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a b s t r a c t 

This paper addresses the well-known dynamic berth allocation problem (DBAP), which finds numer- 

ous applications at container terminals aiming to allocate and schedule incoming container vessels into 

berthing positions along the quay. Due to its impact on ports’ performance, having efficient DBAP for- 

mulations is of great importance, especially for determining optimal schedules in quick time as well as 

aiding managers and developers in the assessment of solution strategies and approximate approaches. In 

this work, we propose two novel formulations, a time-indexed formulation and an arc-flow one, to effi- 

ciently tackle the DBAP. Additionally, to improve computational performance, we propose problem-based 

modeling enhancements and a variable-fixing procedure that allows to discard some variables by con- 

sidering their reduced costs. By means of these contributions, we improve the models’ performance for 

those instances where the optimal solutions were already known, and we solve to optimality for the first 

time other instances from the literature. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

The management of limited resources at maritime container

terminals has a direct and relevant impact on their productivity

and competitiveness. This holds, especially, in those cases where

for geographical or monetary reasons the terminals are forced

to find different ways to expand their capacity. Thus, terminal

managers require the use of suitable methods and approaches to

efficiently exploit resources at maritime terminals. This involves

the need for reliable and fast approaches for providing schedules

within reasonable computational times, as well as having efficient

mathematical models enabling the proper evaluation of those

schedules by means of a given objective function. As indicated by

Notteboom (2006) , over 90% of the delayed vessel schedules are

due to port access and terminal operations that, as pointed out by

Steenken, Voß, and Stahlbock (2004) , directly involve the manage-

ment of berths. In this regard, berth planning is a relevant process

within terminal operating systems ( Heilig & Voß, 2018 ) or within

information platforms (e.g., Choi, Kim, Park, Park, & Lee, 2003 ).

The necessity to solve such process responds to a real-world daily
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ecessity to use terminal resources as best as possible. Hence, it

ecomes essential for terminal operators and related practitioners

o rely on efficient solution approaches in order to suitably manage

he use of those limited and impacting resources such as berths. 

The above issue leads to the definition of the well-known berth

llocation problem (BAP), which seeks to assign and schedule in-

oming vessels arriving at the terminal into berthing positions

ith the aim of optimizing a given objective function (e.g. min-

mize the waiting time of the vessels, maximum departure time,

tc.). In this way, optimal berthing positions and times for all ves-

els are provided, allowing planned berthing instructions while ef-

ciently using the quay space. Different variants of the BAP have

een proposed (see e.g. Bierwirth & Meisel 2010; 2015 ). Among

hem, the most referenced and known one is the dynamic berth al-

ocation problem (DBAP, Cordeau, Laporte, Legato, & Moccia 2005;

mai, Nishimura, & Papadimitriou 2001 ). The DBAP aims at allocat-

ng container vessels along the quay partitioned into berths while

educing the sum of vessels turnaround time. In contrast to the

tatic case (where all the vessels are at the port at the beginning

f the planning horizon), the DBAP considers that vessels arrive

long the planning horizon, i.e., the term “dynamic” means that

he vessels arrive at different times of the day; nevertheless, all

roblem information is known in advance. Due to the difficulty of

his problem, decision support approaches are necessary to provide

roper solutions. This opens up the discussion on how and from
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hich standpoint algorithmic techniques can contribute to enhanc-

ng the management of berthing resources in port environments.

ased on the literature (e.g. Bierwirth & Meisel 2010; Lalla-Ruiz

016; Stahlbock & Voß 2008 ) different ways for solving the DBAP

an be indicated: 

1. Heuristic and metaheuristic approaches. They allow decision

makers to provide feasible solutions within reasonable com-

putational times. The application of these methods is sug-

gested in situations where fast solutions are requested such

as in dynamic environments requiring replannning or in in-

tegrative and rich solution systems where the solution of a

problem is an input for other problems. Some examples ap-

plied to the DBAP can be consulted in Cordeau, Gaudioso,

Laporte, and Moccia (2007) , De Oliveira, Mauri, and Lorena

(2012) , Lalla-Ruiz, Melián-Batista, and Moreno-Vega (2012) ,

Ting, Wu, and Chou (2014) , Ş ahin and Kuvvetli (2016) . 

2. Matheuristic approaches. They integrate both exact and

metaheuristic techniques, in such a way that some of the ca-

pabilities of those methods can be jointly exploited. The in-

tegration of exact approaches within a metaheuristic or vice-

versa can lead to higher computational times than heuristic

methods, but may also lead to a better performance robust-

ness and quality of the solutions in some applications. For

approaches in this regard, the reader is referred to Lalla-Ruiz

and Voß (2016b) , Nishi, Okura, Lalla-Ruiz, and Voß (2016) . 

3. Exact approaches. The main advantage of this type of ap-

proaches is to seek optimality by means of bounds at the

cost of requiring important computational efforts as the size

of the instance increases. Counting on well-defined and as-

sessed mathematical formulations, as well as exact algo-

rithms, permits researchers and practitioners to evaluate the

performance of their heuristic and matheuristic methods,

while increasing the expertise and knowledge on the given

problem and technique. For instance, a review of current for-

mulations can be found in Buhrkal, Zuglian, Ropke, Larsen,

and Lusby (2011) . 

In recent years, the research community has been predomi-

antly proposing heuristic approaches for the DBAP. That provides

n incentive to study and develop exact approaches and modeling

nhancements in order to aid the evaluation of the heuristics per-

ormance. On the other hand, assessing and determining the best

ormulation considering the evolution of exact solvers permits ac-

elerating the resolution time as well as obtaining additional in-

ights regarding the problem itself. Therefore, in this work, we aim

t proposing two different novel ways of modeling the DBAP, i.e., a

ime-indexed formulation and an arc-flow one. As a follow up of

revious studies on this problem, see ( Buhrkal et al., 2011 ), our

oal is to provide a detailed comparison between our formula-

ions and the best one proposed in the literature so far, in order

o determine their performance and their likely complementarity

or tackling the different DBAP benchmark instances. Furthermore,

his work also aims at proposing and assessing modeling enhance-

ents and a reduced-cost-based variable-fixing procedure. As dis-

ussed below, the results are meaningful as our new formulations

nable a relevant time reduction as well as provide optimal solu-

ions not yet reported for several large-size problem instances pro-

osed in the related literature. In addition to that, in order to ad-

ress more congested scenarios as well as study the performance

f the modeling approaches, a new set of large-size problem in-

tances is proposed and investigated. 

The remainder of this paper is organized as follows.

ection 2 reviews the related literature putting an emphasis

n mathematical models. In Section 3 , the DBAP is described.

ext, the currently best formulations for this problem as well

s those proposed in this work are presented in Section 4 . Their
omputational assessment, as well as a detailed comparison,

s reported in Section 5 . Finally, Section 6 presents the main

onclusions of this work and proposes possible future research

irections. 

. Literature works 

The dynamic berth allocation problem (DBAP) was initially pro-

osed by Imai et al. (2001) with the goal of scheduling and allo-

ating vessels along a discrete quay partitioned into berths. Due to

ts practical and relevant application domain, this problem has at-

racted a considerable and increasing attention from the research

ommunity as one of the most referenced BAP variants as well as

rom the practitioner side by means of new BAP variants consid-

ring DBAP features (e.g., Giallombardo, Moccia, Salani, & Vacca,

010; Imai, Yamakawa, & Huang, 2014; Xu, Li, & Leung, 2012 ).

ordeau et al. (2005) reformulated the problem as a multi-depot

ehicle routing problem with time-windows (MDVRP-TW) and pro-

osed a tabu search for solving it. In this way, time-window

onstraints related to contractual agreements between shipping

ompanies and container terminals could be incorporated. Their

omputational experiments were conducted for a large set of sce-

arios based on the container terminal of Gioia Tauro (Italy) and

he results indicated that the MDVRP-TW formulation was not

ble to solve small and medium-sized problem instances within

he time limit. Christensen and Holst (2008) proposed a general-

zed set-partitioning problem formulation (GSPP) that is described

n detail in Section 4 below. Later, in the work of Buhrkal et al.

2011) , all the existing formulations proposed for the DBAP were

xtensively assessed. The authors indicated that the GSPP formu-

ation clearly outperforms the other formulations in terms of lin-

ar bounds and computational time for the problem instances pro-

osed in Cordeau et al. (2005) . Nevertheless, ( Lalla-Ruiz et al.,

012 ) studied the GSPP performance on new instances and indi-

ated that, under the computer and general purpose solver version

sed at that time, the formulation required high-amounts of mem-

ry, possibly leading to memory fault problems. Lalla-Ruiz and Voß

2016b) proposed a matheuristic decomposition approach in order

o reduce the size of the problems and allowing to tackle them by

eans of the GSPP formulation. Recently, ( Nishi et al., 2016 ) pro-

osed a new dynamic programming based matheuristic together

ith new instances to capture congested and larger scenarios. The

uthors used the GSPP formulation that, thanks to the progress of

omputers’ memory and processors as well as software, allowed

o avoid memory problems. Lalla-Ruiz and Voß (2016a) suggested

trengthening the optimization model by extracting cuts from re-

undant constraints. 

With regards to approximate approaches, the DBAP has at-

racted remarkable attention. We focus here on the most recent

pproaches. De Oliveira et al. (2012) proposed a clustering

earch with simulated annealing and ( Ting et al., 2014 ) pro-

osed a particle swarm optimization approach. For testing their

pproaches both works only used the instances provided in

ordeau et al. (2005) . Lalla-Ruiz, Melián-Batista, and Moreno-Vega

2016) proposed a cooperative decentralized search and provided

 comparison with De Oliveira et al. (2012) and Ting et al. (2014) ,

ndicating a relevant time and performance improvement. Mauri,

ibeiro, Lorena, and Laporte (2016) proposed an adaptive large

eighborhood search and tested it on all the state-of-the-art

nstances. All the mentioned metaheuristic approaches reported

igh-quality solutions in reasonable computational times. Never-

heless, although they were able to provide the optimal solution

alues for the largest instances proposed by Cordeau et al. (2005) ,

hey were not able to evaluate the quality of their approach for

he instances of Lalla-Ruiz et al. (2012) as the optimal solutions

emained unknown. 
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3. Problem description 

In the DBAP, we are given a set N = { 1 , . . . , n } of vessels to be

allocated within a quay that is divided into a set M = { 1 , . . . , m } of

berths. Each vessel i ∈ N is available to be served in a given time-

window [ t i , t 
′ 
i 
] , where t i and t ′ 

i 
represent its arrival and departure

time, respectively. Similarly, each berth k ∈ M is available to serve

vessels in a restricted period [ s k , e k ]. Furthermore, each vessel i

has an associated handling time ρ ik that depends on its assigned

berth k ∈ M , and an input priority value p i . The objective function

of the DBAP is to minimize the total weighted flow time to serve

incoming vessels, that is, the time elapsed between the vessels’ ar-

rival at the terminal and the completion of their associated oper-

ations multiplied by their priority values. Note that once a vessel

has started to be served by a berth, its processing cannot be inter-

rupted and restarted afterwards in the same or another berth (i.e.,

preemption is not allowed). 

Fig. 1 presents an example of a DBAP solution. In the figure, a

plan for six vessels within three berths is shown. The rectangles

represent the vessels and their handling time. Inside each rectan-

gle, we report the service priority of each vessel ( p i ). The time-

windows of the vessels are represented by the lines at the bottom

of the figure. In this case, for example, vessel 1 arrives at time step

3 and should be served until time step 12. Moreover, the time-

window of each berth is limited by the non-hatched areas. The

vessels’ handling times are reported in Table 1 ; those times de-

pend on the assigned berth. Namely, for instance, if vessel 1 is as-

signed to berth 1, its handling time would be equal to 7, which

is shorter than the handling time of 8 units that it would have at

berth 2. 

As indicated above, the objective value of a DBAP solution is

the total weighted service time of the incoming container ves-

sels. In this example, the weighted service times of the six ves-

sels are calculated as follows: vessel 1 = (10 − 3) · (1) = 7 , ves-

sel 2 = (4 − 1) · (3) = 9 , vessel 3 = (6 − 2) · (6) = 24 , vessel 4 =
(10 − 4) · (4) = 24 , vessel 5 = (11 − 2) · (2) = 18 , and vessel 6 =
(13 − 11) · (1) = 2 . Therefore, the objective function value of this

solution is: 7 + 9 + 24 + 24 + 18 + 2 = 84 . 

4. Mathematical formulations for the DBAP 

This section includes the current most efficient mathemati-

cal model for the DBAP according to the computational tests in

Buhrkal et al. (2011) , and the two novel models proposed in this

work, namely, the time-indexed formulation and the arc-flow one. 

4.1. Generalized set-partitioning problem formulation 

The generalized set-partitioning problem (GSPP) formulation for

the DBAP was proposed by Christensen and Holst (2008) . In the

GSPP formulation, a column represents a feasible assignment of

a vessel to a berth at a certain time. The set of columns is de-

noted by �. Two matrices A and B are defined, both containing

| �| columns. Matrix A = (A iω ) contains a row for each vessel, and

A iω = 1 if and only if column ω represents an assignment of ves-

sel i ∈ N . Each column of A contains exactly one non-zero element.

Matrix B = (B pω ) contains a row per (berth, time) position. 

The rows of B are indexed by the set P = { 1 , 2 , . . . , K} with K =∑ 

k ∈ M 

(e k − s k ) . The entry B p ω is equal to 1, if and only if, position

p ∈ P is contained in the assignment that column ω represents. The

cost c ω of any column ω ∈ � is the service time of the respective

position assignment multiplied by the priority factor p i . A binary

variable x ω is equal to 1 if column ω is used in the solution, and

0 otherwise. With these definitions the GSPP formulation for the
BAP is stated as follows: 

(GSP P ) min 

∑ 

w ∈ �
c w 

x w 

(1)

ubject to ∑ 

 ∈ �
A iw 

x w 

= 1 i ∈ N, (2)

∑ 

 ∈ �
B pw 

x w 

≤ 1 p ∈ P, (3)

 w 

∈ { 0 , 1 } w ∈ �. (4)

The objective function (1) minimizes the total weighted flow

ime of the vessels. Constraints (2) ensure that all vessels are

erved. Constraints (3) guarantee that at a time interval, in a berth,

t most one vessel is served. Constraints (4) define the variables’

omain. This model contains O(nK) variables and O(n + K) con-

traints. 

.2. Time-indexed formulation 

The time-indexed (TI) formulation considers the DBAP as an

nrelated parallel machine scheduling problem with release dates

nd deadlines to minimize the total weighted flow time. In ad-

ition, it considers machine availability and job-machine incom-

atibilities. The TI formulation is an adaptation of the one orig-

nally proposed by Sousa and Wolsey (1992) for single ma-

hine scheduling problems. Let us define u ik = min { t ′ 
i 
, e k } and l ik =

ax { t i , s k } , ∀ i ∈ N, k ∈ M. The TI formulation is then: 

( TI ) min 

∑ 

i ∈ N 

∑ 

k ∈ M 

u ik −ρik ∑ 

t= l ik 
p i x ikt (t + ρik − t i ) (5)

ubject to 

∑ 

 ∈ M 

u ik −ρik ∑ 

t= l ik 
x ikt = 1 i ∈ N, (6)

 

i ∈ N 

min { t ,t ′ 
i 
−ρik ,e k −ρik } ∑ 

s = max { t i ,s k ,t+1 −ρik } 
x iks ≤ 1 k ∈ M, t = s k , . . . , e k − 1 , (7)

 ikt ∈ { 0 , 1 } i ∈ N, k ∈ M, t = l ik , . . . , u ik − ρik (8)

here x ikt is a binary variable taking value 1 if vessel i starts be-

ng served at time t by berth k , 0 otherwise. The objective function

5) seeks the minimization of the total weighted flow time of the

essels, where the flow time of a vessel i is defined by the dif-

erence between its service completion time and its arrival time

t the port. Constraints (6) ensure that each vessel is served ex-

ctly once. Constraints (7) forbid overlapping among the vessels by

mposing that at most 1 vessel is served by a berth at any time.

onstraints (8) define the variables’ domain. This model contains

 pseudo-polynomial number of variables O(nK) and constraints

(n + K) , a common characteristic of TI formulations. 

.3. Arc-flow formulation 

Another new way of formulating the DBAP is by means of an

rc-flow (AF) formulation. AF models represent problems by using

ows on a capacitated network. The main idea is to obtain a one-

nit flow from the origin to the sink node for each available re-

ource. In our case, the berths are the resources. For each of them,

he origin and the sink node can be seen as s k and e k , respec-

ively, and the flow from origin to destination can be interpreted
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Table 1 

Example of vessels’ handling times and priority values. 

Vessel Handling times ρ ik Priority value p i 

Berth 1 Berth 2 Berth 3 

1 7 8 6 1 

2 2 3 4 3 

3 5 5 4 6 

4 8 6 5 4 

5 9 8 5 2 

6 4 2 5 1 
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s a sequence of vessels served by the resource k ∈ M . AF formu-

ations have been widely used to formulate different combinato-

ial optimization problems. In this sense, we address the reader

o the works of Valério de Carvalho (1999) and Delorme, Iori, and

artello (2016) . 

Before introducing the proposed AF formulation, let us define

 kt , ∀ k ∈ M, t = s k , . . . , e k − 1 as a set of idle variables necessary to

llow the presence of idle times between the service of two con-

ecutive vessels. Variable d kt takes value 1 if in the time period

rom t to t + 1 the berth k is idle. By using the previous set of vari-

bles x ikt and the new variables d kt , the DBAP can be formulated as

ollows: 

( AF ) min 

∑ 

i ∈ N 

∑ 

k ∈ M 

u ik −ρik ∑ 

t= l ik 
p i x ikt (t + ρik − t i ) (9) 

ubject to 

 

 ∈ M 

u ik −ρik ∑ 

t= l ik 
x ikt = 1 i ∈ N, (10)

 

i ∈ N 
x ikt + d kt −

∑ 

i ∈ N 
x i,k,t−ρik 

− d k,t−1 = 

{ 

1 , if t = s k −1 , if t = e k 
0 , otherwise 

k ∈ M, 
t= s k , ... ,e k , 

(11) 

 ikt ∈ { 0 , 1 } i ∈ N,k ∈ M, 
t= l ik , ... ,u ik −ρik , 

(12)

 ≤ d kt ≤ 1 

k ∈ M, 
t= s k , ... ,e k −1 . (13) 

The objective function (9) and constraints (10) are equiva-

ent to (5) and (6) in the TI formulation, respectively, whereas

onstraints (11) impose the flow conservation conditions. Like

he TI formulation, the AF formulation, too, is characterized by a

seudo-polynomial number of variables, O(nK) binary and O(K)

ontinuous, and constraints O(n + K) . With the aim of illustrating

his formulation, Fig. 2 shows the AF solution for the example

nstance of Fig. 1 and Table 1 . From this figure it can be observed

hat berths 3 and 2 remain idle for one unit of time each at

he beginning of their availability periods (modeled by acrs d 3,1 

nd d 2,0 , respectively). Vessels 3 and 5 are both served by berth

 and start (resp. finish) to be served at time 2 and 6 (resp. 6

nd 11), respectively. This is represented by arcs x 3,3,2 and x 5,3,6 ,

espectively. Then, arcs d 3,11 , d 3,12 and d 3,13 model an idle time

rom time 11 until the last available time of berth 3, i.e., time 14.

he same reasoning applies to berths 1 (that handles vessel 1) and

 (that handles vessels 2 and 4). 

.4. Equivalence between the mathematical models 

All three formulations, GSPP (1) –(4) , TI (5) –(8) and AF (9) –(13) ,

odel the DBAP by means of a pseudo-polynomial number of vari-

bles. Indeed, in all formulations, the main decision variable indi-

ates the assignment of a vessel to a berth at a given starting time.
t is not surprising thus that the three formulations are all equiva-

ent to one another, i.e., they have the same continuous relaxation

alue. We skip a formal mathematical proof but give the reader a

int of this equivalence. 

Let us first address the relation between GSPP and TI. In the

SPP model, set � contains all feasible assignments of a vessel to

 (berth, time) position, and matrices A 

n × | �| and B K × | �| , with K =
 

k ∈ M 

(e k − s k ) , indicate which vessel and (berth, time) positions,

espectively, are associated with each variable x ω , for ω ∈ �. Con-

ider again the example of Table 1 and Fig. 1 . The first possible as-

ignment is that of vessel 1 to berth 1 at time 3 (as both vessel and

erth time-windows start in 3). For TI, this is simply represented

y variable x 113 . For GSPP, this is instead represented by variable

 1 and its associated A entries satisfying A 11 = 1 and A i 1 = 0 for

ll i � = 1, and B entries satisfying B p1 = 1 for p = 1 , 2 , . . . , 7 (corre-

ponding to times between 3 and 9) and B p1 = 0 for p = 8 , 9 (cor-

esponding to times 10 and 11). The only entry taking the value

 for A , A 11 , indicates in constraint (2) that if x 1 is chosen, then

essel 1 has been assigned. The same result is obtained for TI by

onstraints (6) when x 113 takes the value 1. The entries taking the

alue 1 in B indicate in constraints (3) that if x 1 is chosen then

erth 1 is busy until time 10. The same result is obtained for TI

y (7) when x 113 takes the value 1. Extending this reasoning to all

ssignments, one can deduce that (2) can be directly mapped into

6) , and (3) into (7) . In addition to that, the domains of the vari-

bles are identical, as imposed by (4) and (8) , so it follows that

SPP and TI are equivalent. 

Concerning the relation between TI and AF, ( Valério de Car-

alho, 2002 ) proved that the two formulations are equivalent

hen applied to the cutting stock problem. Recently, a similar

roof has been used by Kramer, Dell’Amico, and Iori (2019) to

rove the equivalence of TI and AF for the scheduling problem of

inimizing total weighted completion time on identical parallel

achines. As the proposed TI and AF formulations for the DBAP

ely on the same principles of the ones for the cutting stock and

he parallel machine scheduling problem, we refer the reader to

hese works for a proof of equivalence. 

It follows that the three formulations are equivalent. Despite

his fact, their computational performances are remarkably dif-

erent. This can be explained by a number of factors. Firstly, for

SPP the computation of the initial matrices A and B can be very

emory consuming, and even prohibitive for very large instances.

econdly, it is known that commercial solvers are very sensitive to

odel details and initial conditions (see, e.g., Fischetti & Monaci,

014; Lalla-Ruiz & Voß, 2016a; Lodi & Tramontani, 2013 ). Changes

n variables and constraints can thus deeply affect the model

erformance. Lastly, additional improvement techniques, like those

iscussed in the next two sections, may render even larger the

ifference between the performance of the models. All these be-

aviors can be observed in detail in our computational evaluation

n Section 5 . 

.5. Modeling improvements - grouping identical berths and vessels 

The number of incoming vessels arriving at ports every day

s increasing (e.g., Brooks & Faust 2018 ), some of those vessels

ay share similar features (i.e., same container workload, time-

indows, or priority) as can be checked, for example, in the

roblem instances based on the port of Gioia Tauro provided by

ordeau et al. (2005) . On the other hand, a container terminal can

ither have some identical (or very similar) berths in terms of pro-

uctivity and availability windows. Therefore, in this section we in-

roduce new model improvements by considering some problem

eatures like identical berths and vessels. We formalize the nec-

ssary conditions that berths and vessels have to comply with in

rder to be considered identical. Through their proper identifica-
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Fig. 1. Example of a DBAP solution with six vessels and three berths. Hatched areas represent berth unavailability due to input time-windows. 

Fig. 2. AF solution for the instance given in Fig. 1 and Table 1 . 
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tion and handling, we aim at reducing the number of variables and

constraints of a given model. In the following, we define and indi-

cate how to extract and integrate that information in a preprocess-

ing step before starting to solve the DBAP. 

In the DBAP, berths can be compared in terms of their features,

i.e., time-windows and processing speed for serving incoming ves-

sels. Thus, subsets of berths operating at the same service speed

for the same vessels and sharing the same time-windows can be

grouped as identical. This is formally defined by the below defini-

tions. 

Definition 1. Two berths k ∈ M and l ∈ M , k � = l , are considered iden-

tical if the following conditions are satisfied: s k = s l , e k = e l , and

ρik = ρil for all i ∈ N . 

Definition 2. A berth type is defined by those berth features that

allow creating groups of identical berths. The set of berth types is

indicated by M 

′ , such that M 

′ ⊆M , and M 

′ = M when no identical

berths are detected. Additionally, for each berth type k ∈ M 

′ , a re-
ource amount a k is defined as the number of berths of each berth

ype. Note that 
∑ 

k ∈ M 

′ a k = m . 

Similarly, it is also expected that incoming vessels might have

he same features in terms of required service times for the same

erth assignment, priorities, and time-windows, and can be conse-

uently considered identical. Formally: 

efinition 3. Two vessels i ∈ N and j ∈ N , i � = j , are identical if the

ollowing conditions are satisfied: t i = t j , t 
′ 
i 
= t ′ 

j 
, p i = p j , and ρik =

jk ∀ k ∈ M. 

efinition 4. A vessel type is defined by those vessel features that

llow to create groups of identical vessels. The set of vessel types

s indicated by N 

′ , such that N 

′ ⊆N , and N 

′ = N when no identical

essels are detected. The total number of vessels of type i ∈ N 

′ is

iven by b i , with 

∑ 

i ∈ N ′ b i = n . 
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Algorithm 1: Variable-fixing algorithm for the DBAP. 

1 z(x LP ) ← Solve the LP relaxation 

2 z(x UB ) ← Obtain a valid upper bound by a given method 

3 for (∀ x LP 
i 

∈ x LP ) do 

4 if ( ̄c i > z(x UB ) − z(x LP ) − 1) then 

5 x i = 0 

6 Construct reduced problem P 

7 Solve P by means of a general purpose solver 

Table 2 

Summary of benchmark instances. 

Benchmark set #instances N M 

Cordeau et al. (2007) 30 {60} {13} 

Lalla-Ruiz et al. (2012) 90 {30, 40, 55, 60} {3, 5, 7, 10} 

Nishi et al. (2016) 50 {80, 90, 100, 120, 150} {10, 13, 15} 

New proposed 20 {200, 250} {15, 20} 

Total 190 
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An example of Definition 4 is as follows. Suppose we have an

nstance with N = { 1 , 2 , 3 , 4 , 5 } where vessels 1 and 4 are iden-

ical according to Definition 3 , then set N 

′ is equal to {1, 2, 3,

} with b 1 = 2 . Thus, 
∑ 

i ∈ N ′ b i = 5 . This example also applies to

efinitions 1 and 2 , when treating berths. 

Once sets M 

′ and N 

′ have been defined, one can easily mod-

fy the previous formulations to incorporate and make use of this

nformation. Since including this reduction is similar to all formu-

ations, in the following we only show it in the AF formulation (9) –

13) . 

( AF + ) min 

∑ 

i ∈ N ′ 

∑ 

k ∈ M 

′ 

u ik −ρik ∑ 

t= l ik 
p i x ikt (t + ρik − t i ) (14) 

ubject to 

∑ 

 ∈ M 

′ 

u ik −ρik ∑ 

t= l ik 
x ikt = b i i ∈ N 

′ , (15)

 

 ∈ N ′ 
x ikt + d kt −

∑ 

i ∈ N ′ 
x i,k,t−ρik 

− d k,t−1 = 

{ 

a k , if t = s k 
−a k , if t = e k 
0 , otherwise 

k ∈ M 

′ , 
t= s k , ... ,e k , 

(16) 

 ikt ∈ { 0 , . . . , min { a k , b i }} i ∈ N ′ ,k ∈ M 

′ , 
t= l ik , ... ,u ik −ρik , 

(17)

0 ≤ d kt ≤ a k 
k ∈ M 

′ , 
t= s k , ... ,e k −1 . (18) 

onstraints (15) now take into account that a vessel type i ∈ N 

′ 
hould be served b i times and constraints (16) allow a berth

ype k ∈ M 

′ to serve at most a k vessels simultaneously. In con-

traints (17) , variables x ikt are now integer and upper bounded by

in { a k , b i } while variables d kt are still continuous, but now upper

ounded by a k . 

.6. Modeling improvements - reduced-cost variable-fixing algorithm 

This subsection presents a reduced-cost-based variable-fixing

rocedure aimed at enhancing the starting conditions of the op-

imization models. Variable-fixing strategies have been studied in

avelsbergh (1994) and approaches considering them have been

idely applied to combinatorial optimization problems. 

Our method attempts to reduce the number of variables of a

athematical model by using information given by the optimal

olution of the linear model relaxation and by a heuristic DBAP

olution. For convenience, we denote an instance of our DBAP

roblem as P , its optimal solution as x ∗, a feasible solution as x UB 

ith objective value of z ( x UB ), and the linear relaxation of P as

P ( P ) with an optimal solution x LP and objective value of z ( x LP ).

oreover, related to x LP we denote the reduced costs correspond-

ng to variables x LP 
i 

as c̄ i . Bearing in mind such notation, we state

hat a variable x i can be fixed to zero in the model if the following

ondition holds: 

¯
 i > z 

(
x UB 

)
− z 

(
x LP 

)
− 1 . (19) 

Suppose indeed there is a non-basic variable x i whose reduced

ost c̄ i is higher than z(x UB ) − z(x LP ) − 1 . Then, if x i enters the

asis with one unit, the current LP objective value z ( x LP ) will

ncrease by c̄ i , thus obtaining z(x LP ) + c̄ i > z(x UB ) − 1 . Therefore,

ny integer solution containing variable x i will have cost at least

 z(x LP ) + c̄ i 
 ≥ z(x UB ) . We can thus remove x i from the model as

e are only interested in solutions that could improve the current

ncumbent value z ( x UB ). This condition is formalized as follows: 

roposition 1. A non-basic variable x i can be removed from the

odel if its reduced cost c̄ satisfies inequality (19) . 
i 
Algorithm 1 describes the overall reduced-cost variable-fixing

rocedure. At step 1, the linear relaxation of a given DBAP instance

s solved. A feasible solution is obtained through a heuristic pro-

edure at step 2. The variable-fixing is applied at steps 3–5 by

onsidering inequality (19) . After that, a reduced problem P is ob-

ained and then solved. This preprocessing procedure requires hav-

ng tight bounds in order to have a certain impact on the solving

erformance. Thus, in our current work, we use the state-of-the-

rt heuristic technique by Lalla-Ruiz et al. (2016) to obtain high-

uality z ( x UB ) values. 

. Computational results 

This section presents the computational experiments carried

ut for assessing the performance of the proposed formulations.

he models were coded in C++ and solved on a computer equipped

ith an Intel i5 3.20 GHz and 16 GB of RAM running under

indows 10 operating system. The models were solved with IBM

PLEX 12.8, using a single thread, and a time limit of 2 hours. The

ethod used for generating the upper bounds is the one provided

n Lalla-Ruiz et al. (2016) . 

.1. Benchmark instances 

In this work, we use the problem instances proposed in the lit-

rature by Cordeau et al. (2005) , Lalla-Ruiz et al. (2012) and Nishi

t al. (2016) . Among those proposed by Cordeau et al. (2005) , we

onsider the large-sized ones, which contain 60 vessels and 13

erths. Those instances were generated by taking into account a

tatistical analysis of the traffic and berth allocation data at the

aritime container terminal of Gioia Tauro (Italy) and were also

tudied in Cordeau et al. (2007) . Moreover, we tackle the instances

roposed by Lalla-Ruiz et al. (2012) that could not be solved to

ptimality by the computer used to conduct their computational

xperiments. This set contains 90 instances with up to 60 vessels

nd 7 berths. We have also used the recently proposed problem

nstances by Nishi et al. (2016) that consider more congested sce-

arios with up to 150 vessels and 15 berths. In addition to that, we

reated 20 new very large instances having up to 250 vessels and

0 berths. All instances are available at http://github.com/elalla/

BAP/tree/master/Instances _ Kramer- Lalla- Ruiz- Iori- Voss/ . Table 2

ummarizes all the instances used in this work. 

http://github.com/elalla/DBAP/tree/master/Instances_Kramer-Lalla-Ruiz-Iori-Voss/
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Table 3 

Instances with identical vessels and berths. 

n m | N ′ | | M 

′ | #inst #IV #IB #IV + IB 

30 3 24.8 3 10 10 0 0 

5 24.8 4 10 10 10 10 

40 5 24.8 4 10 10 10 10 

7 24.9 6 10 10 10 10 

55 5 24.8 4 10 10 10 10 

7 24.9 6 10 10 10 10 

10 24.9 7 10 10 10 10 

60 5 24.8 4 10 10 10 10 

7 35.0 6 10 10 10 10 

13 59.7 5 30 7 30 7 

80 10 79.0 10 10 1 0 0 

Total 130 98 110 87 
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5.2. Computational experiments on the instances from the literature 

In this section, we report and discuss the results obtained by

means of the previously introduced formulations (see Section 4 ).

Namely, we compare the performance of GSPP (i.e., (1) –(4) ), TI

(i.e., (5) –(8) ) and AF (i.e., (9) –(13) ) formulations. In addition,

we assess the contributions of the improvements provided in

Sections 4.5 and 4.6 . Thus, in the tables, the models incorporating

the improvements presented in Section 4.5 are tagged with a

“ + ” , while those also considering the reduced-cost-based

variable-fixing procedure presented in Section 4.6 are indicated by

a “ rc + ”. 

In Table 3 , we show the sets of instances grouped by ( n , m ),

where there exists at least one instance with identical vessels or

berths. Columns | N 

′ | and | M 

′ | indicate, respectively, the average

number of vessel and berth types among the instances with iden-

tical vessels or berths. Columns # inst, # IV, # IB and # IV + IB show

the total number of instances per group and the number of in-

stances with identical vessels, identical berths and identical ves-

sels and berths, respectively. For example, the group of instances

with (n, m ) = (50 , 5) originally contains 55 vessels and 5 berths,

but, on average, there are 24.8 and 4 types of vessels and berths,

respectively. In particular, all instances from this group have iden-

tical vessels and berths. From this table, it is possible to notice that

for the 50 instances proposed by Nishi et al. (2016) , only one has

identical berths. This is explained in part by the instance genera-

tion scheme used by Nishi et al. (2016) that considers a different

distribution on the handling times and forbidden berths (i.e., a ves-

sel cannot berth at some berths). The presence of heterogeneous

sets of instances allows us to evaluate the performance of our al-

gorithms on different scenarios. In particular, the instances with

identical berths or vessels make it possible to evaluate the impact

of the preprocessing of Section 4.5 (evaluated in Tables 4 and 5 ). 

Table 4 shows a summary of the size of the models in terms of

average number of variables ( cols ) and constraints ( rows ) reported

in thousands. It is worth mentioning that the results shown for

the reduced-cost variable-fixing methods represent the size of the

reduced mixed integer linear programming formulation obtained

after fixing the respective variables to zero. As can be seen in

the table, the improvements proposed in this work enable rele-

vant reductions of the model sizes. In this regard, it can be noticed

that grouping similar berths and vessels does not always lead to

a model size reduction. On the contrary, using the variable-fixing

approach results in relevant reductions in all cases. For instance,

for the largest instances, the standard models have more than 600

thousand variables on average, while this value can be reduced to

nearly 200 thousand in some cases. It is also worth mentioning

that AF needs more variables to model the problem than GSPP and

TI. This fact is due to the use of the continuous idle variables d . 
ik 
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Table 5 

Comparison of formulations with and without grouping vessels and berths. 

n m #inst Generalized set partitioning Time-indexed Arc-flow 

GSPP GSPP + red(%) TI TI + red(%) AF AF + red(%) 

opt t(s) opt t(s) cols rows opt t(s) opt t(s) cols rows opt t(s) opt t(s) cols rows 

30 3 10 10 12.1 10 9.8 18.2 0.2 10 13.0 10 9.8 18.2 0.3 10 19.0 10 15.3 17.5 0.3 

5 10 10 14.4 10 10.1 34.5 19.9 10 10.7 10 9.4 34.5 20.0 10 4.8 10 2.9 33.9 20.0 

40 5 10 10 43.8 10 16.5 50.9 20.2 10 49.8 10 16.0 50.9 20.2 10 63.2 10 13.7 50.0 20.2 

7 10 10 38.2 10 22.6 47.0 14.5 10 26.4 10 14.1 47.0 14.5 10 9.2 10 4.7 46.0 14.5 

55 5 10 10 64.8 10 15.3 64.2 20.6 10 69.1 10 12.5 64.2 20.6 10 25.1 10 11.0 63.2 20.6 

7 10 10 103.8 10 29.1 61.3 14.8 10 106.9 10 18.1 61.3 14.8 10 56.5 10 14.0 60.3 14.8 

10 10 10 110.6 10 22.4 67.9 30.2 10 48.5 10 10.0 67.9 30.2 10 31.2 10 6.2 67.0 30.2 

60 5 10 10 100.0 10 21.6 67.2 20.8 10 81.4 10 17.0 67.2 20.8 10 68.2 10 16.0 66.3 20.8 

7 10 10 220.7 10 71.1 50.4 14.7 10 240.5 10 91.7 50.4 14.7 10 175.0 10 79.4 49.7 14.7 

13 30 30 12.5 30 1.9 62.8 60.6 30 3.3 30 0.9 62.8 60.6 30 4.1 30 0.9 66.9 60.6 

80 10 10 10 157.6 10 165.4 0.1 0.0 10 113.6 10 135.8 0.1 0.0 10 141.6 10 110.1 0.1 0.0 

Sum/Avg. 130 130 69.5 130 30.0 46.3 26.2 130 59.2 130 25.9 46.3 26.4 130 46.6 130 21.3 46.8 26.2 

Table 6 

Comparison of formulations with and without variable-fixing. 

n m #inst Generalized set partitioning Time-indexed Arc-flow 

GSPP + GSPP rc 
+ red(%) TI + TI rc 

+ red(%) AF + AF rc 
+ red(%) 

opt t(s) opt t(s) cols opt t(s) opt t(s) cols opt t(s) opt t(s) cols 

30 3 10 10 9.8 10 7.2 90.9 10 9.8 10 2.7 90.9 10 15.3 10 4.2 85.3 

5 10 10 10.1 10 10.4 97.7 10 9.4 10 1.3 97.8 10 2.9 10 0.9 93.1 

40 5 10 10 16.5 10 10.9 93.1 10 16.0 10 3.4 93.3 10 13.7 10 1.7 87.6 

7 10 10 22.6 10 20.9 96.2 10 14.1 10 2.1 96.2 10 4.7 10 1.7 91.2 

55 5 10 10 15.3 10 11.5 92.3 10 12.5 10 4.2 92.5 10 11.0 10 1.8 87.5 

7 10 10 29.1 10 23.8 93.5 10 18.1 10 5.8 93.7 10 14.0 10 3.6 88.8 

10 10 10 22.4 10 26.9 95.0 10 10.0 10 3.3 95.1 10 6.2 10 2.6 89.9 

60 5 10 10 21.6 10 15.8 92.2 10 17.0 10 6.7 92.6 10 16.0 10 2.3 88.3 

7 10 10 71.1 10 71.3 85.1 10 91.7 10 45.8 85.1 10 79.4 10 26.3 80.8 

13 30 30 1.9 30 3.9 99.4 30 0.9 30 1.7 99.4 30 0.9 30 1.9 95.0 

80 10 10 10 165.4 10 199.0 88.8 10 135.8 10 32.9 88.7 10 110.1 10 24.2 83.7 

90 13 10 10 643.7 10 930.9 80.3 10 327.8 10 203.6 80.3 10 488.8 10 218.5 72.3 

100 15 10 10 1194.0 10 1776.8 81.8 10 797.2 10 546.1 81.8 10 856.1 10 478.9 72.7 

120 15 10 9 1791.7 10 1756.4 76.1 10 1063.8 10 1418.2 76.1 10 1231.2 10 930.8 62.4 

150 15 10 5 5637.7 5 5545.1 65.8 3 6067.5 3 5902.5 65.7 4 5646.1 6 5570.7 52.5 

Sum/Avg. 170 164 568.0 165 612.9 80.9 163 505.5 163 481.4 80.9 164 499.9 166 427.9 71.9 
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Table 7 

Results for large-size instances considering 120 vessels. In boldface , best upper bound value for each instance. 

n m id Generalized set partitioning Time-indexed Arc-flow 

GSPP + GSPP rc 
+ TI + TI rc 

+ AF + AF rc 
+ 

lb ub gap(%) t(s) lb ub gap(%) t(s) lb ub gap(%) t(s) lb ub gap(%) t(s) lb ub gap(%) t(s) lb ub gap(%) t(s) 

120 15 01 4065.0 4065 0.00 924.9 4065.0 4065 0.00 1145.5 4065.0 4065 0.00 1185.4 4065.0 4065 0.00 283.3 4065.0 4065 0.00 756.5 4065.0 4065 0.00 152.4 

02 3653.0 3653 0.00 550.5 3653.0 3653 0.00 858.6 3653.0 3653 0.00 123.5 3653.0 3653 0.00 81.9 3653.0 3653 0.00 47.6 3653.0 3653 0.00 29.9 

03 3756.0 3756 0.00 774.0 3756.0 3756 0.00 1007.6 3756.0 3756 0.00 527.7 3756.0 3756 0.00 1139.9 3756.0 3756 0.00 98.2 3756.0 3756 0.00 255.1 

04 3211.0 3211 0.00 1390.5 3211.0 3211 0.00 1711.8 3211.0 3211 0.00 1652.4 3211.0 3211 0.00 1433.1 3211.0 3211 0.00 1003.6 3211.0 3211 0.00 2336.2 

05 4294.5 4298 0.08 7200.0 4296.0 4296 0.00 4208.2 4296.0 4296 0.00 2303.1 4296.0 4296 0.00 4721.6 4296.0 4296 0.00 3727.2 4296.0 4296 0.00 3032.6 

06 4512.0 4512 0.00 758.2 4512.0 4512 0.00 1977.0 4512.0 4512 0.00 1853.1 4512.0 4512 0.00 2173.5 4512.0 4512 0.00 1680.9 4512.0 4512 0.00 305.4 

07 3463.0 3463 0.00 596.0 3463.0 3463 0.00 779.6 3463.0 3463 0.00 126.2 3463.0 3463 0.00 108.1 3463.0 3463 0.00 36.7 3463.0 3463 0.00 61.1 

08 3872.0 3872 0.00 1202.8 3872.0 3872 0.00 1074.1 3872.0 3872 0.00 916.4 3872.0 3872 0.00 274.2 3872.0 3872 0.00 1437.2 3872.0 3872 0.00 149.3 

09 4176.0 4176 0.00 1582.2 4176.0 4176 0.00 2054.9 4176.0 4176 0.00 1072.5 4176.0 4176 0.00 1114.6 4176.0 4176 0.00 1974.5 4176.0 4176 0.00 1110.1 

10 3880.0 3880 0.00 2938.3 3880.0 3880 0.00 2746.8 3880.0 3880 0.00 877.8 3880.0 3880 0.00 2851.7 3880.0 3880 0.00 1550.1 3880.0 3880 0.00 1876.3 

Avg. 3888.3 3888.6 0.01 1791.7 3888.4 3888.4 0.00 1756.4 3888.4 3888.4 0.00 1063.8 3888.4 3888.4 0.00 1418.2 3888.4 3888.4 0.00 1231.2 3888.4 3888.4 0.00 930.8 

Table 8 

Results for large-size instances considering 150 vessels. In boldface , best upper bound value for each instance. 

n m id Generalized set partitioning Time-indexed Arc-flow 

GSPP + GSPP rc 
+ TI + TI rc 

+ AF + AF rc 
+ 

lb ub gap(%) t(s) lb ub gap(%) t(s) lb ub gap(%) t(s) lb ub gap(%) t(s) lb ub gap(%) t(s) lb ub gap(%) t(s) 

150 15 01 8214.5 8225 0.13 tlim 8214.6 8220 0.07 tlim 8216.2 8220 0.05 tlim 8214.5 8221 0.08 tlim 8216.9 8220 0.04 tlim 8219.0 8219 0.00 7028.1 

02 6736.8 6752 0.22 tlim 6737.2 6748 0.16 tlim 6736.9 6744 0.11 tlim 6736.6 6745 0.13 tlim 6737.4 6746 0.13 tlim 6737.7 6742 0.06 tlim 

03 4655.0 4655 0.00 922.4 4655.0 4655 0.00 1175.9 4655.0 4655 0.00 284.5 4655.0 4655 0.00 212.6 4655.0 4655 0.00 51.0 4655.0 4655 0.00 66.7 

04 7303.0 7303 0.00 tlim 7303.0 7303 0.00 5196.4 7301.2 7305 0.05 tlim 7301.1 7341 0.54 tlim 7301.5 7309 0.10 tlim 7301.5 7305 0.05 tlim 

05 6563.0 6563 0.00 2665.3 6561.6 6563 0.02 tlim 6561.6 6563 0.02 tlim 6561.5 6563 0.02 tlim 6563.0 6563 0.00 3761.3 6563.0 6563 0.00 2258.2 

06 6347.6 6359 0.18 tlim 6347.5 6360 0.20 tlim 6347.3 6375 0.43 tlim 6347.4 6361 0.21 tlim 6347.6 6363 0.24 tlim 6348.0 6360 0.19 tlim 

07 6343.0 6343 0.00 5503.4 6343.0 6343 0.00 5457.1 6343.0 6343 0.00 5174.9 6343.0 6343 0.00 5713.6 6343.0 6343 0.00 4914.7 6343.0 6343 0.00 7006.9 

08 7939.0 7940 0.01 tlim 7940.0 7940 0.00 5364.8 7939.0 7940 0.01 tlim 7939.0 7940 0.01 tlim 7939.0 7940 0.01 tlim 7940.0 7940 0.00 7035.3 

09 8242.0 8242 0.00 4086.0 8242.0 8242 0.00 2137.9 8242.0 8242 0.00 4815.8 8242.0 8242 0.00 2531.1 8242.0 8242 0.00 4533.8 8242.0 8242 0.00 3414.1 

10 6012.0 6024 0.20 tlim 6012.9 6016 0.05 tlim 6012.1 6016 0.07 tlim 6012.0 6020 0.13 tlim 6012.4 6020 0.13 tlim 6012.5 6016 0.06 tlim 

Avg. 6835.6 6840.6 0.07 5637.7 6835.7 6839.0 0.05 5533.2 6835.4 6840.3 0.07 6067.5 6835.2 6843.1 0.11 5885.7 6835.8 6840.1 0.06 5646.1 6836.2 6838.5 0.04 5560.9 
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Tables 5 and 6 depict and compare in more detail the contri-

ution achieved by grouping identical vessels and berths as well

s by fixing variables, respectively. In these tables, columns opt

nd t(s) report, per group of instances, the number of problem in-

tances solved to proven optimality and the average execution time

n seconds, respectively. In addition, columns cols and rows (only

or Table 5 ) under red(%) detail the reduction achieved by applying

uch improvements. The values in boldface indicate the best aver-

ge execution times for each group of instances where all methods

anaged to solve all instances to proven optimality. 

In Table 5 , we report the results for those instances where iden-

ical vessels and berths were identified, i.e., instances with up to

0 vessels. Concerning the performance of the studied methods,

ll of them are able to solve to optimality all 130 instances with

p to 80 vessels within the time limit of 2 hours. The results

lso indicate that grouping identical vessels and berths leads to

 significant reduction of more than 60% in the number of rows

nd columns. Further, in most cases, the improved models require

ewer nodes to be explored, which entails a computational effort

eduction. It is relevant to mention that, on average, the computa-

ional times of the models without improvements are halved when

he improvements are incorporated. On the other hand, the new

ormulations, TI and AF, exhibit a slightly better performance than

SPP in terms of t(s) . 

After reporting the benefits of reducing the models by group-

ng identical vessels and berths, in Table 6 we compare the perfor-

ance of the reduced-cost variable-fixing procedure on the above

tudied enhanced models for all problem instances. It is worth

entioning that for the reduced-cost variable-fixing methods col-

mn t(s) refers to the execution times for the whole procedure,

ncluding the metaheuristic execution times. For detailed results

y the metaheuristic, execution times and upper bounds, we re-

er the reader to Appendix A . Table 6 shows that by applying the

educed-cost variable-fixing technique we can avoid creating, on

verage, more than 70% of the initial variables, thus we are able

o substantially reduce the formulations’ sizes. Despite this huge

eduction in the number of variables, the reduction in the execu-

ion times is more moderate. Taking the AF results as an example,

t can be seen that a variable reduction of 70% has been achieved

hile the execution times have been reduced by 14.4% on average.

his can be explained by the fact that there is a time overhead for

unning the heuristic, solving the linear relaxation and identifying

nd fixing the variables as well as the fact that the remaining sub-

equent mathematical model is still difficult to solve. 

It is also shown in Table 6 that for instances with 120 and 150

essels the application of the reduced-cost-based variable-fixing

ethod allows solving more problem instances to optimality. In

his regard, this table indicates that the AF with fixed variables

erforms better than the other formulations being able to find op-

imal solutions for 166 out of 170 instances within less computa-

ional time. These results are detailed in Tables 7 and 8 . 

Tables 7 and 8 detail the results obtained for the large-size

nstances considering 120 and 150 vessels, respectively. For each

athematical formulation and instance, we report the final lower

nd upper bounds, lb and ub , respectively, the percentage gap

ap(%) , and the computational time t(s) . An entry tlim indicates

hat the time limit of two hours is reached. Note that due to all

nput numbers being integer, in these tables lb could be replaced

y 	 lb 
 , but we opted to keep lb to better highlight the differences

mong the models. 

From Table 7 , it can be observed that the use of the variable-

xing approach with the GSPP model allows the solver to accel-

rate and find all the optimal solutions in comparison to the case

here this technique is not applied ( i.e. , instance 120x15-05). Con-

erning the resolution times, by analyzing instance by instance we

an observe that the time required by the variable-fixing method
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Table 10 

Comparison of formulations’ size in terms of variables (cols) and constraints (rows), in thousands. 

n m #inst Time-indexed Arc-flow 

TI + TI rc 
+ AF + AF rc 

+ 

cols rows cols rows cols rows cols rows 

200 15 10 1273.7 9.2 753.5 7.6 1277.0 8.9 896.6 8.9 

250 20 10 2421.2 12.3 1341.8 9.5 2421.3 11.8 1659.6 11.8 

Sum/Avg. 20 1847.5 10.7 1047.7 8.5 1849.1 10.3 1278.1 10.3 

Table 11 

Results for new large-size instances considering 200 vessels. In boldface , best upper bound value for each instance 

n m id Time-indexed Arc-flow 

TI + TI rc 
+ AF + AF rc 

+ 

lb ub gap(%) t(s) lb ub gap(%) t(s) lb ub gap(%) t(s) lb ub gap(%) t(s) 

200 15 01 12603.3 12613 0.08% tlim 12603.3 12609 0.05% tlim 12603.3 12709 0.83% tlim 12603.3 12709 0.83% tlim 

02 10319.0 10319 0.00% 6301.8 10317.6 10319 0.01% tlim 10319.0 10319 0.00% 3620.8 10319.0 10319 0.00% 1971.0 

03 11289.8 11558 2.32% 7200.0 11295.4 11355 0.52% tlim 11292.0 11558 2.30% tlim 11294.4 11416 1.07% tlim 

04 15433.9 15480 0.30% tlim 15437.4 15441 0.02% tlim 15441.0 15441 0.00% 6880.6 15441.0 15441 0.00% 3671.1 

05 18164.7 18352 1.02% tlim 18165.0 18352 1.02% tlim 18159.4 18352 1.05% tlim 18165.6 18352 1.02% tlim 

06 16869.0 16869 0.00% 6836.4 16869.0 16869 0.00% 6491.5 16869.0 16869 0.00% 1015.5 16869.0 16869 0.00% 1612.8 

07 13023.7 13226 1.53% tlim 13023.7 13226 1.53% tlim 13023.5 13226 1.53% tlim 13025.0 13226 1.52% tlim 

08 14176.6 14537 2.48% tlim 14181.2 14537 2.45% tlim 14180.4 14298 0.82% tlim 14180.5 14259 0.55% tlim 

09 18115.8 18198 0.45% tlim 18118.0 18118 0.00% 1946.9 18118.0 18118 0.00% 3879.7 18118.0 18118 0.00% 4987.1 

10 17095.4 17263 0.97% tlim 17100.9 17263 0.94% tlim 17100.8 17118 0.10% tlim 17101.6 17134 0.19% tlim 

Avg. 14709.1 14841.5 0.91% 7073.8 14711.2 14808.9 0.65% 6603.8 14710.6 14800.8 0.66% 5859.7 14711.7 14784.3 0.52% 5544.2 

Table 12 

Results for new large-size instances considering 250 vessels. In boldface , best upper bound value for each instance 

n m id Time-indexed Arc-flow 

TI + TI rc 
+ AF + AF rc 

+ 

lb ub gap(%) t(s) lb ub gap(%) t(s) lb ub gap(%) t(s) lb ub gap(%) t(s) 

250 20 01 15632.2 15769 0.87 tlim 15632.4 15769 0.87 tlim 15632.3 15769 0.87 tlim 15632.3 15769 0.87 tlim 

02 15774.9 15915 0.88 tlim 15775.1 15915 0.88 tlim 15774.9 15915 0.88 tlim 15775.0 15915 0.88 tlim 

03 16518.9 16606 0.52 tlim 16518.8 16631 0.67 tlim 16518.9 16724 1.23 tlim 16518.9 16724 1.23 tlim 

04 16422.6 16490 0.41 tlim 16422.6 16481 0.35 tlim 16422.6 16509 0.52 tlim 16422.6 16509 0.52 tlim 

05 15661.0 15837 1.11 tlim 15661.0 15837 1.11 tlim 15661.0 15837 1.11 tlim 15661.0 15837 1.11 tlim 

06 20060.0 20193 0.66 tlim 20060.0 20193 0.66 tlim 20060.0 20060 0.00 5180.6 20060.0 20193 0.66 tlim 

07 14283.3 14514 1.59 tlim 14283.3 14362 0.55 tlim 14283.3 14514 1.59 tlim 14283.3 14514 1.59 tlim 

08 16303.7 16386 0.50 tlim 16304.1 16383 0.48 tlim 16303.7 16498 1.18 tlim 16303.7 16498 1.18 tlim 

09 15863.5 16121 1.60 tlim 15863.5 15917 0.34 tlim 15863.5 16121 1.60 tlim 15863.5 16121 1.60 tlim 

10 16282.5 16371 0.54 tlim 16282.5 16428 0.89 tlim 16282.5 16428 0.89 tlim 16282.5 16428 0.89 tlim 

Avg. 16280.3 16420.2 0.87 7200.0 16280.3 16391.6 0.68 7200.0 16280.3 16437.5 0.99 6998.1 16280.3 16450.8 1.05 7200.0 
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seems to be worth in several cases. These results are even more

promising when tackling problem instances considering a traffic

of 150 vessels. As can be seen in Table 8 , the additional time re-

quired to use the variable-fixing method is worth-while in most

cases. Furthermore, in Table 8 most of the optimal solutions and

best upper bounds are reported by using this approach. 

Table 9 summarizes the previous results in this work while in-

dicating the best performing model for each instance set. Thus, the

table reports, for all nine methods and for each group of bench-

mark instances from the literature, the number of instances solved

to proven optimality, opt , and the average execution time, t(s) . Col-

umn gap(%) reports the average percentage gap with respect to

the best lower bound obtained per each instance. For the bench-

mark instances of Cordeau et al. (2005) and Lalla-Ruiz et al. (2012) ,

all instances are solved to optimality by all nine methods. There-

fore, it can be seen that our reduced-cost-based variable-fixing

method on top of TI and AF provides the smallest average exe-

cution times. Concerning the large-size instances of Nishi et al.

(2016) , AF rc + solves more instances among all methods (46 out of
0), with the smallest average execution time and with the best

uality upper bounds. In general words, our experiments indicate

hat AF rc + performed better than all other methods. It is worth not-

ng that the remaining 4 instances were solved to proven optimal-

ty by Nishi et al. (2016) in large computing times. The authors

roved optimality for 9 out of 10 instances with 150 vessels by

unning the GSPP formulation for approximately 25 , 0 0 0 seconds

n average. The only open instance left by Nishi et al. (2016) , i.e.,

nstance 150x15-08, has been solved to proven optimality by our

nhanced models in less than two hours, so all optimal solutions

re now assessed for these benchmarks. That led us to create the

ew set of very large instances that is evaluated in the next sec-

ion. 

.3. Computational results on the new set of instances 

With the aim of studying the performance of our approaches

n larger scenarios, a new set of problem instances is proposed.

his new set was generated following the scheme provided in
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ordeau et al. (2005) . We considered values of the pair ( n , m )

n {(200, 15); (250, 20)}, and for each pair we generated 10

nstances, obtaining a total of 20 new instances. Table 10 shows

 summary of the size of the models in terms of average

umber of variables ( cols ) and constraints ( rows ) reported in

housands. 

Table 11 presents the results for the instances with 200 ves-

els and 15 berths, while Table 12 does the same for the instances

ith 250 vessels and 20 berths. In those tables, columns labeled as

b , ub , gap(%) and t(s) indicate, for each instance and method, the

nal lower and upper bounds, the percentage gap, and the compu-

ational time, respectively. Note that we do not report results for

SPP, GSPP + , GSPP rc + , TI and AF. The methods based on the GSPP

ormulation were not able to solve any of the new instances due

o memory limit that can be inputed to the need of storing matri-

es A and B . Concerning TI and AF, we decided not to test them as

hey are outperformed by TI + and AF + , as indicated in the previ-

us experiments reported in Tables 4 and 5 . 

For the instances with 200 vessels, it can be observed that

he methods considering the reduced-cost variable-fixing prepro-

essing tend to be, on average, faster than their versions without

uch preprocessing. Among the 10 instances of this group, the ap-

roaches based on the TI formulation were able to solve to opti-

ality 3 problem instances, while 4 instances were solved to op-

imality by the methods based on AF. Slight improvements can be

oticed in the lower bound values when the reduced-cost variable-

xing technique is applied. 

With regards to the instances with 250 vessels, only 1 out of 10

ould be solved to proven optimality, i.e., instance 250x20-06 by

F + . For all other instances, the time limit of 2 hours was reached

ithout proof of optimality. Analyzing these results, it can be seen

hat for very large instances using AF faces difficulties in improv-

ng the given initial upper bounds, differently from using TI which

esulted in improving some of them. In terms of best solutions, TI rc + 
s superior to the other methods because it provides 7 best solu-

ions while TI + , AF + and AF rc + provide 5, 4 and 3, respectively. In

erms of percentage gaps, all methods were able to obtain low av-

rage gaps. 

In general, the results in Tables 11 and 12 show that the TI

ased formulations perform slightly better than the AF ones on

arger instances. This result can be explained by the fact that AF

ormulations make use of additional variables, thus resulting in

 model with more variables than the TI models, as shown in

able 10 . The use of these additional variables seems to impact the

erformance of AF models at certain sizes as those defined on the

arge problem instances. 

. Conclusions 

In this work, we have addressed the dynamic berth alloca-

ion problem (DBAP) from a mathematical modeling perspective by

roviding and assessing two novel time-indexed (TI) and arc-flow

AF) formulations. We have also proposed modeling enhancements

imed at grouping similar berths and vessels, and a variable-fixing

rocedure based on reduced costs. Extensive computational exper-

ments on benchmark instances have been performed to evaluate

he investigated methods and compare them with the best model

rom the literature, that is, the generalized set-partitioning prob-

em (GSPP) formulation. 
The AF formulation performs better than the TI, which in turn

erforms better than the GSPP. Therefore, AF is advisable when

sed as a standalone model. The proposed modeling enhancements

ased on grouping similar vessels and berths improved the perfor-

ance of all models by reducing the number of variables and lead-

ng to better computational times. The reduced-cost variable-fixing

rocedure leads to further improvements for all formulations. In

articular, by applying this procedure to the AF model we could

olve to proven optimality 166 out of 170 benchmark instances

rom the literature within two hours of time limit, including the

nly instance that was still open. Based on these findings, the AF

ormulation has shown superiority compared to the other formula-

ions, and thus, it is recommended to be used in real-world envi-

onments. Taking into account the good results on the benchmark

nstances, a new set containing 20 large-sized instances involving

etween 200 and 250 vessels has been proposed. The GSPP mod-

ls were not able to deal with these new instances due to excessive

emory requirements. On the contrary, models based on TI and AF

id not show memory problems and managed to optimally solve 5

nstances and provide small gaps for the other ones. 

As future work, we plan to adapt these novel formulations to

ther maritime logistics problems where the berth allocation is

nvolved. In this sense, the joint consideration of the quay crane

llocation and scheduling problem with berth scheduling, such as

he one in Agra and Oliveira (2018) , and continuous berth alloca-

ion problems (see e.g. Frojan, Correcher, Álvarez-Valdés, Koulouris,

 Tamarit, 2015 ), appear to be interesting future research

irections. 
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ppendix A. Detailed results 

In this appendix, we report detailed results obtained by all

he mathematical programming approaches studied in the paper.

able A.13 details the results for the set of 90 instances proposed

y Lalla-Ruiz et al. (2012) . The results for the 30 instances pro-

osed by Cordeau et al. (2005) are shown in Table A.14 , while

able A.15 reports the results for the 50 benchmark instances of

ishi et al. (2016) . Finally, Table A.16 contains the results for the

et of 20 new instances proposed in this work. In all tables, we

eport the best lower (column lb ) and upper (column ub ) bounds

ound for each instance (considering all mathematical program-

ing approaches). For each method and instance columns t(s) and

d present the total execution time in seconds and the number

f explored nodes, respectively. In addition, for each instance, the

esults (upper bound and execution time) obtained by the meta-

euristic by Lalla-Ruiz et al. (2016) are shown under the column

H . It has to be noted that these times are already considered in

(s) of the reduced-cost approach. The last line of each table re-

orts average values. 
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Table A.13 

Detailed results for the Lalla-Ruiz et al. (2012) benchmark instances 

n m id lb ub Generalized set partitioning Time indexed Arc-flow MH 

GSPP GSPP + GSPP rc 
+ TI TI + TI rc 

+ AF AF + AF rc 
+ 

t(s) nd t(s) nd t(s) nd t(s) nd t(s) nd t(s) nd t(s) nd t(s) nd t(s) nd t(s) ub 

30 3 01 1763 1763 10.4 0 7.2 0 5.6 0 10.5 0 5.5 0 1.8 0 20.3 178 12.1 133 0.8 0 0.2 1763 

02 2090 2090 17.0 9 11.5 86 9.0 5 17.5 22 13.2 23 3.9 12 11.1 654 15.6 648 4.5 291 0.4 2090 

03 2186 2186 7.3 0 6.6 0 6.2 0 7.4 0 9.6 0 1.8 0 7.7 61 3.7 0 0.9 0 0.4 2186 

04 1538 1538 8.1 0 7.2 0 5.6 0 4.6 0 5.2 0 2.0 0 6.6 37 4.9 15 1.1 0 0.3 1538 

05 2114 2114 15.6 0 14.0 13 7.6 11 23.2 11 10.4 53 4.1 9 10.3 60 5.8 75 1.8 11 0.1 2114 

06 2185 2185 12.2 0 15.4 0 6.6 0 14.1 0 15.3 0 2.7 0 95.5 1069 76.5 1486 10.9 702 0.1 2185 

07 1845 1845 16.7 50 12.9 46 9.4 53 18.7 65 16.3 130 5.0 36 20.8 221 12.3 205 10.2 1043 0.1 1845 

08 1271 1271 7.8 28 5.7 12 5.3 50 7.6 9 6.8 35 1.1 0 4.9 22 4.4 222 0.8 0 0.1 1271 

09 1595 1595 14.7 760 10.9 273 9.5 204 15.4 428 12.0 245 2.8 78 10.9 171 15.6 748 10.6 808 0.1 1595 

10 2195 2195 11.2 0 6.6 0 7.3 0 11.0 0 3.1 0 1.8 0 2.4 0 2.2 0 0.8 0 0.3 2195 

5 01 1149 1149 10.7 0 7.6 0 13.6 0 5.3 0 6.3 0 0.8 0 1.8 0 1.2 0 0.8 0 0.1 1149 

02 1475 1475 21.6 0 12.1 0 11.7 0 20.5 0 11.5 0 1.5 0 3.9 0 3.2 0 1.0 0 0.2 1476 

03 1542 1542 25.2 0 12.5 13 11.0 0 13.4 7 15.8 9 1.8 0 9.0 0 2.4 0 1.1 0 0.4 1542 

04 1075 1075 12.0 0 8.2 0 9.0 0 4.2 0 5.2 0 1.0 0 3.3 0 2.4 0 0.8 0 0.2 1075 

05 1463 1463 11.3 0 12.0 0 10.0 0 11.8 0 7.2 0 1.1 0 4.9 0 2.8 0 0.8 0 0.1 1463 

06 1580 1580 12.9 0 11.2 0 8.8 0 20.8 0 12.9 0 1.7 0 4.6 0 5.0 0 1.1 0 0.2 1580 

07 1276 1276 10.6 0 9.2 0 8.7 0 5.5 0 8.0 0 1.0 0 3.2 0 2.2 0 0.8 0 0.1 1276 

08 870 870 12.5 0 7.5 0 10.6 0 5.9 0 7.0 0 1.1 0 5.8 0 3.1 0 0.9 0 0.3 870 

09 1134 1134 13.1 0 12.0 0 10.1 0 9.4 0 10.6 0 1.2 0 6.2 11 3.5 0 0.9 0 0.1 1144 

10 1527 1527 14.0 0 9.3 0 10.5 0 9.8 0 9.2 0 1.4 0 5.4 0 3.5 0 1.0 0 0.2 1527 

40 5 01 2301 2301 34.0 0 11.2 0 9.5 0 29.5 0 6.6 0 2.3 0 6.3 0 2.0 0 1.0 0 0.3 2303 

02 2829 2829 43.2 33 15.7 15 10.0 0 57.4 83 18.0 0 3.6 0 18.3 49 5.7 58 1.4 10 0.3 2829 

03 2880 2880 63.5 187 24.0 12 12.6 0 99.0 190 18.6 9 4.2 7 91.1 458 51.4 2083 1.9 8 0.2 2881 

04 2001 2001 25.7 0 12.0 0 9.3 34 17.5 0 9.0 0 1.7 0 9.5 0 4.0 0 1.2 0 0.4 2001 

05 2815 2815 66.0 102 24.1 13 14.2 24 85.4 43 33.4 18 5.5 9 234.7 1033 9.8 112 3.0 41 0.4 2815 

06 2934 2934 66.6 27 24.4 9 15.6 29 72.8 19 21.4 16 6.3 24 195.9 1066 45.5 1033 3.0 69 0.6 2934 

07 2632 2632 40.0 0 13.7 0 9.3 0 20.6 0 15.5 0 2.3 0 5.7 0 3.5 0 1.0 0 0.2 2634 

08 1835 1835 36.3 0 12.7 0 8.6 0 37.3 50 9.7 0 1.9 0 24.7 212 5.8 16 1.4 11 0.3 1836 

09 2086 2086 36.0 18 11.3 7 10.6 8 31.2 9 13.1 7 2.8 7 37.7 119 3.5 0 2.0 11 0.2 2094 

10 2962 2962 27.0 0 15.8 0 9.7 0 47.3 14 14.3 0 3.8 0 7.8 0 6.4 0 1.3 0 0.4 2962 

7 01 1458 1458 37.1 0 20.2 0 24.6 0 22.5 0 15.3 0 2.1 0 10.9 0 4.3 0 2.0 0 0.2 1464 

02 1375 1375 25.7 0 15.1 0 20.3 0 8.9 0 8.4 0 1.2 0 3.7 0 2.3 0 1.4 0 0.3 1378 

03 2119 2119 55.2 0 28.9 0 24.3 0 34.9 0 21.0 0 4.0 0 14.6 10 5.1 0 2.5 0 0.3 2134 

04 1591 1591 37.9 0 26.3 0 20.1 0 22.2 0 10.6 0 1.8 0 8.6 0 3.1 0 1.7 0 0.3 1601 

05 1847 1847 40.3 0 23.5 0 19.7 0 24.6 0 14.6 0 2.0 0 8.5 0 5.1 0 1.8 0 0.5 1849 

06 2080 2080 46.6 0 25.4 0 19.0 0 25.2 0 18.0 0 2.0 0 7.6 0 5.2 0 1.4 0 0.4 2080 

07 1841 1841 37.7 0 25.0 0 18.2 13 28.1 8 15.1 0 1.9 0 10.4 0 7.7 0 1.6 0 0.3 1842 

08 2025 2025 36.9 0 24.8 0 22.7 0 28.5 0 16.7 0 2.0 0 9.7 0 7.3 0 1.4 0 0.3 2025 

09 1880 1880 27.4 0 15.5 0 19.6 0 24.7 0 9.6 0 1.4 0 9.8 0 5.0 0 1.3 0 0.3 1880 

10 1883 1883 37.0 0 20.9 0 21.0 0 44.2 0 11.6 0 2.4 0 8.3 0 2.3 0 1.6 0 0.3 1890 

55 5 01 4689 4689 86.2 80 17.9 0 13.7 0 156.0 420 14.3 0 4.7 0 45.4 25 5.8 0 1.9 0 0.7 4689 

02 5467 5467 52.5 0 9.8 0 10.8 0 58.9 0 4.5 0 3.9 0 10.6 0 3.3 0 1.8 0 1.1 5467 

03 5499 5499 57.9 0 24.1 0 12.7 18 73.9 0 17.0 4 4.5 0 8.6 0 6.6 20 1.9 0 1.1 5499 

04 4165 4165 67.9 0 14.7 0 11.1 0 48.8 0 9.9 0 3.9 0 51.6 39 11.3 394 1.6 0 0.6 4165 

05 5478 5478 55.8 0 16.7 0 11.0 0 46.7 0 14.3 0 3.9 0 21.4 13 3.8 0 1.4 0 0.6 5478 

06 5595 5595 63.7 0 17.5 0 11.1 0 56.9 0 4.2 0 4.3 0 10.0 0 3.4 0 1.6 0 0.8 5597 

07 4870 4870 27.1 0 8.6 0 10.7 0 17.5 0 4.5 0 3.3 0 13.9 5 2.6 0 1.5 0 0.6 4878 

08 3552 3552 145.9 147 27.7 60 12.9 20 143.5 194 29.4 33 6.5 11 57.2 33 59.4 971 2.8 31 0.8 3552 

09 4273 4273 54.6 0 8.8 0 10.9 0 33.6 0 12.3 0 3.7 0 8.8 0 10.1 66 1.7 0 0.6 4277 

10 5739 5739 36.1 0 7.5 0 10.5 0 55.0 0 14.4 0 3.3 0 23.9 14 4.2 0 1.3 0 0.6 5739 

7 01 2846 2846 97.9 0 32.2 0 22.5 0 83.9 70 11.0 0 3.3 0 25.0 29 10.6 13 2.1 0 0.6 2846 

02 2883 2883 124.4 109 25.0 8 25.1 0 108.4 13 15.2 0 10.3 0 30.4 29 4.8 0 4.6 10 0.6 2894 

03 3825 3825 60.8 0 31.8 0 23.8 0 47.2 0 7.6 0 4.1 0 15.5 0 5.8 0 1.7 0 0.6 3844 

04 2951 2951 60.6 0 19.5 0 21.5 0 35.7 0 6.8 0 2.8 0 11.4 0 5.0 0 1.9 0 0.6 2967 

05 3797 3797 94.8 99 24.6 25 26.7 20 54.1 20 26.9 9 5.3 0 52.8 49 12.3 72 2.6 0 0.5 3803 

06 3783 3783 79.6 0 36.1 0 21.7 0 53.3 0 19.0 0 4.4 8 24.9 22 9.0 20 2.3 12 0.7 3783 

07 3774 3774 62.5 0 18.9 0 19.6 0 44.9 0 15.3 0 4.1 0 11.7 0 7.5 0 2.1 0 0.6 3774 

08 3862 3862 119.7 60 28.2 0 23.6 0 89.4 16 16.8 0 5.1 0 37.0 50 7.8 0 1.9 0 0.6 3862 

09 3591 3591 129.3 998 38.2 0 21.0 0 95.2 66 31.6 12 6.5 49 42.8 77 14.0 122 11.5 1587 0.6 3597 

10 3623 3623 208.6 404 36.7 156 32.3 334 456.4 1889 30.6 181 11.8 83 313.4 1198 63.1 1124 5.2 79 0.5 3654 

10 01 2742 2742 81.3 0 18.3 0 28.3 0 44.4 0 6.2 0 3.5 0 15.9 0 4.2 0 2.7 0 0.8 2754 

02 2527 2527 144.9 0 23.7 0 25.1 0 56.4 0 13.0 0 4.1 0 67.9 86 8.3 0 3.4 11 0.6 2531 

03 2544 2544 98.7 0 19.7 0 26.7 0 23.8 0 10.1 0 2.5 0 15.8 0 4.0 0 2.5 0 0.7 2547 

04 3315 3315 135.0 0 25.9 0 26.1 0 48.9 0 9.6 0 2.9 0 33.2 4 5.7 0 2.2 0 0.7 3315 

05 3109 3109 162.5 0 28.3 0 27.7 0 58.2 0 13.7 0 4.4 0 25.7 0 8.6 0 2.8 0 0.6 3118 

06 2283 2283 79.0 0 18.8 0 26.1 0 16.0 0 4.1 0 1.5 0 14.1 0 2.8 0 1.7 0 0.6 2283 

07 2144 2144 89.6 0 19.3 0 27.5 0 45.9 0 8.8 0 3.5 0 39.7 107 5.8 0 3.1 0 0.7 2150 

08 2720 2720 95.6 0 26.0 29 26.7 0 85.3 86 16.9 0 6.5 990 66.4 92 9.8 0 2.7 0 0.9 2723 

09 2149 2149 73.0 0 18.4 0 27.1 0 33.8 0 4.4 0 2.1 0 15.5 0 5.2 0 2.1 0 0.8 2162 

10 2814 2814 146.4 0 25.5 0 28.1 0 72.5 0 13.0 0 2.5 0 18.1 0 8.2 0 2.2 0 0.7 2814 

( continued on next page ) 
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Table A.13 ( continued ) 

n m id lb ub Generalized set partitioning Time indexed Arc-flow MH 

GSPP GSPP + GSPP rc 
+ TI TI + TI rc 

+ AF AF + AF rc 
+ 

t(s) nd t(s) nd t(s) nd t(s) nd t(s) nd t(s) nd t(s) nd t(s) nd t(s) nd t(s) ub 

60 5 01 5753 5753 45.6 0 21.3 0 11.2 0 62.4 0 9.7 0 5.0 0 42.5 41 3.8 0 1.5 0 0.9 5753 

02 6884 6884 308.7 573 55.3 1470 57.3 2008 284.0 1049 55.2 1651 23.9 472 392.5 2762 80.9 985 8.6 918 0.6 6884 

03 6780 6780 65.3 0 17.8 0 11.0 0 39.8 0 4.5 0 3.3 0 23.4 27 3.8 0 1.3 0 0.7 6780 

04 5092 5092 110.3 19 14.3 26 10.2 0 54.4 0 10.3 0 4.4 0 53.0 47 3.9 0 1.9 0 0.8 5092 

05 6715 6715 83.5 0 19.7 0 12.8 0 78.2 0 15.4 0 5.4 0 27.5 10 3.6 0 1.6 0 0.8 6715 

06 6616 6616 75.3 0 7.1 0 10.7 0 37.5 0 8.5 0 5.3 0 44.0 19 3.1 0 1.3 0 0.7 6616 

07 6011 6011 59.6 0 20.2 0 10.5 0 36.0 0 4.7 0 4.5 0 23.5 6 4.8 0 1.4 0 0.7 6011 

08 4385 4385 128.6 101 26.0 11 11.6 10 77.6 24 30.6 13 4.4 0 25.5 21 44.9 2438 2.4 13 0.7 4385 

09 5235 5235 34.2 0 17.5 0 11.1 0 54.2 0 19.9 0 4.5 0 24.9 17 7.4 26 1.8 0 0.7 5239 

10 7255 7255 88.9 0 16.7 0 11.7 0 89.8 0 11.2 0 5.7 0 25.7 8 3.9 0 1.4 0 0.7 7255 

7 01 3707 3707 118.8 5 88.1 1333 61.0 1271 132.0 60 105.0 1772 28.2 0 34.4 49 22.9 86 7.6 28 1.2 3725 

02 4146 4146 426.4 1290 101.6 555 96.9 1222 505.3 2032 104.2 1387 98.8 1893 126.8 223 160.1 1643 18.8 331 0.7 4168 

03 4273 4273 301.2 783 78.8 183 59.7 133 273.3 363 83.8 503 33.0 220 111.1 156 53.6 367 31.1 988 0.9 4290 

04 3910 3910 120.7 0 50.8 0 38.8 0 106.2 92 37.0 0 14.5 0 76.7 37 40.0 206 4.0 0 0.9 3915 

05 4251 4251 238.1 1088 70.0 60 40.7 76 120.0 136 77.7 127 15.7 106 69.6 71 59.7 289 4.9 35 0.8 4253 

06 5727 5727 155.8 0 56.0 0 40.1 0 149.8 60 48.0 78 11.0 0 58.1 59 17.9 28 2.1 0 0.6 5727 

07 3719 3719 97.1 0 36.3 0 46.4 0 121.7 5 38.7 0 13.9 0 61.9 23 12.8 8 3.8 0 0.8 3744 

08 4582 4582 409.0 1062 125.5 635 193.8 1848 566.5 1892 287.7 2611 202.3 2610 983.4 1390 218.6 965 92.8 1283 0.7 4600 

09 3979 3979 123.8 11 46.1 4 78.4 320 264.7 200 79.6 75 17.3 39 143.2 101 116.6 466 41.0 1413 0.7 3994 

10 4107 4107 216.6 169 58.0 93 57.1 114 165.3 203 55.1 83 23.2 131 84.5 40 91.8 522 57.4 966 0.9 4121 

Sum/Avg. − − 78.7 91 24.3 57 22.1 87 71.8 109 22.0 101 8.4 75 50.3 138 18.2 196 5.0 119 0.5 −

Table A.14 

Detailed results for the Cordeau et al. (2005) benchmark instances. 

n m id lb ub Generalized set partitioning Time indexed Arc-flow MH 

GSPP GSPP + GSPP rc 
+ TI TI + TI rc 

+ AF AF + AF rc 
+ 

t(s) nd t(s) nd t(s) nd t(s) nd t(s) nd t(s) nd t(s) nd t(s) nd t(s) nd t(s) ub 

60 13 01 1409 1409 13.7 0 1.9 0 3.7 0 3.7 0 2.9 0 1.6 0 6.4 0 1.1 0 1.8 0 1.5 1409 

02 1261 1261 11.6 0 1.9 0 3.9 0 2.9 0 0.7 0 1.8 0 4.6 0 1.0 0 2.0 0 1.7 1261 

03 1129 1129 11.4 0 1.7 0 3.4 0 2.6 0 0.6 0 1.3 0 3.5 0 1.0 0 1.5 0 1.1 1129 

04 1302 1302 12.0 0 1.8 0 3.9 0 3.2 0 0.7 0 1.8 0 2.4 0 0.9 0 2.0 0 1.6 1302 

05 1207 1207 12.2 0 1.9 0 4.1 0 2.8 0 0.6 0 1.8 0 3.5 0 0.6 0 2.0 0 1.6 1207 

06 1261 1261 13.0 0 1.8 0 3.4 0 2.9 0 1.9 0 1.4 0 2.4 0 1.5 0 1.6 0 1.2 1261 

07 1279 1279 11.8 0 2.0 0 3.8 0 2.9 0 0.7 0 1.7 0 2.4 0 1.0 0 2.0 0 1.6 1279 

08 1299 1299 12.5 0 1.9 0 4.2 0 3.2 0 0.7 0 2.0 0 3.9 0 0.6 0 2.2 0 1.8 1299 

09 14 4 4 14 4 4 12.4 0 2.0 0 4.2 0 3.2 0 0.8 0 1.9 0 3.8 0 0.6 0 2.2 0 1.7 14 4 4 

10 1213 1213 12.3 0 1.8 0 4.3 0 3.3 0 0.7 0 2.1 0 2.6 0 1.3 0 2.4 0 2.0 1213 

11 1368 1368 13.7 0 2.0 0 4.1 0 3.4 0 0.8 0 1.9 0 5.3 0 1.6 0 2.1 0 1.7 1368 

12 1325 1325 13.2 0 1.9 0 4.2 0 3.1 0 0.8 0 2.0 0 5.8 0 1.0 0 2.2 0 1.8 1325 

13 1360 1360 12.1 0 1.9 0 4.1 0 3.2 0 0.8 0 1.9 0 4.5 0 1.3 0 2.1 0 1.7 1360 

14 1233 1233 13.0 0 1.9 0 4.1 0 3.8 0 0.7 0 1.7 0 5.7 0 1.1 0 2.0 0 1.6 1233 

15 1295 1295 12.7 0 1.9 0 4.0 0 3.1 0 1.6 0 1.8 0 5.1 0 0.6 0 2.0 0 1.6 1295 

16 1364 1364 12.2 0 1.9 0 4.3 0 4.0 0 0.7 0 2.1 0 4.3 0 1.1 0 2.3 0 1.9 1364 

17 1283 1283 12.6 0 1.8 0 3.8 0 2.9 0 1.3 0 1.6 0 4.8 0 0.6 0 1.8 0 1.4 1283 

18 1345 1345 12.1 0 2.0 0 4.0 0 3.1 0 1.2 0 1.8 0 5.1 0 0.6 0 2.0 0 1.7 1345 

19 1367 1367 11.9 0 2.0 0 3.8 0 3.5 0 0.8 0 1.7 0 3.5 0 1.1 0 1.9 0 1.5 1368 

20 1328 1328 13.8 0 2.2 0 3.8 0 5.7 0 1.1 0 1.5 0 6.0 0 0.6 0 1.7 0 1.3 1328 

21 1341 1341 12.4 0 1.9 0 3.4 0 3.2 0 0.8 0 1.3 0 4.6 0 0.8 0 1.5 0 1.2 1341 

22 1326 1326 12.7 0 2.2 0 3.7 0 3.3 0 1.3 0 1.5 0 3.7 0 0.9 0 1.7 0 1.3 1326 

23 1266 1266 11.3 0 1.8 0 3.9 0 2.9 0 0.7 0 1.8 0 4.6 0 0.6 0 2.0 0 1.7 1266 

24 1260 1260 12.0 0 1.8 0 3.6 0 2.8 0 0.7 0 1.4 0 4.0 0 0.8 0 1.6 0 1.2 1260 

25 1376 1376 13.5 0 2.1 0 3.8 0 3.5 0 0.8 0 1.3 0 2.8 0 0.7 0 1.6 0 1.1 1376 

26 1318 1318 11.8 0 1.8 0 3.7 0 4.0 0 0.7 0 1.5 0 4.2 0 1.1 0 1.7 0 1.3 1318 

27 1261 1261 11.8 0 1.8 0 3.7 0 2.9 0 0.7 0 1.5 0 3.2 0 1.1 0 1.7 0 1.3 1261 

28 1359 1359 12.4 0 2.2 0 3.6 0 3.3 0 0.7 0 1.3 0 2.6 0 1.1 0 1.5 0 1.1 1359 

29 1280 1280 12.9 0 1.8 0 3.6 0 3.1 0 0.7 0 1.4 0 3.8 0 0.9 0 1.6 0 1.2 1280 

30 1344 1344 13.0 0 1.9 0 3.6 0 3.2 0 0.8 0 1.4 0 5.4 0 1.0 0 1.6 0 1.2 1344 

Sum/Avg. − − 12.5 0 1.9 0 3.9 0 3.3 0 0.9 0 1.7 0 4.1 0 0.9 0 1.9 0 1.5 −
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Table A.15 

Detailed results for the Nishi et al. (2016) benchmark instances. 

n m id lb ub Generalized set partitioning Time indexed Arc-flow MH 

GSPP GSPP + GSPP rc 
+ TI TI + TI rc 

+ AF AF + AF rc 
+ 

t(s) nd t(s) nd t(s) nd t(s) nd t(s) nd t(s) nd t(s) nd t(s) nd t(s) nd t(s) ub 

80 10 01 3417 3417 177.4 119 168.1 90 194.0 129 152.0 390 142.6 307 26.6 80 198.3 384 119.8 298 17.0 190 1.8 3427 

02 2602 2602 138.5 0 147.3 0 193.4 2 106.7 4 127.6 4 25.8 14 114.6 136 93.1 136 20.9 207 3.0 2637 

03 2602 2602 138.5 0 147.0 0 191.7 6 106.3 4 130.2 4 23.0 30 114.6 136 93.2 136 17.9 123 2.0 2628 

04 3504 3504 179.2 13 191.0 13 204.3 22 149.8 27 188.3 27 55.4 284 144.0 642 118.0 642 42.1 531 2.3 3530 

05 4010 4010 175.5 55 186.6 55 211.6 20 166.8 94 204.9 94 60.3 80 478.7 606 380.0 606 49.9 542 1.8 4051 

06 3595 3595 180.9 8 189.7 8 205.3 0 145.8 0 187.0 0 28.6 0 95.7 63 77.7 63 24.1 254 2.0 3626 

07 3034 3034 159.0 0 169.8 0 197.7 0 97.0 27 120.9 27 41.0 3 80.2 57 65.0 57 22.8 88 1.8 3085 

08 2588 2588 141.4 0 149.4 0 187.0 0 54.9 0 66.8 0 12.2 0 80.9 510 66.5 510 14.3 6 2.0 2606 

09 4367 4367 135.4 0 146.9 0 205.1 0 75.6 0 91.7 0 19.7 0 27.5 0 22.5 0 12.6 0 2.0 4405 

10 3407 3407 149.7 0 158.3 0 200.2 0 80.7 0 97.8 0 36.3 0 81.7 70 65.6 70 20.0 0 1.8 3454 

90 13 01 2252 2252 634.3 1754 698.6 1754 949.5 1933 342.5 3961 419.4 3961 171.1 1354 299.9 1709 247.2 1709 293.4 2134 3.2 2317 

02 2533 2533 743.4 3705 816.9 3705 1124.9 2237 557.1 5590 662.0 5590 554.5 6441 1520.4 10429 1321.5 10429 316.9 2865 3.4 2597 

03 2533 2533 801.7 3705 811.8 3705 1034.2 1991 545.1 5590 627.8 5590 569.6 5511 1330.5 10429 1322.3 10429 663.6 7412 3.7 2615 

04 2402 2402 401.0 3 557.2 3 854.2 8 76.2 7 88.8 7 32.4 64 71.1 48 72.2 48 30.5 70 2.9 2462 

05 2468 2468 510.6 50 570.6 50 882.1 60 128.9 83 150.9 83 42.9 31 79.8 102 80.9 102 55.5 110 3.4 2540 

06 3267 3267 776.0 612 741.2 612 969.2 524 354.4 752 437.0 752 284.1 1244 651.4 1934 659.1 1934 396.0 2431 3.6 3360 

07 2115 2115 506.8 7 537.2 7 824.3 7 61.4 24 81.5 24 13.9 7 28.4 7 28.7 7 21.4 29 3.8 2142 

08 2523 2523 528.9 512 619.7 512 852.4 505 227.2 810 280.5 810 112.2 848 564.6 1916 571.0 1916 271.3 2101 3.7 2603 

09 2844 2844 542.4 0 521.3 0 892.4 0 239.1 75 284.2 75 130.1 260 237.7 249 240.2 249 65.0 65 2.8 2933 

10 2479 2479 501.2 382 562.5 382 925.5 134 208.5 525 246.2 525 124.9 710 342.0 719 345.3 719 71.6 180 3.2 2558 

100 15 01 2954 2954 1064.2 755 1095.5 755 1423.2 535 330.9 1843 402.2 1843 172.5 1229 193.9 951 196.0 951 158.8 1312 5.1 3026 

02 2775 2775 976.8 3657 957.2 3657 1544.8 2132 294.7 3083 365.4 3083 126.1 1896 669.8 4060 676.6 4060 289.6 4050 4.8 2867 

03 2617 2617 958.1 377 981.7 377 1492.2 501 223.8 243 268.6 243 73.5 163 273.9 262 277.3 262 73.5 260 3.9 2673 

04 2817 2817 2445.2 13148 2477.4 13148 3382.5 15874 2572.3 23009 3135.7 23009 2339.4 22812 3459.7 32884 3491.2 32884 1820.9 13910 4.4 2902 

05 2411 2411 791.4 2146 916.8 2146 1721.4 4531 369.0 4274 428.7 4274 259.6 3726 582.4 3605 588.0 3605 470.2 4668 4.8 2479 

06 3879 3879 1381.9 1356 1334.3 1356 1897.0 3089 796.4 2849 915.4 2849 502.2 2333 356.5 2036 359.9 2036 438.0 3144 4.5 3943 

07 2372 2372 811.6 5 718.3 5 1331.6 7 84.3 0 93.6 0 18.6 7 76.3 0 77.0 0 26.6 0 4.9 2403 

08 3281 3281 1653.4 4842 1616.1 4842 2310.0 9845 1642.1 15929 1820.1 15929 1705.6 14575 2226.1 12751 2237.5 12751 1172.4 8923 4.5 3374 

09 2993 2993 860.3 149 825.2 149 1332.7 83 155.6 35 172.1 35 42.1 214 148.1 163 149.2 163 61.4 586 4.1 3030 

10 2544 2544 1036.0 1813 1017.3 1813 1332.7 1778 333.0 1289 369.9 1289 221.0 2224 596.9 2537 508.2 2537 278.0 2215 4.7 2623 

120 15 01 4065 4065 988.1 112 924.9 112 1145.5 107 928.9 60 1185.4 60 283.3 20 966.4 63 756.5 63 152.4 21 12.2 4101 

02 3653 3653 521.4 0 550.5 0 858.6 0 99.7 0 123.5 0 81.9 66 61.3 20 47.6 20 29.9 0 11.6 3663 

03 3756 3756 768.8 714 774.0 714 1007.6 812 424.4 1757 527.7 1757 1139.9 707 119.1 329 98.2 329 255.1 538 11.9 3863 

04 3211 3211 1465.1 521 1390.5 521 1711.8 824 1398.2 768 1652.4 768 1433.1 988 1247.5 752 1003.6 752 2336.2 3686 11.4 3281 

05 4298 4298 7200.0 4428 7200.0 4079 4208.2 1551 1971.0 762 2303.1 762 4721.6 2429 3883.7 2397 3727.2 2397 3032.6 2655 11.3 4348 

06 4512 4512 700.2 80 758.2 80 1977.0 539 1602.9 577 1853.1 577 2173.5 1449 1680.0 1239 1680.9 1239 305.4 78 11.3 4588 

07 3463 3463 496.2 0 596.0 0 779.6 0 121.3 0 126.2 0 108.1 0 38.5 0 36.7 0 61.1 11 11.4 3510 

08 3872 3872 1294.2 224 1202.8 224 1074.1 0 866.3 384 916.4 384 274.2 13 1613.5 475 1437.2 475 149.3 20 11.6 3978 

09 4176 4176 1600.7 1132 1582.2 1132 2054.9 784 1059.4 254 1072.5 254 1114.6 726 1962.4 1606 1974.5 1606 1110.1 2095 11.2 4294 

10 3880 3880 2843.8 7347 2938.3 7347 2746.8 4309 868.8 958 877.8 958 2851.7 6484 1536.7 1768 1550.1 1768 1876.3 6135 11.7 3939 

150 15 01 8219 8219 7200.0 402 7200.0 524 7200.0 900 7200.0 1035 7200.0 1273 7200.0 544 7200.0 1798 7200.0 2055 7027.8 3336 24.0 8305 

02 6737.7 6742 7200.0 462 7200.0 550 7200.0 920 7200.0 527 7200.0 521 7200.0 499 7200.0 1500 7200.0 1497 7200.0 2709 24.3 6854 

03 4655 4655 858.0 0 922.4 0 1177.0 0 279.3 0 284.5 0 213.5 0 51.0 0 51.0 0 68.3 40 25.2 4754 

04 7303 7303 7200.0 3138 7200.0 4252 5195.7 2128 7200.0 2119 7200.0 2052 7200.0 620 7200.0 493 7200.0 487 7200.0 1820 23.5 7365 

05 6563 6563 3065.4 3854 2665.3 3854 7200.0 8126 7200.0 8698 7200.0 8616 7200.0 7297 4092.0 28055 3761.3 28055 2258.5 3629 24.5 6623 

06 6348 6359 7200.0 557 7200.0 795 7200.0 965 7200.0 422 7200.0 420 7200.0 693 7200.0 402 7200.0 662 7200.0 1664 24.2 6434 

07 6343 6343 5145.4 1673 5503.4 1673 5456.2 1427 5076.3 1714 5174.9 1714 5713.0 1909 5088.5 1932 4914.7 1932 7006.9 1928 23.6 6452 

08 7940 7940 7200.0 85081 7200.0 74811 5364.3 24680 7200.0 4348 7200.0 3871 7200.0 63629 7200.0 105292 7200.0 103727 7035.6 45537 23.7 8002 

09 8242 8242 3969.9 6257 4086.0 6257 2137.7 961 4265.1 10150 4815.8 10150 2530.9 1087 4510.6 11856 4533.8 11856 3414.4 10018 23.4 8284 

10 6012.9 6016 7200.0 3946 7200.0 3559 7200.0 5953 7200.0 2637 7200.0 2274 7200.0 2874 7200.0 2956 7200.0 2980 7200.0 3137 23.2 6057 

Sum/Avg. − − 1872.4 3182 1886.5 2993 2039.2 2019 1600.8 2154 1678.4 2137 1617.3 3163 1703.5 5047 1666.5 5024 1442.7 2949 9.1 −
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Table A.16 

Detailed results for the new benchmark instances. 

n m id lb ub Time-indexed Arc-flow MH 

TI + TI rc 
+ AF + AF rc 

+ 

t(s) nd t(s) nd t(s) nd t(s) nd t(s) ub 

200 15 01 12604 12609 tlim 98 tlim 396 tlim 68 tlim 113 67.6 12709 

02 10319 10319 6301.8 116 tlim 177 3620.8 114 1971.0 41 60.0 10407 

03 11296 11355 tlim 47 tlim 318 tlim 108 tlim 218 37.1 11558 

04 15441 15441 tlim 107 tlim 300 6880.6 343 3671.1 1499 34.7 15647 

05 18166 18352 tlim 11 tlim 67 tlim 17 tlim 35 35.7 18352 

06 16869 16869 6836.4 567 6491.5 577 1015.5 531 1612.8 224 36.9 16961 

07 13025 13226 tlim 37 tlim 66 tlim 81 tlim 78 35.5 13226 

08 14182 14259 tlim 7 tlim 9 tlim 48 tlim 58 36.1 14537 

09 18118 18118 tlim 100 1946.9 105 3879.7 132 4987.1 657 35.5 18198 

10 17102 17118 tlim 19 tlim 39 tlim 68 tlim 203 35.0 17263 

250 20 01 15633 15769 tlim 7 tlim 27 tlim 13 tlim 34 78.0 15769 

02 15776 15915 tlim 5 tlim 20 tlim 24 tlim 55 84.0 15915 

03 16519 16606 tlim 4 tlim 8 tlim 15 tlim 28 77.9 16724 

04 16423 16481 tlim 17 tlim 46 tlim 14 tlim 33 83.0 16509 

05 15661 15837 tlim 1 tlim 2 tlim 14 tlim 34 77.3 15837 

06 20060 20060 tlim 0 tlim 4 5180.6 10 tlim 19 82.6 20193 

07 14284 14362 tlim 0 tlim 25 tlim 21 tlim 38 84.1 14514 

08 16305 16383 tlim 0 tlim 12 tlim 10 tlim 20 79.4 16498 

09 15864 15917 tlim 0 tlim 2 tlim 16 tlim 26 82.5 16121 

10 16283 16371 tlim 0 tlim 24 tlim 10 tlim 21 81.0 16428 

Avg. – – 7136.9 57 6901.9 111 6428.9 83 6372.1 172 61.2 –
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