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Abstract: Ring network design problems have many important applications, especially in
the field of telecommunications and vehicle routing. Those problems generally
consist of constructing a ring network by selecting a node subset and
corresponding direct links. Different requirements and objectives lead to
various specific types ofNP-hard ring network design problems reported in the
literature, each with its own algorithms. We exploit the similarities in
problems to produce a more general problem formulation and associated
solution methods that apply to a broad range of problems. Computational
results are reported for an implementation using a meta-heuristics framework
with generic components for heuristic search.

1. INTRODUCTION

Recently, the design of information and communication infrastructure
has become a major challenge both within companies and between
widespread places, e.g., in major cities where metropolitan area networks are
of interest. High-bandwidth fiber optic networks occupy an intermediate
position between local area networks (LANs) and wide area networks.
Among the various topologies available to the design of such networks, ring
networks may be beneficial because they provide some protection against
link failures (Morreale and Campbell 1990).
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In this paper we consider aGeneral Ring Network Design Problem
(GRNDP), which may be described as follows (from the perspective of
telecommunications): Given is a set of nodes representing objects that may
be linked to a network (e.g., routing devices, companies, public places of
interest with some means of public information provision). Any two nodes
on the ring are able to communicate with each other so one gains a certain
revenue. Moreover, there may be revenues for each node included in the
ring. On the other hand, construction costs are incurred for the design of
direct links. The basic objective is to maximize the sum of all revenues
minus the construction costs while building a ring network. Possibly, this
ring must meet additional requirements such as mandatory inclusion of a
subset of required nodes or upper bounds for the number of nodes in the ring
or the sum of the link costs (e.g., due to network reliability demands). There
are several generalizations of the Traveling Salesman Problem (see below)
that can be treated as ring network design problems.

Our main intent is as follows. We will integrate different types of
problems, which have so far been treated separately in the research literature,
into a generalized model. Since most of the problems subsumed under this
model defy exact solution with reasonable computational effort (due toNP-
hardness), the modeling of the problem is often an approximate one
(concerning, e.g., the objective), and the data are generally imprecise,
heuristics are the primary way to tackle these problems. Furthermore, even
our generalized model does not include many practical situations; due to
variations, e.g., with respect to the pursued objective or specific problem
characteristics, ‘solving’ problems from practice often requires special
purpose methods. Thus, we are faced with the difficulty of efficiently
adapting and applying appropriate methods to real-world problems. Our aim
is to make it easy to apply general yet effective heuristics to such problems.
We focus on the application of meta-heuristics by means of HOTFRAME

(Fink and Voß 1999), which provides a collection of adaptable reusable
software components for heuristic search. That is, we show that the idea of a
general heuristic solver linking various problem classes is reasonable.

In Section 2, we formally define the GRNDP and discuss certain
relationships to other problems as they have appeared in the published
literature. In Section 3, we discuss the application of meta-heuristics to the
GRNDP. In addition to describing different construction methods, we
present an appropriate neighborhood structure and describe the application
of simulated annealing and various tabu search procedures. Computational
experiments are presented in Section 4. These results demonstrate the
possibility of effectively and easily applying generic and robust meta-
heuristics with no calibration necessary. Finally, we draw some conclusions
and give hints for further research.
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2. PROBLEM DESCRIPTION

In the following we formally define theGeneral Ring Network Design
Problem(GRNDP), which is later shown to subsume various special types of
problems previously discussed in the literature. Given a graphG with node
or vertex setV={1 ,...,n} and edge setE with non-negative edge weightscij

for all (i,j) ∈ E, the ring network design problem is defined by a vector
(G=(V,E), c, r, p, Q, a, b, h,α, β, γ, δ). A solution of a problem instance is a
ring R=(i1,...,ik) with corresponding links ((i1,i2), ..., (ik-1,ik), (ik,i1)).
Whenever a ring contains a direct link betweeni and j, a costcij is incurred.
That is, only fixed construction costs are taken into account, and the sum of

construction costs ofR is given by ( ) �
−
= + += 1k

1j 1k1j,j ccRc .

For every pair of nodesi,j , i<j, a revenuerij is obtained if and only ifi
andj both belong to the ring. For each nodei, rii represents a revenue for the
inclusion of nodei in the ring, andpi represents a penalty for not including
nodei.

Additional requirements may restrict the set of feasible solutions. The set
Q defines a subset of required nodes that must be included in the ring. The
valuea may set a lower bound for the revenues to be obtained. A budgetb
may limit the ring costs byc(R) ≤ b. The numberh may set an upper bound
for the number of nodes in a ring.

The objective is to find a feasible ringR that maximizes the objective
function. Parametersα, β, γ, andδ define the composition of the objective
function, e.g., as the sum of the revenues by node pairs (α = 1), revenues by
included nodes (β = 1), minus the construction costs (γ = 1), as well as
penalties for nodes not included (δ = 1). The GRNDP, which isNP-hard as
it reduces to severalNP-hard problems (see below), is represented by the
following mathematical model, which builds on ideas of Gendreau et al.
(1995). Definexij=1, if edge (i,j) is included in the ring, andxij=0, otherwise.
Furthermore, letyi=1, if nodei is included in the ring, andyi=0, otherwise.
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Constraints (2) ensure that each node in the solution is connected to
exactly two other nodes. Constraints (3) are connectivity constraints,
guaranteeing that all nodes of the solution are connected to each other (such
that sub-cycles are prevented). Constraints (4) ensure that each required node
is in the solution. Constraint (5) guarantees that the lower bound for the
revenues is met. Inequality (6) prevents the given budgetb from being
exceeded. Constraint (7) guarantees that there are no more thanh nodes in
the solution. As this model is not linear and contains an exponential number
of constraints, modifications are needed to apply standard methods of
mathematical programming. A linearization can be obtained by the use of
binary variableszij that indicate whether nodesi and j are both in the
solution. The constraints (3) can be replaced by a polynomial number of
constraints exploiting the idea of Miller, Tucker, and Zemlin for the
prevention of sub-cycles (Miller et al. 1960). Corresponding transformations
are described by Fink et al. (1998) and Gouveia and Pires (1998). While
such models may be useful for computing optimal solutions to small
problem instances or to compute upper bounds, one generally needs heuristic
approaches to efficiently generate good solutions for larger problem
instances. Furthermore, heuristic approaches allow an easy extension with
respect to model variations such as non-linearities.

The GRNDP subsumes several types of problems. It reduces to the
classical Traveling Salesman Problem(TSP) when, e.g., there are no
revenues,Q=V, and there are no limiting restrictions (i.e.,a, b, andh are not
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specified). While it is reasonable to apply special methods to solve TSP
instances, it may be appropriate to solve other types of problems that
generally do not result in solutions representing Hamiltonian cycles by
general heuristic approaches for the GRNDP. In the following we briefly
refer to some of these problems, which are related to the GRNDP in Table 1.

The Ring Network Design Problem(RNDP) has been discussed by
Gendreau et al. (1995) who concentrate on the development of efficient
heuristics such as greedy construction, as well as greedy add and drop
exchange based local search. TheSteiner Ring Network Design Problem
(SRNDP), which has been introduced by Laporte and Nobert (1983) and
varies the problem to find a traveling salesman tour of minimal length
including a given subset of the node set (Cornuejols et al. 1985, Ratliff and
Rosenthal 1983), is distinguished by a subset of required nodes that must be
included. Gouveia and Pires (1998) develop mathematical models for the
Steiner Ring Network Design Problem with Revenues(SRNDPR) that
generalizes the SRNDP with respect to revenues and additional restrictions.
TheSelective Traveling Salesman Problem(STSP) or Orienteering Problem
(OP) (Laporte and Martello 1990, Fischetti et al. 19981) is to maximize the
revenues associated with the nodes included in the ring while there is an
upper bound forc(R). On the other hand, thePrize Collecting TSP(PCTSP)
(Balas 1989) is to minimize link costs and penalties due to nodes not
included in the ring while there is a lower bound for node revenues
associated with the nodes included in the ring.

Q a b h α β γ δ r

TSP V 0 ∞ |V| 0 0 1 0 rij= 0 ∀ i,j
RNDP ∅ 0 b |V| 1 0 1 0 rii= 0 ∀ i
SRNDP Q 0 ∞ |V| 0 0 1 0 rij= 0 ∀ i,j
SRNDPR Q 0 ∞ h 1 0 1 0 rii= 0 ∀ i
STSP/OP {1} 0 b |V| 0 1 0 0 rij= 0 ∀ i≠j
PCTSP ∅ a ∞ |V| 0 0 1 1 rij= 0 ∀ i≠j

Table 1 Survey of several problem types with respect to the GRNDP
frame.

Although, as we have shown above, the GRNDP covers a great variety of
combinatorial optimization problems with a ring-like structure there are a
great number of other network design problems that have not yet been
included within this framework. A generic network design model that
emphasizes a great variety of vehicle routing and transportation problems as

1 Differing from Fischetti et al. (1998), some authors (e.g., Chao et al. (1996)) treat the OP
as to construct an (open) tour from a source node to a target node (instead of a ring).
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well as specifically tailored problem specific solution methods is given by
Magnanti and Wong (1984).

With respect to ring network design problems the GRNDP is perhaps the
most general for existing problems from the literature. However, in various
telecommunication applications an underlying network structure consists of
a backbone as well as of tributary networks. While the backbone may
constitute a set of major hub nodes used as, e.g., switching points for
communication traffic (also called concentrators or access points), traffic
may arise at any node of a network so that any of these nodes may be linked
to a hub node through a ‘secondary’ tributary network. For an excellent
survey on hub location problems see Klincewicz (1998). In the GRNDP we
may model the ring that is to be constructed as a backbone while a tributary
network is not explicitly considered (as, e.g., in the TPP below).

Corresponding modifications of the GRNDP arise from the problem of
connecting LAN clients using the ring topology: Apart from the givenn
nodes of the basic problem, there are some secondary nodes that have to be
connected to the ring. Consequently, additional costs have to be taken into
account. This problem is related to theTraveling Purchaser Problem(TPP),
which is to find a tour through a subset ofm markets and the depot and to
purchase each ofn items such that the sum of travel costs and purchase costs
is minimized. Here, the items correspond to the secondary nodes, and the
markets to the nodes of the basic RNDP, respectively. The TPP is another
generalization of the TSP with linkages not only to telecommunications, but
also to production planning and marketing (Voß 1996). That paper discusses
certain tabu search heuristics and a simulated annealing approach for the
TPP based on add and drop exchanges.

In addition, it is possible to consider capacities associated with the nodes
of the ring (e.g., limitations of the number of secondary nodes connected to a
ring node or limitations regarding the amount of traffic through the nodes).
This problem relates to theCapacitated Minimum Spanning Tree Problem
(CMST; cf., e.g., Amberg et al. 1996). Another modification of the GRNDP
(taking costs and protection as objectives and considering capacities) is
investigated by Mocci and Primicerio (1997). Furthermore, it is possible to
change the concept of having required nodes. As an example, one may
assume that a number of subsets of the node set are given such that at least
or exactly one node of each subset has to be included in the backbone (see,
e.g., Laporte et al. 1996). Related is the determination of relevant clusters
that then form the basis for building tributary networks (Laguna 1994). For a
general discussion of revenues in telecommunications see, e.g., LeBlanc and
Narasimhan (1994).



Solving General Ring Network Design Problems by Meta-Heuristics 7

3. HEURISTIC APPROACHES

In Section 1, we proposed solving ring network design problems by
means of HOTFRAME (Fink and Voß 1999), a meta-heuristics framework
that provides a collection of reusable components for heuristic search. In the
sequel we describe those methods that we will apply to ring network design
problems. One should keep in mind that we intend to make it easy to apply
general yet effective heuristics. However, the need for careful and time
consuming tuning of most meta-heuristics constitutes a major drawback as
general problem solvers. The problem of fixing the parameters involved may
be called calibration. Our design philosophy is that there should be no need
to perform a parameter tuning to get reasonable results. Thus, we primarily
focus on auto-adaptive meta-heuristics that do not require calibration for the
specific problem at hand. In Section 4, we will describe computational
results – especially with respect to evaluating the competitiveness of our
approach.

3.1 Construction of starting solutions

The application of local search heuristics operating on solution spaces
restricted to feasible solutions may require the construction of initial feasible
solutions. (Below, we also describe the incorporation of infeasible solutions
into the solution space, which allows the direct application of improvement
methods.) Here we consider three construction methods, which shall later be
applied for RNDP instances. These methods are appropriate if one can find
feasible solutions by successively adding nodes until some termination
condition is met.

To find out whether a reasonably good starting solution is needed at all
for the successful application of the improvement methods, first, we may
construct a somewhat arbitrary ring by successively adding nodes according
to the numbering of the nodes until this would break the budget restriction or
exceed the maximum number of nodes limit. Second, we use a cheapest
insertion heuristic (Chins) that works as follows: Start with a ringR with
one randomly chosen node. Now successively enlarge this ring by choosing
in each iterationk=2,...,h the best combination (concerning the objective
function value) under consideration of the remainingn-k+1 nodes and allk-1
insertion positions taking into account the budget limit.

Third, building on this cheapest insertion heuristic, we also use a
corresponding pilot method (Duin and Voß 1999). The pilot method is a
meta-heuristic that builds primarily on the idea of looking ahead for each
possible local choice (by computing a so-called ‘pilot’), memorizing the best
result, and performing the corresponding move. Here, we apply this strategy
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by successively performing a cheapest insertion heuristic for all possible
local steps (i.e., starting with all rings resulting from adding some not yet
included node at some position to the current ring). Of course, this leads to
an exponential time complexity. However, as the experimental results
presented in Section 4 will show, it is reasonable to restrict the pilot process
to a given evaluation depth. That is, the pilot method is performed until an
incomplete solution with a given number of nodes is reached; this solution is
completed by continuing with a conventional cheapest insertion heuristic.

3.2 Neighborhood structure

The neighborhood description assumes the ringR as a chain of nodes,
each connected by an edge. With this, moves are composed of attributes
defined by giving the edges that are deleted and inserted; this information is
exploited by the tabu search methods described below.

We use a neighborhood that is defined as follows: The neighbors of a
solution (ring)R are all solutions that may be reached fromR by performing
one of these moves:
– A nodev∈R may be shifted to another position in the ring.
– A nodev∈R may be excluded from the ring.
– A nodev∈V\Rmay be inserted to the ring at some position.

The evaluation of potential moves can be defined as the increase of the
objective function value. As the size of the neighborhood is ofO(n2), it is
crucial to perform the move evaluation in an incremental way (instead of
recomputing the objective function of a modified ring) to reach a sufficiently
efficient implementation. One may define the solution space to include only
feasible solutions or it may be expanded to include infeasible solutions,
which are evaluated as -∞. To guide local search methods into promising
regions of the solution space, it is essential to sensibly evaluate moves. The
simple evaluation of a move by the implied change of the objective function
value often does not provide enough information in this respect. For
example, moves leading to infeasible neighbors might not be evaluated as -∞
but by some kind of penalization that nevertheless takes into account
possible changes of costs and revenues. If we are ‘deep’ in infeasible
regions, and several moves are needed to reach feasibility, moves must be
evaluated with respect to the tendency towards feasibility (which may be
non-trivial as there can be conflicting constraints). Moreover, considering
the STSP, where only revenues are part of the objective function while there
is an upper bound for the sum of costs, potential changes of the revenues
must be evaluated in relation to the corresponding cost changes.

Restricting to the RNDP, SRNDPR, and the STSP/OP, for which we
describe computational results in Section 4, we compute the evaluation
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f(µ(R1,R2)) of a moveµ from a solution (ring)R1 to a solutionR2 as follows
(larger move evaluations mean ‘better’ moves). Disregarding infeasibilities
and assuming that increasing revenues are accompanied by decreasing costs
and vice versa, move evaluations are computed as
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Also considering moves involving infeasible solutions, move evaluations
are adapted by adding or subtracting a large value that is considerably larger
than any objective function difference between two feasible solutions when
moving from an infeasible solution to a feasible one or moving from a
feasible solution to an infeasible one, respectively. In case the neighborhood
of the current solution only contains infeasible solutions, moves are
evaluated by the reduction of violations of constraints.

3.3 Improvement methods

Improvement procedures for the ring network design problem may be
based on greedy local search, i.e., successively performing a move with a
maximum evaluation at each step, considering the neighborhood described
in the previous section. As such methods may lead to local optima of non-
satisfying solution quality, we consider the application of meta-heuristic
search methods (simulated annealing and various tabu search approaches)
with the aim to guide the search to overcome local optimality.

3.3.1 Simulated annealing

Simulated annealing extends basic local search by allowing moves to
inferior solutions (Kirkpatrick et al. 1983, Dowsland 1993). The basic
algorithm of simulated annealing may be described as follows: Successively,
a candidate move is randomly selected; this move is accepted if it leads to a
solution with a better objective function value than the current solution,
otherwise the move is accepted with a probability that depends on the
deterioration∆ of the objective function value. The probability of acceptance
is computed according to the Boltzmann function ase-∆/T, using a
temperatureT as control parameter.
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We follow the parameterization of this general simulated annealing
procedure as described by Johnson et al. (1989). The value ofT is initially
high, which allows many inferior moves to be accepted, and is gradually
reduced through multiplication by a parametercoolingFactoraccording to a
geometric cooling schedule. At each temperaturesizeFactor× |N| move
candidates are tested (|N| denotes the current neighborhood size). The
starting temperature is determined as follows: Given a parameter
initialAcceptanceFractionand based on an abbreviated trial run, the starting
temperature is set so that the fraction of accepted moves is approximately
initialAcceptanceFraction. A further parameter,frozenAcceptanceFraction,
is used to decide whether the annealing process isfrozen and should be
terminated. Every time a temperature is completed with less than
frozenAcceptanceFractionof the candidate moves accepted, a counter is
increased by one. This counter is reset every time a new best solution is
found. The procedure is terminated when the counter reaches 5. We set these
parameters to the values recommended by Johnson et al. (1989):cooling-
Factor = 0.95,initialAcceptanceFraction= 0.4,frozenAcceptanceFraction=
0.02,sizeFactor= 16. The suitability of these values has been confirmed by
preliminary experiments.

3.3.2 Tabu search

The basic paradigm of tabu search is to use information about the search
history to guide local search approaches to overcome local optimality
(Glover and Laguna 1997). In general, this is done by a dynamic
transformation of the local neighborhood. As for simulated annealing, this
may lead to performing deteriorating moves when all improving moves of
the current neighborhood are set tabu. A general description of a tabu search
frame may be presented as shown in Algorithm 1 for a given starting
solutions and a tabu criterion that is represented by the objectTabuMemory.
A neighbor, respectively a corresponding move, is calledadmissible, if it is
not tabu or if an aspiration criterion is fulfilled. The only aspiration criterion
used here is to allow all moves that lead to a neighbor with a better objective
function value than encountered so far.
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Algorithm 1 Generic tabu search heuristic.

TabuSearch(s, TabuMemory):

Initialize TabuMemory
while ( stopping criterion not fulfilled )

s' = BestAdmissibleNeighbor(s, Neighborhood,TabuMemory)
TabuMemory.add( move(s, s') )
s = s'
TabuMemory.add(s )
if ( escape triggered byTabuMemory)

perform a diversifying move

Sometimes, it has proven to be beneficial to incorporate means to
diversify the search into new regions of the search space. This requires an
appropriate mechanism to detect situations when the search might be trapped
in a certain area of the solution space.

In the following we briefly describe various tabu search methods that
differ especially in the way in which the tabu criteria are defined, taking into
consideration the information about the search history (performed moves,
traversed solutions).

Static tabu search
The most commonly used tabu search method is to use arecency-based

memory that stores moves, more exactly move attributes, of the recent past.
The basic idea of such static tabu search approaches is to prohibit an
appropriately defined inversion of performed moves for a given period. Here
we use a tabu list with a fixed lengthl.

Considering a performed move, we store in dependence on the move type
move attributes that represent the inserted edges in a static tabu list of fixed
length. To obtain the current tabu status of a move to a neighbor, we must
check whether the edges to be deleted are contained in the tabu list. As we
apply non-homogeneous moves with a varying number of attributes,2 there
are different ways to define the tabu criterion: A move may be classified as
tabu when at least one, two, or three of the attributes of this move are
contained in the tabu list. For our purposes, all these criteria are
implemented using a parametertabu threshold. It defines the number of
attributes of a move that have to be contained in the tabu list in order to

2 When a node is shifted to another position in the ring this results in three deleted edges and
three inserted edges. When a node is shifted out from (included to) the ring this leads to
two (one) deleted and one (two) inserted edges.
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regard the move as tabu (taking into account that a move may also lead to
less thantabu thresholdattributes).

Strict tabu search
Strict tabu search embodies the idea of preventing cycling to formerly

traversed solutions. That is, the goal of strict tabu search is to provide
necessity and sufficiency with respect to the idea of not revisiting any
solution. Accordingly, a move is classified as tabu if and only if it leads to a
neighbor that has already been visited during the previous part of the search.

There are two primary mechanisms to accomplish the tabu criterion:
First, we may exploit logical interdependencies between the sequence of
moves performed throughout the search process, as realized by the reverse
elimination method (cf., e.g., Glover and Laguna 1997, Voß 1996). Second,
we may store information about all solutions visited so far. This may be
carried out either exactly or, for reasons of efficiency, approximately. For
our purpose this is accomplished by using a hash function, that defines a
non-injective transformation from the set of solutions to integer numbers
(Woodruff and Zemel 1993). Given a vector (w1,...,wn) of pseudo-random
integers, we compute hash codes of a solution that is represented by a ringR
as

( ) { }min
)(edge

i,j
Ri,j

wji|R| ⋅++ �
∈

.

As the hash code of two different solutions may be the same whenever a
so-called collision occurs, moves might be unnecessarily set tabu in some
cases. However, as our experiments have shown, this random effect seldom
affects the search negatively. Accordingly, we restrict the trajectory based
memory to the use of hash codes. Each solution (i.e., each hash code) of the
trajectory memory is attributed by the iteration when a corresponding
solution was visited the last time and by the frequency indicating how often
this solution has been visited.

Reactive tabu search
Reactive tabu search aims at the automatic adaptation of the tabu list

length of static tabu search (Battiti 1996). The basic idea is to increase the
tabu list length when the tabu memory indicates that the search is revisiting
formerly traversed solutions. The concrete algorithm applied here may be
described as follows: We start with a tabu list lengthl of 2 and increase it to
min{max{ l+2, l×1.2},u} every time a solution has been repeated, taking into
account an appropriate upper boundu (to guarantee at least one admissible
move). If there has been no repetition for some iterations, we decrease it
appropriately to max{min{l-2, l×0.8},2}. To accomplish the detection of a
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repetition of a solution, we apply a trajectory based memory using hash
codes as described for strict tabu search.

As noted above, and especially for reactive tabu search, noticed by Battiti
(1996), it may be appropriate to include means for diversifying moves
whenever the tabu memory indicates that we may be trapped in a certain
region of the search space. As a corresponding trigger mechanism, we use
the combination of at leasttwo solutions each having been traversed three
times. The simple escape strategy used here is to perform randomly a
number of moves (in dependence on the moving average of the number of
iterations between solution repetitions).

4. COMPUTATIONAL RESULTS

We focus on the application of meta-heuristics by means of HOTFRAME

(Heuristic OpTimization FRAMEwork, Fink and Voß 1999), which provides
a collection of adaptable C++ classes for heuristic search and an architecture
that defines the collaboration between classes. For the GRNDP we
essentially had to implement classes representing the conceptssolution,
move, and move attribute. Then, by straightforward reuse of the heuristic
classes provided by HOTFRAME – without any fine tuning – one is able to do
a fair comparison of different heuristics by controlled and unbiased
experiments. However, computation times resulting from the application of
generic components may offer an opportunity to be reduced (see, e.g., Duin
and Voß (1999) for corresponding ideas regarding the pilot method).
Computation times are generally given as average CPU-time in seconds on a
Pentium II/266.

In Section 4.1 we primarily compare different construction and
improvement heuristics applied to the RNDP as there are no optimal
solutions available. Then, we test the competitiveness of our approach by a
comparison to (mostly provably optimal) results from the literature for the
SRNDPR (Section 4.2) and the STSP/OP (Section 4.3); here we restrict to
the straightforward application of strict and reactive tabu search, which are
both parameterless, using a randomly chosen node as starting solution.

4.1 Ring Network Design Problem

In order to test the algorithms presented in Section 3 we have generated
random instances of the RNDP according to the procedure described by
Gendreau et al. (1995). For each instance, first coordinates ofn points Pi

were randomly generated in the (0,1)×(0,1) square according to a continuous
uniform distribution. Then, each of the valuescij was set to the Euclidean
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distance betweenPi andPj. The budget value was set asb=0.75⋅ 2/n . For
all pairs (i,j) with i<j the revenuerij=r ji was randomly determined according
to a continuous uniform distribution in (0,18.4⋅b/n2). (See Gendreau et al.
(1995) for more information.) We apply the heuristics described above for
randomly generated data sets with 40, 80, and 120 nodes (ten problem
instances each).3 Solutions for such problem instances may be visualized as
shown in Figure 1 for a problem instance with 120 nodes.

Figure 1 Problem instance (120 nodes) with ring.

In the following, we summarize some results of the application of
different heuristics on the problems described above. All results given in the
tables below are average values over ten problem instances for each class.
For all columns of the following tables, the left value gives the average
deviation from the best results obtained overall, and the right value shows
the average CPU-time in seconds.

Table 2 shows the average deviation from the best results for different
construction heuristics. The pilot heuristic obtained very good results,
however, in connection with unreasonable computation times. Therefore, we
also examined the effect of limiting the evaluation depth to 10 (Pilot-10). We
note that the pilot heuristic with a bounded evaluation depth of 10 still
provided very good results (still with large computation times). The
development of the pilot process may be visualized as shown in Figure 2.
The lines show the best objective function value obtained during the
application of the pilot procedure for the problem instances with 80 nodes.

3 Unfortunately, the computational results presented below are not comparable to the results
obtained by Gendreau et al. (1995), as the problem instances used there were randomly
generated and not kept on file. An implicit possibility for a comparison results from the
correspondence of our cheapest insertion method with the C2 ring construction heuristic of
Gendreau et al. (1995).
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As can be seen, an evaluation depth of approximately 10 seems reasonable to
speed up the computation, where in this case an evaluation depth of 22
would have led to the same results as the unbounded pilot procedure.

n Chins Pilot-10 Pilot

40 45.02% 0.05 2.75% 14.15 2.75% 22.46

80 42.32% 0.29 7.19% 552.80 6.21% 3965.63

120 41.62% 0.97 5.09% 4419.53 3.17% 63094.22

Table 2 Average deviation from best results for construction
heuristics.

Figure 2 Development of best objective function value during pilot
procedure for problem instances with 80 nodes.

n

Greedy Search

s = id

Greedy Search

s = Chins

Sim. Anneal.

s = id

Sim. Anneal.

s = Chins

40 67.19% 0.06 30.37% 0.07 86.42% 1.86 32.02% 2.96

80 73.12% 0.34 32.27% 0.42 99.98% 5.81 34.47% 10.04

120 82.70% 0.85 30.15% 1.52 99.99% 11.39 31.05% 23.11

Table 3 Average deviation from best results for greedy search and
simulated annealing.

Table 3 shows the results of greedy local search and simulated annealing
with parameters set as described in Section 3.3.1. With s we denote the
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applied starting solution: constructing the ring in accordance with the
numbering of the nodes (s = id), the solution determined by the cheapest
insertion heuristic (s = Chins). From these results, and further experiments
not shown here, we conclude that reasonable starting solutions seem to be
necessary to obtain high quality solutions. Due to the unsatisfactory solution
quality obtained by greedy local search and simulated annealing, in the
following we focus the presentation to the application of tabu search
methods starting from the solutions obtained by the cheapest insertion
method.

n

TS-static (3,000)

s = Chins

TS-reactive (3,000)

s = Chins

TS-reactive (3,000)

s = Pilot-10

40 15.58% 11.29 6.31% 17.67 0.38% 31.45

80 20.06% 49.78 13.93% 50.95 4.54% 619.22

120 19.39% 129.21 18.88% 125.37 2.19% 4595.40

Table 4 Average deviation from best results for different tabu search
methods.

Table 4 shows the results of static and reactive tabu search, applied for
3,000 iterations each. For static tabu search, the tabu list lengthl has been
set to 0.3 times the number of the nodes (rounded down), thetabu threshold
has been set to 2. Thetabu thresholdfor reactive tabu search has been set to
1. The solution quality obtained is clearly better than those of greedy search
or simulated annealing. However, when starting with the solutions obtained
by the cheapest insertion heuristic, the results are not satisfying compared to
the application of the pilot heuristic. The modest improvements obtained by
reactive tabu search starting from the application of Pilot-10 may imply that
there is a lack of search diversification. The dominating effect of the
revenues may hinder a real restructuring of the ring during the search. This
supposition has been confirmed by comparing solutions by means of the
visualization as shown in Figure 1. Therefore, we examined the effect of the
following diversification procedures: First, we increased the number of
iterations to 100,000 in combination with a simple diversification procedure
by performing seven random escape moves each 250 iterations. Second, we
examined the effect of performing ten repetitions with 10,000 iterations
each, starting from the rings constructed by the cheapest insertion heuristic
with a randomly chosen first node. (As reactive tabu search already contains
an escape strategy, we did not include the enforced escape moves for the
latter test.) Both ideas led to a significant increase of solution quality (cf.
Table 5). Assessing the results obtained while taking into account that
reactive tabu search generally works without parameter tuning, we may
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conclude that reactive tabu search has been the most appropriate
improvement heuristic considered here.

n

TS-static-esc,

(100,000)

s = Chins

TS-reactive-esc,

(100,000)

s = Chins

TS-static-esc,

(10,000)

s = Chins, 10 rep.

TS-reactive-esc,

(10,000)

s = Chins, 10 rep.

40 0.10% 373.26 0.00% 491.71 0.47% 374.83 0.02% 642.07

80 7.71% 1667.04 2.15% 1689.63 4.70% 1690.34 1.90% 1745.32

120 13.54% 4259.03 8.57% 4125.28 9.16% 4310.12 6.16% 4163.20

Table 5 Average deviation from best results for static and reactive
tabu search (partly with additional escape moves).

4.2 Steiner Ring Network Design Problem with
Revenues

We used the original problem instances described by Gouveia and Pires
(1998). The data represent randomly generated instances with Euclidean
distances and uniformly distributed revenues. Instances up to 50 nodes
(sri20, sri30, sri40, sri50) have been solved to optimality by Gouveia and
Pires (1998) by a mathematical programming approach. Furthermore, we
used corresponding instances with more than 50 nodes (sri60, sri70, sri80),
for which no optimal solutions are known.

Table 6 shows the results of the application of strict tabu search and
reactive tabu search to instances with up to 50 nodes. All instances have
been solved to optimality by both tabu search methods in a few seconds,
whereas by Gouveia and Pires (1998) significantly more computation time is
needed (up to several hours to prove optimality).

Problem Instance Strict Tabu Search Reactive Tabu Search

n |E| |Q| h opt. obj. %dev. time obj. %dev. time

sri20 20 50 5 10 27471 27471 0.00% 0.4 27471 0.00% 0.6

sri30 30 75 4 8 14842 14842 0.00% 0.3 14842 0.00% 0.8

sri40 40 100 5 10 22156 22156 0.00% 0.2 22156 0.00% 0.2

sri50 50 125 6 12 35006 35006 0.00% 21.5 35006 0.00% 10.5

Table 6 Results for SRNDPR instances withn ∈ {20,30,40,50}.

Table 7 shows the results of the application of strict tabu search and
reactive tabu search (for 100 and 1000 seconds, respectively) to instances
with n∈{60, 70, 80}. As for these instances no optimal solutions are known
the ‘%dev.’ columns show the percentage deviation from the best results
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obtained. One may conclude that there are no significant differences between
strict and reactive tabu search concerning these instances. With respect to the
effect on the solution quality of increased computation time, consider Figure
3.

Problem Instance Strict Tabu Search Reactive Tabu Search

100 s 1000s 100 s 1000 s

n |E| |Q| h best obj. %dev. obj. %dev. obj. %dev. obj. %dev.

sri60 60 150 8 15 54837 54816 0.04% 54837 0.00% 54580 0.47% 54823 0.03%

sri70 70 175 9 18 78679 78387 0.37% 78659 0.03% 78679 0.00% 78679 0.00%

sri80 80 200 10 20 99888 99733 0.16% 99888 0.00% 99772 0.12% 99772 0.12%

avg. 0.19% 0.01% 0.19% 0.05%

Table 7 Results for SRNDPR instances withn ∈ {60, 70, 80}.

Figure 3 Deviation from best solutions found in dependence on
increasing computation time (up tot = 1000s) for strict and
reactive tabu search (average over sri60, sri70, and sri80).

4.3 Selective Traveling Salesman / Orienteering Problem

We compare to results reported by Fischetti et al. (1998), who have done
an extensive examination of a branch-and-cut approach, which included
several problem-specific enhancements. We consider two sets of problem
instances (available from the TSPLIB (Reinelt 1991)). First, we use twelve
problems, which have been solved to optimality by Fischetti et al. (1998).
Originally, eil30, eil33, eil51, and eil76 are vehicle routing problem
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instances. With respect to the STSP/OP, the customer demands are treated as
node revenues. Moreover, the budget limitb is computed asz⋅H(I), with
z∈{0.25, 0.5, 0.75}, and H(I) representing the costs of the shortest
Hamiltonian tour of problem instanceI, which results in twelve problem
instances. Second, we use two original TSP instances (ts225, pr226) from
the TSPLIB, for which the revenues are defined, in accordance to Fischetti et
al. (1998), for each nodei by rii=1 (generation 1) orrii=1+(7141⋅ i+ 73) mod
100 (generation 2). The budget limitb is computed as described above with
z=0.5. The corresponding four instances are among the hardest problems
considered by Fischetti et al. (1998).

Like for the SRNDPR we restrict to the straightforward application of
strict and reactive tabu search. For the instances eil30, eil33, and eil51 the
optimal solutions were obtained in a few seconds; eil76 led to deviations
from the optimum smaller than 1%.4 Table 9 shows the results of the
application of strict tabu search and reactive tabu search (1000s) to the hard
STSP/OP instances. The ‘best/opt.’ column gives the best results reported by
Fischetti et al. (1998). For three of these instances optimal solutions are not
known, so the best known objective function value is shown in parentheses.
The ‘%dev.’ columns give the percentage deviation from the best results
obtained by Fischetti et al. (1998), which are provable near the optimum
(according to the bounds reported by Fischetti et al. (1998), or represent the
optimum in case of ts225-gen2). Here, strict tabu search is not competitive
while reactive tabu search performs significantly better, however, with
deviations up to 6%.5 The superiority of reactive tabu search may be due to
the incorporated escape mechanism that leads to a better search
diversification.

4 We should note that eil33-0.25 has a two-node-ringR = (1,5,1) with an objective function
value of 1200. Since Fischetti et al. (1998) restrict to rings with not less than three nodes,
we also report the then best objective function value 800.

5 The result obtained for pr226-gen2 by reactive tabu search is better than the best results
reported by Fischetti et al. (1998). However, this may be inconsistent with respect to the
bounds given there; so far, we were not able to definitely clarify this point.
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Problem Instance Strict Tabu Search Reactive Tabu Search

n b opt. obj. %dev. time obj. %dev. time

eil30-0.25 30 96 2650 2650 0.00% 0.1 2650 0.00% 0.1

eil33-0.25 33 111 800 800 0.00% 0.1 800 0.00% 0.1

eil51-0.25 51 107 264 264 0.00% 2.8 264 0.00% 0.2

eil76-0.25 76 135 490 486 0.82% 1000.0 490 0.00% 239.7

eil30-0.50 30 191 7600 7600 0.00% 0.1 7600 0.00% 0.1

eil33-0.50 33 221 16220 16220 0.00% 252.8 16220 0.00% 54.7

eil51-0.50 51 213 508 508 0.00% 1.1 508 0.00% 1.4

eil76-0.50 76 269 907 900 0.77% 1000.0 904 0.33% 1000.0

eil30-0.75 30 286 11550 11550 0.00% 0.1 11550 0.00% 0.1

eil33-0.75 33 331 26380 26380 0.00% 133.4 26380 0.00% 9.4

eil51-0.75 51 320 690 690 0.00% 104.7 690 0.00% 3.7

eil76-0.75 76 404 1186 1184 0.17% 1000.0 1181 0.42% 1000.0

avg. 0.15% 0.06%

Table 8 Results for STSP/OP instances for which optimal solutions
are known.

Problem Instance Strict Tabu Search Reactive Tabu Search

n b best/opt. obj. %dev. time obj. %dev. time

ts225-gen1 225 63322 (125) 119 4.80% 1000.0 124 0.80% 1000.0

pr226-gen1 226 40185 (134) 112 16.42% 1000.0 126 5.97% 1000.0

ts225-gen2 225 63322 6834 6499 4.90% 1000.0 6686 2.17% 1000.0

pr226-gen2 226 40185 (6615) 5556 16.01% 1000.0 6688 -1.10% 1000.0

Table 9 Results for hard STSP/OP instances.

5. CONCLUSIONS

In this paper we have presented the application of meta-heuristics to ring
network design problems. The best overall results, concerning solution
quality, computation time, and ease of use have been achieved by the
application of reactive tabu search. Comparisons with results from the
literature have shown the appropriateness of applying general heuristic
components, which are not adapted to the GRNDP but require only the
implementation of the solution space and neighborhood structure. We were
mostly able to obtain competitive results, yet our methods have been neither
calibrated nor have we done any specializations with respect to the specific
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problem type (RNDP, SRNDPR, STSP/OP). Of course, by using specialized
methods one may generally obtain better results – at the cost of more effort
in designing and implementing these methods.

From a theoretical point of view, there is no hope for a ‘perfect’ general
purpose solver that is better than any other method, because one can show
that methods must be adapted to the problem at hand to yield superior results
(Culberson 1998, Wolpert and Macready 1997). However, HOTFRAME

enables one to perform such adjustments by using adaptation points as
described above. In this respect, future research should more thoroughly
examine the general design of solution spaces and neighborhoods, and its
effects to the effectiveness of local search and corresponding meta-
heuristics.

The real-world application of the approach discussed in this paper may
require an incremental adoption path (Fink et al. 1999). However, the use of
object-oriented software technology supports a corresponding process. In
this way, our work exemplifies that integrated exploitation of knowledge
from the field of computer science and operations research can support
decision making in practice.
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