen

and van Dal (1991).

The continuous flow-shop scheduling problem with flow-time objective is equiv-

alent to the one-machine scheduling problem with sequence-dependent setup times

while minimizing the sum of completion times. Furthermore, in the same spirit as the

problem of minimizing the makespan leads to an asymmetrical traveling salesman

problem, the flow-time oriented problem corresponds to a variation of the traveling

salesman problem with cumulative costs, which is also called delivery man problem;

cf. Bianco et al. (1993), Fischetti et al. (1993) and Lucena (1990). There the ob-

jective is to find a Hamiltonian tour which minimizes the average arrival time at

the vertices. This problem, which was proven to be NP-hard by Sahni and Gon-
zales (1976), is a special case of the time-dependent traveling salesman problem,

where the transition costs between vertices generally depend on the position in the

sequence. Gouveia and Voß (1995) classify different mathematical formulations for

the time-dependent traveling salesman problem and show that the LP relaxation

of the 3-index formulation of Picard and Queyranne (1978) provides, in compari-

son with other formulations from the literature, a relatively strong lower bound for

the optimal objective function value. In Section 6, we assess our heuristic results in

comparison with corresponding lower bounds.

3 Construction methods

Construction methods build a feasible solution, i.e. a sequence of n jobs, by suc-

cessively completing a (partial) solution according to some rule. When the solution
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quality obtained is satisfactory, such methods may be attractive from a practical

point of view, since most basic construction methods, first, are rather easy to un-

derstand and allow a straightforward implementation, second, usually do not need

much computation time, and, third, do not require calibration.

Priority rules are the most simple construction methods which successively build

a complete sequence by adding jobs according to some preference relation. In par-

ticular, the nearest neighbor heuristic (NN) appends at each step a not yet included

job with a minimal inevitable delay to the last job of the yet incomplete sequence.

This strategy seems reasonable for the problem at hand, since the jobs positioned

first have a greater impact on the objective function.

The cheapest insertion heuristic (Chins) considers all possible insertions of all not

yet included jobs while successively building a complete sequence. That is, starting

with some inital job, at each step k, k = 2, . . . , n, a best combination (with respect

to the flow-time objective function under consideration) of the remaining n− k + 1
jobs and all k insertion positions is selected. This leads to a time complexity of

O(n3). To illustrate the cheapest insertion heuristic we use the example problem

instance from Section 2. Starting with the initial sequence < 1 >, in step k = 2

we have four alternatives to select from: < 2, 1 >F=14, < 1, 2 >F=16, < 3, 1 >F=21
and < 1, 3 >F=18. So we insert job 2 before job 1 which leads to a minimal total

processing time of the resulting partial sequence. In step k = 3, we have three

alternatives: < 3, 2, 1 >F=35, < 2, 3, 1 >F=28 and < 2, 1, 3 >F=27. Accordingly,

Chins provides as final solution the sequence < 2, 1, 3 > with a total processing time

of 27.

In general, the effectiveness of construction heuristics such as NN and Chins

depends on the initial job. So we consider repeating the respective construction

heuristic for all possible jobs used as initial job and eventually selecting the best

final sequence. For example, we may repeat Chins for all jobs used as inital partial

sequence.

Building on these ideas, we also follow the approach of the pilot method; cf. Duin

and Voß (1999). The pilot method builds on the idea to look ahead for each possible

local choice (by computing a so-called “pilot”), memorizing the best result, and

performing the according move. That is, the idea is to evaluate the advantageousness

of a local move by overcoming the usual myopic (shortsighted) move selection rule.

Here we apply this strategy by performing a cheapest insertion heuristic for all

possible local steps.3 That is, in each iteration we perform the cheapest insertion

3As the pilot method is generic with respect to the type of problem and defines an iterative

master process that guides and modifies the operations of some subordinate heuristic, it may be

regarded as a metaheuristic.
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heuristic for all incomplete solutions (partial sequences) resulting from adding some

not yet included job at some position to the current incomplete solution.

Using the example given above, the pilot method would proceed as follows: Start-

ing from an empty initial solution, we have to evaluate three alternatives: adding

the jobs 1, 2 or 3, respectively, to the partial (empty) sequence. Then, each of these

partial solutions < 1 >, < 2 > and < 3 >, respectively, is completed by the usual

cheapest insertion heuristic. This ends up in three corresponding final solutions with

respective total processing times. While in this example all resulting sequences are

the same (< 2, 1, 3 >F=27), in general one selects that partial solution which leads

to a final solution with the best objective function value. Then, in the next iteration

of the pilot process, all possibilities to insert some not yet included job at some

position to this partial solution would lead to four alternatives that are evaluated

by the cheapest insertion heuristic, and the resulting objective function values are

again used to select one of these alternatives.

As the described pilot method leads to a time complexity of O(n6), it may be

reasonable to restrict the pilot process to a given evaluation depth. That is, the pi-

lot method is performed until an incomplete solution with a given number of jobs is

reached (and, hopefully, the most significant construction decisions have been done);

this solution is completed by continuing with a conventional (myopic) cheapest in-

sertion heuristic. Note that an evaluation depth of 1 corresponds to repeating Chins

for all possible initial jobs.

4 Metaheuristics

We focus on metaheuristics that are based on the local search paradigm. That is,

given some initial feasible solution which can be constructed by the methods dis-

cussed in the previous section, solutions are successively changed by performing

moves which alter solutions “locally”. In Section 4.1, we describe different kinds of

such move definitions which lead to corresponding neighborhoods. Moves must be

evaluated by some measure to guide the search. In our case, we use the implied

change of the objective function value, which provides some reasonable information

about the (local) advantageousness of moves.

Following a greedy strategy, steepest descent (SD) corresponds to selecting and

performing in each iteration the best move; the search stops at a local optimum

solution with no better neighboring solution. As the solution quality of such local

optima may be unsatisfactory, we consider the application of metaheuristics with

the aim to guide the search to overcome local optimality. A simple strategy is to

iterate/restart the local search process (e.g., iterated steepest descent (ISD)) after
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a local optimum has been obtained, which requires some perturbation scheme to

generate a new initial solution (e.g., performing some random moves). In Sections 4.2

and 4.3, we briefly discuss simulated annealing and various tabu search approaches,

which are based on a more structured way to overcome local optimality.

4.1 Neighborhoods

We consider two alternative neighborhoods of size O(n2), which both lead to a

connected search space. In each case, we use one of these neighborhoods exclusively.

The neighborhood descriptions given below assume the permutation Π as a chain of

jobs, each connected by an edge, with two dummy jobs that represent a virtual fixed

first (0) and last (n+1) job. With this, moves are composed of attributes defined

by the edges deleted and inserted. This information is exploited by the tabu search

methods described below.

The idea for a swap (interchange) move is to exchange a pair of jobs πp1 and

πp2, 1 ≤ p1 < p2 ≤ n, while the remaining schedule remains identical; cf. Figure 2.
Thus, a swap move corresponds to the deletion of the edges (πp1−1, πp1), (πp1, πp1+1),

(πp2−1, πp2) and (πp2, πp2+1) and the inclusion of the edges (πp1−1, πp2), (πp2, πp1+1),

(πp2−1, πp1) and (πp1, πp2+1).

� � � 


 � � �

� � � 
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Figure 2: Swap and shift moves.

Likewise, we may define a shift (insertion) move as repositioning some job behind

some other job. A shift move for the job at current position p1 behind the job

currently at position p2 with 1 ≤ p1 ≤ n, 0 ≤ p2 ≤ n, p1 �= p2, p1 − 1 �= p2, may
thus be defined as the deletion of the edges (πp1−1, πp1), (πp1, πp1+1), and (πp2, πp2+1)

and the inclusion of the edges (πp1−1, πp1+1), (πp2, πp1) and (πp1, πp2+1). A restricted

form of shift moves is defined by using a parameter that restricts the maximum

shift distance of a job in the sequence. Setting this parameter to the value 1 leads

to a neighborhood of linear size, where only swaps of jobs next to each other are

considered.

A 2-exchange move, which is defined for a pair (p1, p2) with 0 ≤ p1 and
p1 + 2 ≤ p2 ≤ n as the deletion of the edges (πp1 , πp1+1) and (πp2 , πp2+1) and
the inclusion of the edges (πp1 , πp2) and (πp1+1, πp2+1), corresponds to the inversion

of the partial sequence between position p1+1 and position p2. This neighborhood is
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not meaningful for the continuous flow-shop scheduling problem which has an asym-

metric distance function. This has been confirmed by computational experiments.

Furthermore, one may use a more general 3-exchange neighborhood, which corre-

sponds to the shift of a partial sequence to another position. However, this leads to

a neighborhood size of O(n3).

4.2 Simulated annealing

Simulated annealing extends basic local search by allowing moves to inferior solu-

tions; cf. Kirkpatrick et al. (1983) and Cerny (1985). The basic algorithm of sim-

ulated annealing may be described as follows: Successively, a candidate move is

randomly selected; this move is accepted if it leads to a solution with a better objec-

tive function value than the current solution. Otherwise the move is accepted with

a probability that depends on the deterioration δ of the objective function value.

The probability of acceptance is usually computed as e−δ/T , using a temperature T

as control parameter. This temperature T is gradually reduced according to some

cooling schedule, so that the probability of accepting deteriorating moves decreases

in the course of the annealing process.

From a theoretical point of view, a simulated annealing process may provide

convergence to an optimal solution if some conditions are met (e.g., with respect

to an approriate cooling schedule and a neighborhood which leads to a connected

solution space); cf. van Laarhoven and Aarts (1987) and Aarts et al. (1997) which

give surveys on simulated annealing with theoretical results as one main topic. As

convergence rates are usually too slow, in practice one typically applies some faster

cooling schedule (giving up the theoretical convergence property).

We follow the robust parameterization of the general simulated annealing pro-

cedure as described by Johnson et al. (1989). T is initially high, which allows many

inferior moves to be accepted, and is gradually reduced through multiplication by a

parameter α < 1 according to a geometric cooling schedule.4 At each temperature

sizeFactor× |N | move candidates are tested (|N | denotes the current neighborhood
size), before T is reduced to α×T . The starting temperature is determined as follows:
Given a parameter initialAcceptanceFraction and based on an abbreviated trial run,

the starting temperature is set so that the fraction of accepted moves is approxi-

mately initialAcceptanceFraction. A further parameter, frozenAcceptanceFraction is

used to decide whether the annealing process is frozen and should be terminated.

Every time a temperature is completed with less than frozenAcceptanceFraction of

4For some other cooling schedules see, e.g., Hajek (1988), Huang et al. (1986) and Lundy and

Mees (1986). Connolly (1992) and Osman (1993) propose non-monotonous temperature variations.
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the candidate moves accepted, a counter is increased by one. This counter is re-

set every time a new best solution is found. The procedure is terminated when

the counter reaches 5. Then, it is possible to reheat the temperature to continue the

search by performing another annealing process. We set the parameters to the values

recommended by Johnson et al. (1989): α = 0.95, initialAcceptanceFraction = 0.4,

frozenAcceptanceFraction = 0.02, sizeFactor = 16.

4.3 Tabu search

The basic paradigm of tabu search (cf. Glover and Laguna (1997)) is to use infor-

mation about the search history to guide local search approaches to overcome local

optimality. In its basic form, this is done by dynamically prohibiting certain moves

during the neighbor selection to diversify the search. The various tabu search strate-

gies differ especially in the way in which the tabu criteria are defined, taking into

consideration the information about the search history (performed moves, traversed

solutions).

In general, tabu search proceeds by selecting at each iteration the best admis-

sible move. A neighbor, respectively a corresponding move, is called admissible, if

it is not tabu or if an aspiration criterion is fulfilled. The aspiration criterion may

override a possibly inappropriate tabu status. The aspiration criterion used here was

to allow all moves that lead to a neighbor with a better objective function value than

encountered so far.

Strict tabu search embodies the idea to prevent cycling to formerly traversed

solutions. That is, the basic goal of strict tabu search is to provide necessity and

sufficiency with respect to the idea of not revisiting any previously visited solution.

Accordingly, a move is classified as tabu if and only if it leads to a neighbor that

has already been visited during the previous part of the search. To accomplish this

criterion, we store (approximate) information about all solutions visited so far by

using a hash function which defines a non-injective transformation from the set of

solutions to integer numbers; cf. Woodruff and Zemel (1993). That is, we check for

every neighbor whether the respective hash code is included in the trajectory data.

Given a vector (r1, . . . , rn) of pseudo-random integers, we use hash codes
∑n
i=1 riπi.

As the hash code of two different solutions may be the same whenever a so-called

collision occurs, moves might be unnecessarily set tabu in some cases. However,

as our own experiments have shown, this random effect usually does not affect the

search negatively. While strict tabu search is easy to apply since it does not need any

calibration of parameters, its tabu criterion is often too weak to provide a sufficient

diversification of the search process.
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The most commonly used tabu search method is to apply a recency-based memory

that stores moves, more exactly move attributes, of the recent past. The basic idea of

such static tabu search approaches is to prohibit an appropriately defined inversion of

performed moves for a given period. Considering a performed move (p1, p2), we store,

depending on the neighborhood used, move attributes that represent the inserted

edges in a static tabu list of fixed length l. To obtain the current tabu status of

a move, we must check whether the edges to be deleted are contained in the tabu

list. As we apply multi-attribute moves, there are different ways to define the tabu

criterion: a move may be classified as tabu when at least one, two, or, depending on

the neighborhood used, three or four of the attributes of this move are contained in

the tabu list. For our purposes, all these criteria are enabled by using a parameter

tabu threshold (tt). It defines the number of attributes of a move that have to be

contained in the tabu list in order to regard the move as tabu.

The application of static tabu search is complicated by the need to set the tabu

list length to a value that is appropriate for the actual problem to be solved. Reactive

tabu search aims at an automatic adaptation of this parameter during the search

process; cf. Battiti (1996). The basic idea is to increase the tabu list length when

the tabu memory indicates that the search is revisiting formerly traversed solutions.

The concrete algorithm applied here may be described as follows: We start with

a tabu list length l of 1 and increase it to min{max{l + 2, l × 1.2}, u} every time
a solution has been repeated, taking into account an appropriate upper bound u.

If there has been no repetition for some iterations, we decrease it appropriately to

max{min{l− 2, l/1.2}, 1}. To accomplish the detection of a repetition of a solution,
we apply a trajectory based memory using hash codes as described before. As noticed

by Battiti (1996), it may be appropriate to explicitly diversify the search into new

regions of the search space whenever the tabu memory indicates that we may be

trapped in a certain region of the search space. Trajectory information provides

means to detect such situations. As a corresponding trigger mechanism, we use the

combination of at least three solutions each having been traversed three times. The

simple diversification strategy used here is to perform randomly some moves of the

corresponding neighborhood.

5 Implementation

Our application of the described methods for the continuous flow-shop scheduling

problem is based on HotFrame, a Heuristic OpTimization FRAMEwork imple-

mented in C++, which provides both adaptable components that incorporate dif-

ferent metaheuristics and an architectural description of the collaboration among
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these components and problem-specific complements; cf. Fink and Voß (1999b, 2002)

and Fink (2000). All typical application-specific concepts are treated as objects or

classes: problems, solutions, neighbors, solution and move attributes. On the other

side, metaheuristic concepts such as different methods and their building-blocks such

as tabu criteria and diversification strategies are also treated as objects. HotFrame

uses genericity as the primary mechanism to make these objects adaptable. That

is, common behavior of metaheuristics is factored out and grouped in generic (tem-

plate) classes, applying static type variation. Metaheuristics template classes are

parameterized by aspects such as solution spaces and neighborhood structures.

HotFrame provides a local search frame which can be specialized by selecting

from, e.g., different neighbor selection rules resulting in methods such as steepest de-

scent or iterated local search. In the same manner, customized simulated annealing

and tabu search methods can be generated by exploiting respective components. On

the other side, HotFrame provides components for often needed solution spaces

such as permutations which includes corresponding neighborhood structures and

attribute definitions. This simplifies applying metaheuristics, since the user, essen-

tially, only needs to implement the objective function. Thus, in our case where one of

the predefined solution spaces fits the problem at hand, the implementation efforts

for applying simulated annealing or tabu search are actually less than for a simple

priority rule method.5

The efficiency of local search methods often crucially depends on an adaptive

computation of move evaluations. That is, the standard form of evaluating moves

by actually performing the move to a new solution and computing the respective

objective function value from scratch leaves open a great opportunity to speed up

the computation. So we compute evaluations for swap and shift moves adaptively by

calculating only the actual change of the objective function value. By storing for the

current solution a vector with the start times of all jobs, respective computations

can be performed with constant costs. The effect of such an enhancement can be

illustrated by the following example: On a Pentium II with 266 MHz, for a problem

with n = 200 jobs, the move selection, which includes the evaluation of O(n2) moves,

takes about 0.9 seconds when done in the straightforward way, while the computation

times could be reduced to about 0.05 seconds by an adaptive computation.

5Of course, in the general case, where the user may need to implement some special solution

space or neighborhood structure, the application of local search methods is still not without efforts.

This is in conformance with the “No free lunch theorem” which says that there is no general problem

solver that is the most effective method for all types of problems; cf. Wolpert and Macready (1997)

and Culberson (1998). That is, one might need to do problem-specific adaptations, which is enabled

by HotFrame, to obtain high quality results.
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6 Computational results

According to our general point of view discussed in Section 1, we applied the meth-

ods described in Sections 3 and 4 in a straightforward way without any manual

tuning of parameters. This provides a way for a fair comparison of different heuris-

tics by controlled and unbiased experiments, which conforms to some of the criticism

discussed by Hooker (1994, 1995) and Barr et al. (1995). For example, we simply

switch the neighborhood or the tabu criterion to be used without any other change.

We apply the heuristics for benchmark data sets of Taillard (1993) which have

been generated for unrestricted flow-shop scheduling.6 The data sets are available

from the OR library.7 We use problem instances with 20 (ta001–ta030), 50 (ta031–

ta060), 100 (ta061–ta090), and 200 (ta091–ta110) jobs. These instances partly differ

in the number of machines, which is mostly irrelevant for our purposes. So we gen-

erally present average results for problem instances of the same number of jobs.

Computation times are generally given as average CPU-time in seconds. All compu-

tations were performed using a Pentium II with 266 MHz.

To assess our heuristic results we used the 3-index formulation of Picard and

Queyranne (1978) to compute optimal results for the problem instances with 20 jobs

and to compute lower bounds provided by the linear programming (LP) relaxation

for problem instances with 50 and 100 jobs. This formulation includes n3 binary

variables and n2 constraints. Using Cplex 6.6 on a standard PC, we were not able

to solve the LP relaxation of the problem instances with 200 jobs (with about 8

million variables). So, for n = 20 we compare to the optimal results, for n = 50 and

n = 100 to lower bounds, and for n = 200 to the best results obtained during all

experiments. The best objective function value obtained for each problem instance

is given in Table 6 in the Appendix.

Table 1 shows the results of the application of construction methods. The devia-

tions for the identity permutations (in accordance with the numbering of the jobs),

given as reference, show that there is a large potential for optimization. The results

of the nearest neighbor heuristic (NN), even when iteratively performed for all jobs

used as initial job (Pilot-1-NN), are much worse than those of the cheapest insertion

heuristic (Chins). Repeating Chins for all jobs treated as initial job (Pilot-1-Chins)

leads to clearly better results at the expense of an increased running time, which is

especially relevant for the larger problem instances. The last three rows show the

results of the pilot method with an evaluation depth of 10, 20, or an unbounded eval-

6Rajendran and Chaudhuri (1990) and Chen et al. (1996) randomly generate problem instances

with a maximum job number of only 25.
7http://mscmga.ms.ic.ac.uk/info.html
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uation depth, respectively. While these results are of high quality the self imposed

running time limit of 10,000 seconds hindered the completion of the unbounded pi-

lot method for the problem instances with 200 jobs. It should be noted that the

majority of the small problem instances with 20 jobs are not solved to optimality

by the considered construction methods (e.g., the unbounded pilot method solved

10 out of 30 instances to optimality)

n = 20 n = 50 n = 100 n = 200

dev. t dev. t dev. t dev. t

Identity 43.98% - 59.61% - 69.26% - 74.15% -

NN 25.81% 0.0 29.88% 0.0 30.21% 0.1 21.13% 0.3

Pilot-1-NN 19.15% 0.0 26.49% 0.2 27.90% 1.3 19.62% 11.2

Chins 3.21% 0.0 4.52% 0.1 6.18% 0.2 2.79% 1.6

Pilot-1-Chins 0.93% 0.0 2.99% 1.3 4.32% 20.1 1.62% 315.0

Pilot-10-Chins 0.27% 0.8 1.59% 37.5 3.18% 879.0 0.65% 7612.4

Pilot-20-Chins 0.25% 1.2 1.26% 107.6 2.81% 3068.4 - -

Pilot-Chins 0.25% 1.2 1.23% 189.4 2.26% 8217.2 - -

Table 1: Construction methods.

Figures 3 and 4 show the effect of the evaluation depth on the effectiveness of the

pilot method for ten problem instances each with n = 50 and n = 100, respectively.

These results confirm the expectation that the most important decisions of the

construction process are made at the first steps. So it seems reasonable to use a

rather small evaluation depth when running time is important.
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Figure 3: Average results of the pilot method with an increasing evaluation depth

for ta041-050 (n=50).
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Figure 4: Average results of the pilot method with an increasing evaluation depth

for ta071-080 (n=100).

With respect to the effectiveness of the different neighborhood structures, Ta-

ble 2 compares the results obtained in connection with the shift neighborhood with

the results obtained in connection with the swap neighborhood. We applied steep-

est descent (initial solutions: identity permutation vs. Chins) and iterated steepest

descent (initial solution provided by Chins) for 100 seconds. The shift neighborhood

performed significantly better than the swap neighborhood. This finding has been

confirmed by experiments for simulated annealing and tabu search, so we restrict in

the following to presenting results for the shift neighborhood. Steepest descent prof-

its from starting from a good initial solution (both with respect to solution quality

and running time).8 Experiments with implying a maximum shift distance (e.g., 10)

for the shift neighborhood led to significantly worse results (e.g., for iterated steepest

descent a deviation of 3.60% in comparison to 1.29% for n = 50). With respect to

the diversification performed after each local optimum, a lower perturbation extent

(n/5 random moves instead of n/2 random moves), which keeps some structure of

the local optimum, led to the better results. It is notable, that iterated steepest

descent, even when restricted to a running time of 10 seconds, solves all problem

instances with 20 jobs to optimality.

Table 3 shows the results of applying simulated annealing, in connection with the

8The running times for steepest descent, which are not shown in the table, are below one second

for all but the largest problem instances. The running times for the instances with 200 jobs are

about 10 seconds when starting from the identity permutation vs. 2–3 seconds when starting from

the initial solution provided by Chins.
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n = 20 n = 50 n = 100 n = 200

shift swap shift swap shift swap shift swap

SD (Identity) 2.63% 5.19% 5.22% 9.50% 7.01% 11.81% 4.83% 9.62%

SD (Chins) 2.06% 2.72% 3.34% 3.94% 5.05% 5.63% 1.82% 2.53%

ISD (div.: n/2 r. moves) 0.00% 0.06% 1.69% 3.32% 4.35% 5.50% 1.82% 2.53%

ISD (div.: n/5 r. moves) 0.00% 0.06% 1.29% 2.77% 3.84% 5.11% 1.71% 2.53%

Table 2: Steepest descent and iterated steepest descent applied for 100 seconds with

different neighborhoods and different diversification extent.

shift neighborhood, in the scheme described in Section 4.2. We have performed for

each problem instance and each algorithm configuration five runs with different seed

values for the pseudo-random number generator; the results are averaged. When

not marked otherwise, we used the parameter setting recommended by Johnson

et al. (1989). The first column marks the initial solution used. As is well-known,

simulated annealing usually does not profit from good initial solutions as it perturbs

the initial solution intensively. This has been confirmed by our experiments, using

the default parameter setting of initialAcceptanceFraction (i.a.f.) to 0.4. We also

examined lowering this parameter to 0.1, which reduces the running time by almost

50% (due to the lower initial temperature induced). Trying to slow down the cooling

process by setting the cooling schedule parameter α to 0.98 (instead of 0.95) did

not lead to better results. On the other hand, performing a reheating twice, i.e.,

continuing the search process from a higher temperature when the search process

is considered as frozen, led to a similar increase in running time while the solution

quality became significantly better. We followed two different strategies: In the first

case, reheating sets the temperature to half of the value of the initial temperature of

the actual annealing process. In the second case, we remember the temperature when

the best solution was found and reheat to the average of this value and the initial

temperature of the actual annealing process. The latter strategy, which performed

slightly better than the former one, was also tested for a fourfold reheating.

n = 20 n = 50 n = 100 n = 200

dev. t dev. t dev. t dev. t

Identity (Id.) 0.05% 4.5 1.37% 28.8 3.07% 124.4 1.26% 582.0

Chins 0.04% 4.5 1.36% 30.0 3.08% 125.5 1.30% 582.2

Id., i.a.f.=0.1 0.04% 2.3 1.43% 16.3 3.05% 69.1 1.25% 314.5

Id., α = 0.98 0.01% 11.2 1.27% 74.8 3.07% 321.0 1.66% 1450.3

Id., 2 reheatings (half) 0.01% 9.2 1.12% 61.7 2.74% 255.5 1.07% 1174.0

Id., 2 reheatings (avg.) 0.01% 5.1 1.06% 34.0 2.74% 151.4 1.05% 741.1

Id., 4 reheatings (avg.) 0.00% 7.0 0.98% 44.0 2.64% 196.4 1.00% 982.1

Table 3: Simulated annealing in connection with shift neighborhood.

16



Table 4 shows the results of the application of tabu search in connection with

the shift neighborhood. Strict tabu search obtained unsatisfactory results. Concern-

ing static tabu search, in accordance with our general point of view discussed in

Section 1, we have not tried to find some “best” parameter setting which generally

depends on problem size and running time. We have tried a few different com-

binations of values for the tabu threshold (tt) and the tabu list length (l). When

comparing the best of these combinations with the results for reactive tabu search,

one may conclude that the selected values for the tabu list length seem appropriate

for the larger problem instances while the results for the smaller instances are unsat-

isfactory. On the other hand, by the application of reactive tabu search we obtained

high quality results without having to think about parameter settings. Results of

applying reactive tabu search (tt = 2) for 1000 seconds in connection with the shift

neighborhood on the basis of initial solutions provided by Chins and Pilot-10 are

shown in Table 5.

n = 20 n = 50 n = 100 n = 200

strict 0.02% 1.89% 4.46% 1.56%

static tt = 1, l =
√
n 1.38% 2.99% 4.76% 1.69%

tt = 1, l = 2
√
n 1.43% 2.90% 4.66% 1.55%

tt = 2, l = 2
√
n 1.11% 2.35% 4.06% 1.25%

tt = 2, l = 3
√
n 0.67% 2.00% 3.42% 1.06%

reactive tt = 1 0.00% 1.20% 3.34% 1.38%

tt = 2 0.00% 1.36% 3.09% 1.33%

Table 4: Tabu search with different tabu criteria applied for 100 seconds in connection

with shift neighborhood and initial solutions provided by Chins.

n = 20 n = 50 n = 100 n = 200

Reactive tabu search Chins 0.00% 0.88% 2.20% 1.19%

Pilot-10 0.00% 0.74% 1.88% 0.08%

Table 5: Reactive tabu search applied for 1000 seconds in connection with shift

neighborhood on the basis of initial solutions provided by Chins and Pilot-10.

From a practical point of view it is especially important which methods are the

most effective ones for some given combination of problem size, available running

time and required solution quality. While such relations may in general be highly

complex, we aim for some basic understanding of these concerns. The Figures 5, 6

and 7 indicate the basic trade-off between solution quality and running time (loga-

rithmic scale) for problems with 50, 100, and 200 jobs, respectively.9 Based on the

9To enable some assessment of the iteration numbers: Methods such as iterated steepest descent
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experiments described above, we selected six different metaheuristics with respective

configurations:

• Pilot method with increasing evaluation depth

• Iterated steepest descent (initial solution constructed by Chins, shift neighbor-
hood, diversification by n/5 random moves, running times: 10s, 100s, 1000s)

• Simulated annealing (identity permutation as initial solution, default param-
eter setting, shift neighborhood without reheating and with two and four re-

heatings to the average of the initial temperature and the temperature where

the best solution so far has been obtained)

• Strict tabu search (initial solution constructed by Chins, shift neighborhood,
running times: 10s, 100s, 1000s)

• Static tabu search (initial solution constructed by Chins, shift neighborhood,
tt = 2, l = 3

√
n, running times: 10s, 100s, 1000s)

• Reactive tabu search (initial solution constructed by Chins, shift neighbor-
hood, tt = 2, running times: 10s, 100s, 1000s)

For n = 50, several methods show the same behaviour. Simulated Annealing

provides high quality results with not much running time. Strict tabu search and

static tabu search perform bad. An explanation for the latter one might be the

inappropriate tabu list length (remember that we did not tune this parameter).

For small size problem instances a straightforward application of iterated steepest

descent might be the advice for a practical application when one wants to freely

determine the running time. For n = 100, the situation changes. Iterated steepest

descent provides average results and is outperformed by, partly, static tabu search

and, definitely, by reactive tabu search. This tendency towards the more “intelligent”

methods becomes even clearer for n = 200. Simulated Annealing, in particular in

connection with some reheatings steps, also provides high quality results without

the need to perform a calibration, however, with restrictions with respect to freely

determining running times.

or tabu search perform about 700 iterations per second for n = 20, 180 iterations per second for

n = 50, 55 iterations per second for n = 100, or 16 iterations per second for n = 200.
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Figure 5: Solution quality vs. running time for problem instances with n = 50 jobs.
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Figure 6: Solution quality vs. running time for problem instances with n = 100 jobs.

19



�����

�����

�����

�����

�����

�����

�����

� �� ��� ���� �����

�	
� ��

������� ���	��	��

���
 ���� �������

����	���

�	��� �������� �������� ��� ��� �	
������ !�����	��

���	 � "��� ���� # ����	 "��� ���� # $�� �	�� "��� ���� #

Figure 7: Solution quality vs. running time for problem instances with n = 200 jobs.

7 Conclusions

We examined the application of different kinds of heuristic methods to the con-

tinuous flow-shop scheduling problem. The results of computational experiments

confirm that the effectiveness of (meta-)heuristics crucially depends on the constel-

lation of problem size, wanted solution quality and available running time. That is,

there is no single “best” method that dominates all other considered methods. The

computational results give evidence for the superiority of the neighborhood struc-

ture determined by shift moves. For small problem instances, even simple methods

such as iterated steepest descent obtained very good results with not much running

time. For all but the smallest problem instances, the pilot method provided excel-

lent results at the expense of large running times; future research should examine

the application of corresponding look-ahead strategies for improvement methods.

In general, reactive tabu search obtained high quality results without the need to

perform some parameter tuning.

In principle, most of the considered metaheuristics such as simulated anneal-

ing and reactive tabu search can be applied without knowledge about the inner

working of these algorithms: calibration is mostly not necessary and efficient im-

plementation support is provided by HotFrame. Our implementation allows the
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effective treatment of considerably larger problem instances for the continuous flow-

shop scheduling problem than previously reported in the literature (200 jobs vs. 25

jobs). Further work should include the treatment of other types of flow-shop prob-

lems. Furthermore, in connection with the goal set in the introduction, the next

research steps should not be to improve the objective function value of the “soft”

goal minimization of total processing time by the last percent, but to transfer the

findings described in this paper to decision support systems dealing with real world

problems. Respective work may confirm the generality of our research as various

problem types may be subsumed under an appropriate framework.

Moreover, future research should increase the explicit treatment and examination

of online problems. In practice, planning must take into account changing data

(e.g., new jobs). In this respect, one often prefers relatively stable plans instead of

“nervous” changes; i.e., new data should not completely invalidate the existing plan

as might be the case when new schedules are computed from scratch. In this respect,

local search methods naturally provide the means of adaptively changing schedules

on the basis of existing plans.
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Appendix

n = 20 n = 50 n = 100 n = 200

ta001 15674 ta031 76016 ta061 308052 ta091 1521201

ta002 17250 ta032 83403 ta062 302386 ta092 1516009

ta003 15821 ta033 78282 ta063 295239 ta093 1515535

ta004 17970 ta034 82737 ta064 278811 ta094 1489457

ta005 15317 ta035 83901 ta065 292757 ta095 1513281

ta006 15501 ta036 80924 ta066 290819 ta096 1508331

ta007 15693 ta037 78791 ta067 300068 ta097 1541419

ta008 15955 ta038 79007 ta068 291859 ta098 1533397

ta009 16385 ta039 75842 ta069 307650 ta099 1507422

ta010 15329 ta040 83829 ta070 301942 ta100 1520800

ta011 25205 ta041 114398 ta071 412700 ta101 2012785

ta012 26342 ta042 112725 ta072 394562 ta102 2057409

ta013 22910 ta043 105433 ta073 405878 ta103 2050169

ta014 22243 ta044 113540 ta074 422301 ta104 2040946

ta015 23150 ta045 115441 ta075 400175 ta105 2027138

ta016 22011 ta046 112645 ta076 391359 ta106 2046542

ta017 21939 ta047 116560 ta077 394179 ta107 2045906

ta018 24158 ta048 115056 ta078 402025 ta108 2044218

ta019 23501 ta049 110482 ta079 416833 ta109 2037040

ta020 24597 ta050 113462 ta080 410372 ta110 2046966

ta021 38597 ta051 172845 ta081 562150

ta022 37571 ta052 161092 ta082 563923

ta023 38312 ta053 160213 ta083 562404

ta024 38802 ta054 161557 ta084 562918

ta025 39012 ta055 167640 ta085 556311

ta026 38562 ta056 161784 ta086 562253

ta027 39663 ta057 167233 ta087 574102

ta028 37000 ta058 168100 ta088 578119

ta029 39228 ta059 165292 ta089 564803

ta030 37931 ta060 168386 ta090 572798

Table 6: Best results obtained for data sets of Taillard when treated as continuous

flow-shop problem instances with total processing time objective.
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