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Abstract: Inthispaper we survey the design and application of HOTFRAME, aframe-
work that provides reusable software components in the metaheuristics domain. After a
brief introduction and overview we analyze and model metaheuristics with special em-
phasis on commonalities and variabilities. The resulting model constitutes the basis for
the framework design. The framework architecture defines the collaboration among soft-
ware components (in particular with respect to the interface between generic metaheuris-
tic components and problem-specific complements). The framework is described with
respect to its architecture, included components, implementation, and application.

4.1 INTRODUCTION

Thereare several strong argumentsin favor of reusable software componentsfor meta-
heuristics. First of al, mature scientific knowledge that is aimed at solving practical
problems must also be viewed from the point of view of technology transfer. If we
consider the main metaheuristic concepts as sufficiently understood, we must strive to
facilitate the efficient application of metaheuristics by suitable means. “No systems,
no impact!” (Nievergelt (1994)) means that in practice we need easy-to-use applica
tion systems that incorporate the results of basic research. Therefore, we also have
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to deal with the issue of efficiently building such systems to bridge the gap between
research and practice. From a research point of view, software reuse may also pro-
vide away for afair comparison of different heuristics within controlled and unbiased
experiments, which conforms to some of the prescriptions in the literature (see, e.g.,
Barr et al. (1995) and Hooker (1994)).

Metaheuristics are by definition algorithmic concepts that are widely generic with
respect to the type of problem. Since algorithms are generally applied in the form
of software, adaptable metaheuristic software components are the natural meansto in-
corporate respective scientific knowledge. We have built HOTFRAME, aHeuristic Op-
Timization FRAMEwork implemented in C++, which provides adaptable components
that incorporate different metaheuristics and common problem-specific complements
as well as an architectural description of the collaboration among these components
(see Fink and Vo3 (1999b), Fink (2000)).

Others have followed or actively pursue similar research projects, which focus pri-
marily on metaheuristics based on the local search paradigm including tabu search;
see the contributionswithin thisvolume. Moreover, thereisagreat variety of software
packages for evolutionary algorithms; see Heitkotter and Beasley (2001) as well as
Chapter 10 below. On the other hand, there are some approaches to design domain-
specific (modeling) languages for local search agorithm, which are partly based on
constraint programming; see de Backer et a. (1999), Laburthe and Caseau (1998),
Michel and van Hentenryck (1999), Michel and van Hentenryck (2001a), Nareyek
(2001), as well as Chapter 9.

The adaptation of metaheuristics to a specific type of problem may concern both
the static definition of problem-specific concepts such as the solution space or the
neighborhood structure aswell as the tuning of run-time parameters (calibration). The
latter aspect of designing robust (auto-adaptive) algorithms, though being an important
and only partly solved research topic, may be mostly hidden from the user. However,
the general requirement to adapt metaheuristicsto a specific problem is amore serious
obstacle to an easy yet effective application of metaheuristics. Following the “no
free lunch theorem” we assume that there can not be a genera problem solver (and
accordingly no universal software implementation) that is the most effective method
for al types of problems (see Culberson (1998), Wolpert and Macready (1997)). This
implies that one has to provide implementation mechanisms to do problem-specific
adaptations to facilitate the effective application of reusable metaheuristic software
components.

In this paper, we survey the design and application of HOTFRAME; for a detailed
description in German we refer to Fink (2000). In the next section, we give a brief
overview of the framework indicating some of its basic ideas. In Section 4.3, we
analyze commonalities and variabilities of metaheuristics to the end that respective
formal models provide the basis for reusable software components.

The subsequent sections are organized to follow the classical phases of software
development processes. Here we assume that the reader is familiar with basic ideas of
object-oriented programming and C++. The framework architecture, which specifies
the collaboration among software components, is described in Section 4.4. In Sec-
tion 4.5, we consider basic aspects of the implementation. In Section 4.6, we sketch
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the application of the framework and describe an incremental adoption path. Finally,
we draw some conclusions.

4.2 A BRIEF OVERVIEW

The scope of HOTFRAME comprises metaheuristic concepts such as (iterated) local
search, simulated annealing and variations, different kinds of tabu search methods
(e.g., static, strict, reactive) providing the option to flexibly define tabu criteria tak-
ing into account information about the search history (attributes of performed moves
and traversed solutions), evolutionary algorithms, candidate lists, neighborhood depth
variations, and the pilot method.

The primary design objectives of HOTFRAME are run-time efficiency and a high
degree of flexibility with respect to adaptations and extensions. The principal effec-
tiveness of the framework regarding competitive results has been demonstrated for
different types of problems; see Fink and VoR3 (1999a), Fink (2000), Fink et al. (2000),
Fink and Vol3 (2001). However, claiming validity of the “no free lunch theorem”,
the user must generally supplement or adapt the framework at well-defined adapta-
tion points to exploit problem-specific knowledge, as problems from practice usually
embody distinctive characteristics.

The architecture of a software system specifies the collaboration among system
elements. The architecture of a framework defines a reusable design of systems in
the same domain. Moreover, aframework provides (adaptable) software components
(typically in accordance with the object-oriented paradigm), which encapsulate com-
mon domain abstractions. Contrary to an ordinary class library, which is some kind
of a toolkit with modules that are mainly usable independently from each other, a
framework also specifies (some of) the control flow of a system. With respect to the
variabilities of different applications in the same domain, frameworks must provide
variation points for adaptation and extension. That is, to instantiate aframework for a
particular application one generally has to complete certain parts of the implementa-
tion, according to some kind of interface definitions.

HoTFRAME aims for a natural representation of variation points identified in the
analysis of metaheuristics. Since metaheuristics are generic (abstract) agorithms,
which are variable with respect to problem-specific concepts (structures), we follow
the generic programming paradigm: A generic algorithm is written by abstracting al-
gorithms on specific types (data structures) so that they apply to arguments whose
types are as general as possible (generic algorithm = code + requirements on types);
see Musser and Stepanov (1994). HOTFRAME uses parameterization by type as the
primary mechanism to make components adaptable. Common behavior of metaheuris-
tics is factored out and grouped in generic templates, applying static type variation.
This approach leads to generic metaheuristic components which are parameterized
by (mainly problem-specific) concepts such as the solution space, the neighborhood
structure, or tabu-criteria. In C++, generic components are implemented as template
classes (or functions), which enables achieving abstraction without loss of efficiency.
Those templates have type parameters. The architecture defines properties (an inter-
face with syntactic and semantic regquirements) to be satisfied by argument types.
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For example, steepest descent (greedy local search) is generic regarding the solu-
tion space S and the neighborhood V. Accordingly, we have two corresponding type
parameters, which results in the following template:

SteepestDescent< S, N >

To streamline the parameterization of metaheuristic templates, we group type pa-
rameters in so-called configuration components, which encapsulate variation points
and their fixing. For example, we may define

struct myConfiguration

{

typedef MCKP_S S;
typedef BV_S N N;

}i
and instantiate a metaheuristic component by

SteepestDescent< myConfiguration >.

In this case, we define the solution space to be represented by a class MCKP S,
which encapsul ates solutions for the multi-constrained 0/1-knapsack problem, and we
apply a class BV_S_N, which represents the classical bit-flip neighborhood for binary
vectors. HOTFRAME provides several reusable classes for common solution spaces
(e.g., binary vectors, permutations, combined assignment and sequencing) and neigh-
borhood structures (e.g., bit-flip, shift, or swap moves). These classes can be used
unchanged (e.g., neighborhoods) or reused by deriving new classes which customize
their behavior (e.g., by defining some specific objective function). In cases where
one of the pre-defined problem-specific components fits the actual problem, the im-
plementation efforts for applying various metaheuristics can be minor, since the user,
essentially, only needs to implement the objective function in a specia class that in-
herits the data structure and the behavior from some appropriate reusable class.

Metaheuristic templates can have a set of type parameters, which refer to both
problem-specific concepts as well as strategy concepts. For example, local search
strategies may differ regarding the rule to select neighbors (moves). We have hierar-
chically separated the configuration regarding problem-specific and metaheuristic con-
cepts. Common speciaizations of general metaheuristic components are pre-defined
by configuration components that pass through problem-specific definitions and add
strategy definitions. Thisis exemplified in the following definition:

template <class C»>

struct CSteepestDescent

{
typedef BestPositivNeighbor<C> NeighborSelection;
typedef typename C::S S;
typedef typename C::N N;

bi

Then, we may customizeageneral local search frame, instantiate some metaheuris-
tic object, and use it as shown in the following example:
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myHeuristic = new IteratedLocalSearch
< CSteepestDescent< myConfigurations> >;
myHeuristic->search( initialSolution );

Advantages of this design are that it provides a concise and declarative way of
system specification, which decreases the conceptual gap between program code and
domain concepts (known as achieving high intentionality) and simplifies managing
many variants of a component. Moreover, the resulting code can be highly run-time
efficient.

4.3 ANALYSIS

Developing a framework requires a solid understanding of the domain under consid-
eration. That is, we must develop a common understanding of the main metaheuristic
concepts and the scope of the framework. Therefore, it is important to comprehen-
sively analyze the domain and to devel op a concrete and detailed domain model. This
domain model comprises the commonalities and variabilities of metaheuristics, lay-
ing the foundation for the design of reusable software components with correspond-
ing means for adaptation. In the following, we give a semi-formal domain model of
the considered metaheuristics. The concise descriptions presuppose that the reader
knows about metaheuristic concepts such as (iterated) local search, simulated an-
nealing and variations, and different kinds of tabu search methods (see, e.g., Reeves
(1993), Rayward-Smith et al. (1996), Laporte and Osman (1996), Osman and Kelly
(1996), Aarts and Lenstra (1997), Glover and Laguna (1997), Vol et al. (1999), and
Ribeiro and Hansen (2002)).

4.3.1 Problem-Specific Concepts

The first step in analysis is the definition of the commonalities (shared features) of
different types of problems by an abstract model. Such a model (“domain vocabu-
lary™), which captures problem-specific concepts with the same external meaning, is
an essential basis to define metaheuristics, i.e., algorithmic concepts which are widely
generic with respect to the type of problem. Eventually, when applying metaheuris-
tics to some specific type of problem, these abstractions have to be instantiated by the
specific structures of the problem at hand.
There are different types of

problems P

with
probleminstances pe P.

For every problem, there are one or more
solution spaces  Sp(p)

with
solutions s € Sp(p) .
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For ease of notation, we generally restrict to s € S (where S replaces S p(p)) when
there are no ambiguities; this also concerns the subsequent notation. Solutions are
evaluated by an

objectivefunction f:S —R.

We generally formulate problems as minimization problems; i.e., we strive for mini-
mization of f.

To efficiently manage information about solutions (in connection with some tabu
search method), we may need afunction

h:S— Sy
which transforms solutions to elements of a suitable set S;,. With respect to efficiency,
one mostly uses non-injective (“ approximate”) functions (e.g., hash-codes).
For every solution space S, there are one or more
neighborhoods Ng
which define for each solution s € .S an ordered set of neighboring solutions
Ns(s) ={ni(s),-.-,nns(s)(8)} -
Such aneighborhood is sketched in Figure 4.1.

Misy(S)

ns(s)

Figure 4.1 Neighborhood

From a transformation point of view every neighbor n(s) € N g(s) of a solution
s € S correspondsto a
move u(s,n(s)) .

So we can also define a neighborhood as

Ng(s) = {lu‘l = /"(Sanl(s))a co s HNg(s)] = :u(sanle(s)\(S))} :



HOTFRAME: A HEURISTIC OPTIMIZATION FRAMEWORK 87
Moves 1i(s,n(s)) € N§(s) areevaluated by a
moveevaluation  f(u(s,n(s))) ,

whichisoften defined as f(s) — f(n(s)). Other kinds of move eval uations, e.g., based
on measures indicating structural differences of solutions, are possible. In general,
positive values should indicate “improving” moves. Move evaluations provide the
basis for the guidance of the search process.

Both solutions and moves can be decomposed into

attributes ¢ € U |

with ¥ representing some attribute set, which may depend on the neighborhood. A
solution s correspondsto a set

P(s) = {11(8), -, Yy(s)(8)} With ;(s) € U Vj=1,...,[¢h(s)].

The attributes of a move u may be classified as plus and minus attributes, which cor-
respond to the characteristics of a solution that are “created” or “destroyed”, respec-
tively, when the moveis performed (e.g., inserted and del eted edges for a graph-based
solution representation). A move u correspondsto a set of plus and minus attributes:

Y(p) = () U P (w)
= {@bf(/‘):---:w@ﬂu”(l‘)} u {@bf(/‘)a---a@bﬁp—(u)‘(ﬂ)}
= {1, Dy ()} -

Finally, we denote the inverse attribute of 1 by .

4.3.2 Metaheuristic Concepts

In this section, we define some of the metaheuristic conceptsincluded in HOTFRAME.
We restrict the descriptions to (iterated) local search, simulated annealing (and vari-
ations), and tabu search, while neglecting, e.g., candidate lists, evolutionary methods
and the pilot method. At placeswe do not give full definitions of various metaheuris-
tics components (modules) but restrict ourselvesto brief sketches. That is, the follow-
ing descriptions exemplify the analysis of metaheuristics with respect to commonali-
ties and variabilities, without providing a complete model.

There are two kinds of variabilities to be considered for metaheuristics. On the
one hand, metaheuristics are generic regarding the type of problem. On the other
hand, metaheuristics usually provide specific variation points regarding subordinate
algorithms (aspects such as move selection rules or cooling schedules) and smple
parameters (aspects such as the termination criterion). Accordingly, a configuration C
of ametaheuristic H iscomposed of adefinition of asubset C p of the problem-specific
abstractions (S, NV, h, ¥) discussed in the previous subsection, and of a configuration
C'y that is specific to the metaheuristic. Given such aconfiguration C', ametaheuristic
defines atransformation of an initial solution s to asolutions’: Hg : s — s'.
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In the following descriptions, we use straightforward pseudo-code (with impera-
tive and declarative constructs) and data structures such as lists or sets, without car-
ing about, e.g., efficiency aspects. That is, such analysis models define meaning but
should not necessarily prejudice any implementation aspects. In the pseudo-code de-
scription of algorithms, we generally denote a parameterization by “< ... >" to de-
fine algorithmic variation points, and we use “(...)" to define simple value param-
eters (e.g., the initial solution or numeric parameters). When appropriate, we spec-
ify standard definitions, which allows using a gorithms without explicitly defining al
variation points. By the symbol ¢ we denote non-relevance or invalidity. To sim-
plify the presentation, we use () to denote an additional termination criterion, which
is implicitly assumed to be checked after each iteration of the local search process.
By w we include meansto specify external termination, which isuseful, e.g., in online
settings. Using our notation, the interface of a metaheuristic H may be defined by
H < C > (8, Tmax, Imax,w). Such a metaheuristic with configuration C' transforms
aninitial solution s, given a maximum computation time 7', @ maximum iteration
number I,,,.x, and an external termination criterion w.

To model the variation points of metaheuristics, we use feature diagrams, which
provide a concise means to describe the variation points of concepts in a manner in-
dependent from any implementation concerns (see Czarnecki and Eisenecker (2000),
Simos and Anthony (1998)).

IteratedLocalSearch

best positive

first positive

Figure 4.2 Feature Diagram for Simple Local Search Methods

4.3.2.1 Iterated Local Search. Figure 4.2 shows afeature diagram for sm-
ple local search methods (IteratedLocalSearch). In principle, all such local search
procedures are variable regarding the solution space and the neighborhood structure.
That is, S and N are mandatory features (denoted by thefilled circles). The crowsfeet
indicate that S and NV are considered as abstract features, which have to be instanti-
ated by specific definitions/implementations. At the center of any iteration of alocal
search procedure is the algorithm for selecting a neighbor. The diagram shows that
there are four alternatives for instantiating this feature (denoted by the arc): select the
best neighbor out of N (s) with a positive move evaluation, select the best neighbor
even if its evaluation is non-positive, select the first neighbor with a positive move
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evaluation, or select a random neighbor. The diversification feature is optional (de-
noted by the open circle), since we do not need a diversification mechanism, e.g.,
when we specialize IteratedLocalSearch as a one-time application of agreedy local
search procedure. The termination criterion €2 is a mandatory feature, which has to
be defined in a general way. Finaly, thereis a feature that allows to specify whether
the search procedure should return the best solution found or the last solution tra-
versed. The latter optionis useful, e.g., when we use alocal search procedure with a
random neighbor selection rule as a subordinate diversification component of another
metaheuristic.

The feature diagram defines the basic variation points of the considered concept.
On this basis, Algorithm 1 formally defines the specific meaning of IteratedLocal-
Search. While not giving formal definitions of all the features, Algorithm 2 exem-
plifies such a sub-algorithm. By using BestPositiveNeighbor, we may instantiate
IteratedLocalSearch to generate SteepestDescent (as shown in Algorithm 3). In
a similar manner, we may generate a RandomWalk procedure, which may again be
used to generate a more complex procedure as shown in Algorithm 4.

Algorithm 1 Iteratedl ocal Search

IteratedLocalSearch
< S, N, Neighbor Selection, Diversification >
(8, Tmax = 00, Imax = 00, Rmax = 1,w = false, returnBest = true) :

Q: (t > Tmax) OF (w)

Shest = S,
for r = 1t0 Rmax
ifr>1
Diversification(s);
1=0;
do
i=i+1;
s' = NeighborSelection< S, N >(s);
if s"isvalid
s=s';
if f(S) < f(sbest)
Sbest = S,
while (s’ isvalid) and (i < Imax);
if returnBest
8 = Sbests
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Algorithm 2 BestPositiveNei ghbor

BestPositiveNeighbor < S, N > (s)

Jj = agmax{f(u(s,n;(s)))[j=1,...,IN(s)|};
it f(u(s,m;(s))) >0

return n;(s);
else

return ¢;

Algorithm 3 SteepestDescent

SteepestDescent < S, N > (s, Tiax, Imax, w) :

IteratedLocalSearch < S, N, BestPositiveNeighbor, ¢ >
(57 Tmax; Imax; ]-, w, trUE);

Algorithm 4 IteratedSteepestDescentWithPerturbationRestarts

IteratedSteepestDescentWithPerturbationRestarts < S, N >
(8, Tmax, Imax, Rmax, Perturbations, w) :

IteratedLocalSearch
< S, N, BestPositiveNeighbor,
RandomWalk < S, N > (¢, oo, perturbations, w, false) >
(Sa T‘maxa Imax7 Rmax; w, true);
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4.3.2.2 Simulated Annealing and Variations. Figure4.3showstheHoT-
FRAME feature diagram of simulated annealing and variations. Besides S and IV, the
principal features of such concepts are the acceptance criterion, the cooling schedule,
and an optional reheating scheme.

SimulatedAnnealing

n ‘AcceptanceCriterion‘ ‘CoolingSchedule‘ ‘ Reheating‘
7

exponential

Hajek

delta threshold
geometric great deluge

absolute threshold half of initial

‘Lundi/Mees ‘ ‘ record to record ‘

Figure 4.3 Feature Diagram for Simulated Annealing

The agorithmic commonalities of some set of simulated annealing like procedures
are captured in Algorithm 5. After defining all the features (not shown here), we
may generate a classic simulated annealing heuristic as shown in Algorithm 6. Some
straightforward variations of this procedure are defined in Algorithms 7-9.

Nevertheless, it is not reasonable to try to capture all kinds of special simulated
annealing procedures by one general simulated annealing scheme. Thisis exemplified
by showing, in Algorithm 10, a simulated annealing procedure which strongly devi-
ates from the general scheme of Algorithm 5. We define such a procedure separately,
while we may use the general smulated annealing features as defined above. Given
a parameter initial AcceptanceFraction, the starting temperature is set so that the ini-
tial fraction of accepted moves is approximately initial AcceptanceFraction. At each
temperature sizeFactor x | N| move candidates are tested. The parameter frozenAccep-
tanceFraction is used to decide whether the annealing processis frozen and should be
terminated. Every time atemperature is completed with less than frozenAcceptance-
Fraction of the candidate moves accepted, a counter isincreased by one. This counter
is reset every time a new best solution is found. The procedure is terminated when
the counter reaches frozenParemeter. Then it is possible to reheat the temperature to
continue the search by performing another annealing process. Algorithm 10 includes
default values for the parameters according to the recommendation in Johnson et al.
(1989).
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Algorithm 5 GeneralSimulatedAnnealing

GeneralSimulatedAnnealing
< S, N, AcceptanceCriterion, CoolingSchedule, Reheating >
(s, Timax = 00, Imax = 00, w = false, returnBest = true,
70, Rmax = 1, deltaRepetitions = 1, numberOfReheatings = 0) :

Q: (t > Tmax) OF (w)

Sbest = S,
for h = 1 to numberOfReheatings + 1
if h>1
7o = Reheati ng(7—07 Thest T);
ese
Thest = T0s
T = To,
i =0;
do
for r = 1t0 Ryax
i=i+1;
s' = RandomNeighbor< S, N >(s);
if AcceptanceCriterion(r, f(u(s, s')), f(s'))

7 = CoolingSchedule.moveAccepted(r, f(u(s, s")), f(s");

s=s";

if f(S) < f(sbest)
Sbest = S5,
Thest = T

7 = CoolingSchedul e.newBestObjective(f(s));
else
T = CoolingSchedule.moveRejected(r, f(u(s, s")), £(s));

7 = CoolingSchedul e.repetitionl nterval Done(r, g, 7 );

Rpax = | deltaRepetitions - Rmax];
whilei < Iax;

if returnBest

S = Sbest,
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Algorithm 6 ClassicSimulatedAnnealing

ClassicSimpleSimulatedAnnealing < S, N > :
(SaT‘maxaImaxawaT()aaab)

GeneralSimulatedAnnealing <S, N, ClassicExponentialAcceptanceCriterion,
GeometricCooling < a >, ¢ >
(S, T‘maxa Imax; w, true; 70, ]-7 b7 0)’

Algorithm 7 ThresholdAccepting

ThresholdAccepting < S, N > :
(Sa T‘maxa Imax7 w, 70, &, b)

GeneralSimulatedAnnealing < S, N, ClassicThresholdAcceptanceCriterion,
GeometricCooling < a >, ¢ >
(S, T‘maxa Imax; w, true; 70, ]-7 b7 0)’

Algorithm 8 GreatDeluge

GreatDeluge < S, N >
(Sa T‘maxa Imax7 w, 79, 0, A2, b)

GeneralSimulatedAnnealing <S, N, AbsoluteThresholdAcceptanceCriterion,
GreatDelugeCooling < ai,as >,¢ >
(S, T‘maxa Imax; w, true; 70, ]-7 b7 0),

Algorithm 9 RecordToRecordTravel

RecordToRecordTravel < S, N >
(87 Tmax: Imax: w, 7o, &, b)

GeneralSimulatedAnnealing <S, N, AbsoluteThresholdAcceptanceCriterion,
RecordToRecordTravelCooling < a >, ¢ >
(87 Tmax: Imaxa w, true, 79, la b: 0)!




94 OPTIMIZATION SOFTWARE CLASS LIBRARIES

Algorithm 10 SimulatedAnnealingJetal

SimulatedAnnealingJetal
< S, N, AcceptanceCriterion, CoolingSchedule, Reheating >
(s, Timax = 00, Imax = 00, w = false, returnBest = true,
initial AcceptanceFraction = 0.4, frozenAcceptanceFraction = 0.02,
sizeFactor = 16, frozenParameter = 5, numberOfReheatings = 0) :

Q: (t > Tiax) OF (i > Lnax) OF (w)

performtrial annealing run to determine 7 such that
initialAcceptanceFraction of the neighbors are accepted;

Sbest = S,
for h = 1 to numberOfReheatings + 1
ifh>1
7o = Reheating(7o, Thest, 7);
else
Thest = T0;
T = To,
frozenCounter = 0;
1 =0;
do
ki =ky=0;

Rumax = | sizeFactor - |[N(s)]];
for r = 1t0 Rax

t=1+1;

s' = RandomNeighbor< S, N >(s);

if AcceptanceCriterion(r, f(u(s,s')), f(s"))
it f(u(s,s")) >0

ki=k +1,
else

ko =ko + 1,
s=s";

If f(S) < f(sbest)

Shest = S; Thest = 7, frozenCounter = 0;
T = CoolingSchedul e.repetitionl nterval Done(r, o, 7 );
if ((k1 + k2)/Rmax < frozenAcceptanceFraction) or (k1 = 0)
frozenCounter = frozenCounter + 1;
while frozenCounter < frozenParameter;
if returnBest
S = Shest,
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4.3.2.3 Tabu Search. TheHOTFRAME featurediagram of tabu searchisshown
in Figure 4.4. Besides S and N, the principal features of tabu search are the tabu
criterion and the rule to select neighbors. Moreover, there may be an explicit diversi-
fication scheme. We explicitly model the strict tabu criterion (i.e., defining a move as
tabu if and only if it would lead to an already traversed neighbor solution), the static
tabu criterion (i.e., storing attributes of performed movesin atabu list of afixed size
and prohibiting these attributes from being inverted), and the reactive tabu criterion
according to Battiti and Tecchiolli (1994).

TabuSearch

.

TabuCriterion

‘ TabuNeighborSelection ‘

U

strict ‘ static‘ ‘ reactive‘ ‘bestadmissible‘

‘best considering penalties ‘

‘by trajectow‘ ‘ by REM‘

] vl
N /N

Figure 4.4 Feature Diagram for Tabu Search

AspirationCriterion

The agorithmic commonalities of a tabu search metaheuristic are shown in Algo-
rithm 11. Classic tabu search approaches control the search by dynamically classifying
neighbors and corresponding moves as tabu. To implement tabu criteria, one usesin-
formation about the search history: traversed solutions and/or attributes of performed
moves. Using such information, a tabu criterion defines whether neighbors and cor-
responding moves are classified as tabu. A moveis admissible if it is not tabu or an
aspiration criterion is fulfilled. That is, aspiration criteria may invalidate a tabu clas-
sification (e.g., if the considered move leads to a neighbor solution with a new best
objective function value). The tabu criterion may also signal that an explicit diversi-
fication seems to be reasonable. In such a case, a diversification procedureis applied
(e.g., arandom walk).

The most popular approach to apply the tabu criterion as part of the neighbor se-
lection procedureis by choosing the best admissible neighbor (Algorithm 12). Alter-
natively, some measure of the tabu degree of a neighbor may be used to compute a
penalty value that is added to the move evaluation (Algorithm 13). With regard to the
latter option, the tabu criterion provides for each move a tabu degree value (between 0
and 1). Multiplying the tabu degree with a parameter ¢ results in the penalty value.

The considered tabu criteria are defined in Algorithms 14-17. In each case, the
tabu memory is modeled by state variables using simple container data structures such
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Algorithm 11 TabuSearch

TabuSearch
< S, N, TabuCriterion, TabuNeighbor Selection, Diversification >
(SaTmax = OO,ImaX = 0o0,w = false) .

Q . (t Z Tmax) or (w)

Sbest = S,
i =0;
whilei < Ijax
t=1+1,
s' = TabuNeighbor Sdlection< S, N, TabuCriterion >(s);
TabuCriterion.add(u(s, s'), 4);
s=s';
TabuCriterion.add(s, i);
if f(S) < f(sbest)
Sbest = S,
if TabuCriterion.escape()
Diversification(s);
S = Sbest,

Algorithm 12 BestAdmissibleNeighbor

BestAdmissibleNeighbor < Aspiration >< S, N, TabuCriterion > (s) :

if 3j € {1,...,|N(s)|} : (not TabuCriterion.tabu((s, n;(s)), n;(s)))
or (Aspiration(u(s,n;(s)), TabuCriterion))
J= argmax{f(u(s,nj(s))) l7=1,...,IN(s)l,
(not TabuCriterion.tabu(u(s, n;(s)),n;(s)))
or (Aspiration(u(s,n;(s)), TabuCriterion))};
return n;(s);
else
return RandomNeighbor < S, N >(s);

as lists or sets, which are parameterized by the type of the respective objects. If lists
are defined as having a fixed length, objects are inserted in afirst-in first-out manner.
Not all tabu criteria implement all functions. For instance, most of the tabu criteria
do not possess means to detect and signal situations when an explicit diversification
seems to be reasonable.

The strict tabu criterion can be implemented by storing information about al tra-
versed solutions (using the function k). In Algorithm 14, we do not apply frequency
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Algorithm 13 BestNeighborConsideringPenalties

BestNeighborConsideringPenalties < Aspiration, o >
< S, N, TabuCriterion > (s) :

if Aspiration(u(s, nj (s)), TabuCriterion)
j = argmax{f(u(s,n;(s)))]j=1,...,|N(s)
else R
J = argmax{ f(u(s,n;(s)))
+ o - TabuCriterion.tabuDegree(u(s, n;(s)), n;(s))
[j=1,...,IN(s)[};

h

return n;(s);

Algorithm 14 StrictTabuCriterionByTrajectory

StrictTabuCriterionByTrajectory < S, h > :
State: Set< S, > trajectory;

add(s, ¢) :
trajectory.insert(h(s));

tabu(o, s’) :
if s € trajectory
return true;
else
return false;

tabuDegree(¢, s') :
if s’ € trajectory
return 1;
else
return 0;

or recency information to compute a relative tabu degree but simply use an absolute
tabu classification. In principle, the strict tabu criterion is a necessary and sufficient
condition to prevent cycling in the sense that it classifies exactly those moves as tabu
that would lead to an already traversed neighbor. However, as one usually applies
a non-injective (“approximate”) function h, moves might unnecessarily be set tabu

(when “collisions’ occur); see Woodruff and Zemel (1993).

As an alternative implementation of the strict tabu criterion, the reverse elimination
method (REM, Algorithm 15) exploits logical interdependencies among moves, their
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attributes and respective sol utions (see Glover (1990), Dammeyer and Vof3 (1993), VVoi3
(1993a), Vo’ (1995), Vol3 (1996)). A running list stores the sequence of the attributes
of performed moves (i.e., the created and destroyed solution attributes). In every it-
eration, one successively computes a residual cancellation sequence (RCS), which
includes those attributes that separate the current solution from a formerly traversed
solution. Every time when the RCS exactly constitutes a move, the corresponding in-
verse move must be classified as tabu (for one iteration). It should be noted that it is
not quite clear how to generally implement the REM tabu criterion for multi-attribute
moves in an efficient way. For this reason, the REM component of HOTFRAME is
restricted to single attribute moves that may be coded by natural numbers.

The strict tabu criterion is often too weak to provide a sufficient search diversifica-
tion. We consider two options to strengthen the tabu criterion of the REM. The first
alternative uses the parameter tabuDuration to define a tabu duration longer than one
iteration. The second uses the parameter rcsLengthParameter to define athreshold for
the length of the RCS, so that all possibilities to combine (subsets of) the attributes of
the RCS of a corresponding maximum length as a move are classified as tabu.

The static tabu criterion is defined in Algorithm 16. The parameter ¥ representsthe
decomposition of movesin attributes. The parameter « definesthe capacity of the tabu
list (as the number of attributes). The parameter v defines the number of attributes of
amove, for which there must be inverse correspondentsin the tabu list to classify this
move as tabu. Furthermore, v is also the reference value to define a proportional tabu
degree.

Algorithm 17 shows the mechanism of the tabu criterion for reactive tabu search.
With regard to the adaptation of the length of the tabu list, a history stores informa-
tion about traversed moves. This includes the iteration of the last traversal and the
frequency. The actual tabu status/degree is defined in the same way as for the static
tabu criterion using the parameter . The adaptation of thetabu list length is computed
in dependence of the parameters §; and d:. When are-traversal of a solution occurs,
thelist is enlarged considering a maximum length . Depending on an exponentially
smoothed average iteration number between re-traversals (using a parameter 6), the
length of the tabu list is reduced if there has not been any re-traversal for some time.
If there are (; solutions that each have been traversed at least (> times, the apparent
need for an explicit diversification is signalled.

The parameterization of TabuSearch and of the used modul es enables various pos-
sibilities to build specific tabu search heuristics. For example, Algorithm 18 (Strict-
TabuSearch) encodes the simplest form of strict tabu search: All traversed solutions
are stored explicitly (id represents the identity function), which means that they are
classified as tabu in the subsequent search process. Algorithm 19 (REMpen) shows
the enhanced reversed elimination method in combination with the use of penalty
costs. Static tabu search is shown in Algorithm 20. Algorithm 21 defines reactive
tabu search in combination with the use of RandomWalk as diversification mecha-
nism (setting most of the parameters to reasonable default values).
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Algorithm 15 REM TabuCriterion

REMTabuCriterion < S, N, ¥ >
(tabuDuration, rcsLengthParameter) :

State: List< ¥ > runningList;
Set< (Set< ¥ >, Integer) > tabuList;

add(p,1) :
for j = 1to[y(p)|
runningList.append (¢ ;(1));
RCS= 0);
for j = |runningList| downto 1
if runningList[j] € RCS
RCS= RCS\ runningList[;];
else
RCSinsert(runningList[;]);
if [IRCY < rcsLengthParameter
tabuList.append(RCS i + tabuDuration);

tabu(u, ¢)
if (p) € tabuList and p was set tabu not longer than

tabuDuration iterations before
return true;
else
return false;

tabuDegree(u, ¢) :
if ¢(p) € tabuList and p was set tabu not longer than
tabuDuration iterations before
return (remaining tabu duration of ) /tabuDuration;
else
return 0;
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Algorithm 16 StaticTabuCriterion

StaticTabuCriterion < S, N, ¥ > (v, k) :

State: List< ¥, x > tabuList;

add(u, ¢) :
for j = 1to[y™ (u)]
tabuList.append(s;" (1));

) )
k=0;
orj=1to[y (u)
if ¢, (n) € tabulist
k=k+1,
ifk>v
return true;
else
return false;

tabu(u, ¢
f

tabuDegree(u, ¢)
k =0;
for j = 1to |4~ ()|
if 7 (n) € tabulist
kE=k+1;
return min{k/v, 1};
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Algorithm 17 ReactiveTabuCriterion

ReactiveTabuCriterion < S, N, U, h > (v, 41,02, k,(1,(2,0) :

State: List< ¥ > tabuList;
Set< (Sy, Integer, Integer) > trajectory;
movingAverage = lastReaction = 0;

add(u, ¢) :
for j =1to |yt ()|
tabuList.append(y} ());
add(s,i) :

if h(s) € trajectory (with corresponding iteration k)
extend length [ of tabuList to min{max{[l-d1],] + 02}, k};
lastReaction = i;
movingAverage = 6 - (i — k) + (1 — #) - movingAverage;
update iteration to ¢ and increment frequency of A(s);
if there are (; solutionsin trajectory
that have been traversed (> times or more
trigger escape;
else
trajectory.insert(h(s), i, 1);
if i — lastReaction > movingAverage
reduce length [ of tabuList to max{min{[l/d;],! — 02}, J2};
lastReaction = i;

if@bj*(u) € tabuList
k=k+1,
if £ > vreturntrue;
elsereturn false;

tabuDegree(u, ¢) :
k=0;
for j = 1to [y~ (p)|
if 7 (1) € tabulist
k=k+1,
return min{k/v,1};
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Algorithm 18 StrictTabuSearch

StrictTabuSearch < S, N > (s, Tiax, Imax, w) :

TabuSearch <SS, N, StrictTabuCriterionByTrajectory < S, id >,
BestAdmissibleNeighbor < ¢ >, ¢ >
(57 Tmax; Imax; CU),

Algorithm 19 REMpen

REMpen < S, N, ¥ >
(8, Tmax, Imax,w, tabuDuration, rcsLengthParameter, o) :

TabuSearch <S, N,
REMTabuCriterion
< S, N, ¥ > (tabuDuration, rcsLengthParameter),
BestNeighborConsideringPenalties < ¢,0 >, ¢ >
(57 Tmax; Imax; CU),

Algorithm 20 StaticTabuSearch

StaticTabuSearch < S, N, ¥ > (s, Tmax, Imax, W, V, &)

TabuSearch <S5, N, StaticTabuCriterion < S, N, ¥ > (v, k),
BestAdmissibleNeighbor < ¢ >, ¢ >
(57 Tmaxs Imax, w);

Algorithm 21 ReactiveTabuSearch

ReactiveTabuSearch < S, N, ¥, h >
(s, Tmax, Imax, w, v, K, perturbations) :

TabuSearch
< S, N, ReactiveTabuCriterion < S, N, ¥ h > (v,1.2,2,k,3,3,0.5),
BestAdmissibleNeighbor < ¢ >,
RandomWalk< S, N> (¢, co, perturbations, w, false) >
(8, Tmax> Imax, W);
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4.4 DESIGN

Design involves modeling the principal abstractions defined in the domain analysis
(Section 4.3) as artefacts, which may more or less be directly implemented as soft-
ware (modules). This especialy concerns the design of a framework architecture,
which defines the interplay between software components by means of interface spec-
ifications. In particular, such a framework specifies (some of) the control flow of
a system. Besides the architecture, a framework defines adaptable software compo-
nents, which encapsulate common domain abstractions. To be adaptable with respect
to the variabilities of different applications in the considered domain, a framework
provides variation points, which allow modifying or completing certain parts of the
implementation.

In this section, we give an overview of framework architecture. The primary design
decisions are about mechanisms that define the interplay between metaheuristics and
problem-specific components. These mechanismsinvolve advanced concepts to adapt
and combine components, which requires adequate implementation mechanisms in
the programming language employed.

The main constructs to implement adaptable (polymorphic) software components
are object-oriented inheritance and genericity by type parameters. Inheritance allows
adapting classes by deferring the specific implementation of (some of) the class opera-
tionsto specialized classes, which inherit the common data structure and functionality
from respective general (base) classes. Type parameterization means that methods
and classes may have some kind of type “placeholders’, which allow for speciaiza-
tion (instantiation) by fixing the type parameters by specific types/classes. In both
cases, general classes serve as starting points to modify and extend the common data
structures and algorithmsidentified in the analysis by the specific needs of the applica-
tion under consideration. The widely used programming language C++ provides both
kinds of adaptation constructs (inheritance as well as genericity), as well as enabling
run-time efficient software implementations. For a detailed exposition and discussion
of software construction, in particular object-oriented programming, inheritance, and
genericity, we refer, in general, to Meyer (1997) and, in particular for C++, to Strous-
trup (1997).

4.4.1 Basic Design Concepts

In thefollowing, we describe the basic design concepts of HOTFRAME. In some cases,
we simplify alittle bit to explain our approach. The understanding of the basic design
enables a concise description of the architecture and the components later on.

4.4.1.1 Genericity of Metaheuristics. The primary design decision of
HOTFRAME is about the interplay between generic metaheuristics components and
problem-specific components. The features common to metaheuristics are captured
in metaheuristic algorithms (i.e., corresponding software components) as shown in
Section 4.3. These algorithms operate on problem-specific structures (C p, see Sec-
tion 4.3.1), in particular the solution space and the neighborhood. The natural way to
implement thiskind of polymorphismisby means of type parameterization. This con-
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cept refers to the generic programming paradigm, where algorithms are variable with
respect to the structures (types) on which they operate. In C++, type parameterization
isimplemented in a static manner, as the instantiation, the fixing of type parameters of
so-called template classes, is done at compiletime.

We illustrate this basic idea by means of the example of a template class Steep-
estDescent; see the UML class diagram shown in Figure 4.5. (In fact, the steepest
descent algorithm is generated as a specialization of an iterated local search software
component.) The actual search algorithm is implemented by the operation (member
function) search, which transforms an initial solution (passed to the operation). We
use classes (instead of singular methods) to represent metaheuristics to enable storing
search parameters or the state of a (not yet completed) search process. This allows
treating an algorithm as a dynamic object (an instance of a class with state informa-
tion), which may be constructed, used, and stored. (Furthermore, using classes to
represent algorithms allows to adapt these algorithms by means of inheritance. How-
ever, to keep the design straightforward, we do not use this feature for the methods
implemented in HOTFRAME.)

SteepestDescent [

while 3s' € N(s) : f(s') < f(s)
search(s:S) e j=argmax {f(, (s, n(s)))1j=1, ... IN(S)I %

s =n(s);

Figure 4.5 Class Diagram for SteepestDescent (Simplified)

The template parameters S and N are some sort of placeholders for the solu-
tion space and the neighborhood structure. Specific solution spaces and neighbor-
hood structures must be implemented as classes with operations that conform to func-
tional requirements that are derived from the analysis discussed in Section 4.3 (such
interfaces are discussed below). Constructing a specialized class from a template
class means defining for each template parameter a specific instantiation. This re-
sults in a class that is adapted with regard to a problem-specific configuration. That
is, we have specialized a metaheuristic (template class) as a problem-specific heuris-
tic (class). Henceforth, by calling some class constructor method (not shown in the
figure) with respective parameter values (e.g., termination criteria), we can construct
specific heuristic objects, which can be applied to transform an initial solution.

4.4.1.2 Variabilities of Metaheuristics. |nadditionto the problem-specific
adaptation C'p, metaheuristics are variable with respect to the configuration C' g that
is specific to the metaheuristic. For example IteratedLocalSearch (see Figure 4.2
or Algorithm 1) is variable regarding the neighbor selection rule and the diversifica-
tion. These algorithmic abstractions may also be treated as template parameters of the
generic metaheuristic class. On the other hand, the termination criterion concernssim-
ple numeric parameters. That is, the termination criterion is not modeled by template
parameters but by simple data parameters and corresponding class data elements. The
same applies for the parameter that defines whether the algorithm should return the
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best or the last traversed solution. This resultsin the UML class diagram as shown in
Figure 4.6.

IS

| N
IteratedLocalSearch } gelghborSelectlon
|

iversification
Tonax Tt
Ima o
R [S,N |
® BestPositiveNeighbor ~ -— 1
returnBest
search(s:S)
<<bind>>
N (NeighborSelection=BestPositiveNeighbor<S,N>,
~_ Diversification=¢ )
S ——
' §,N |
SteepestDescent b= I

Figure 4.6 Class Diagram for IteratedLocalSearch (Simplified)

Components that are used to instantiate template parameters often have type pa-
rameters by themselves. For example, the component BestPositiveNeighbor, which
is used to instantiate the template parameter NeighborSelection, is parameterized by
the solution space and the neighborhood structure; see Figure 4.6. To denote the par-
tial specialization of the generic class IteratedLocalSearch as (a still generic class)
SteepestDescent, we use the UML stereotype bind, which means that we fix two
out of four type parameters of IteratedLocalSearch.

Since different metaheuristics certainly possess different (static aswell as dynamic)
parameters, we have to define and implement for each of the general metaheuristics
formulated in Section 4.3.2 (IteratedLocalSearch, GeneralSimulatedAnnealing,
TabuSearch) a corresponding metaheuristic component (template class). As dis-
cussed for SimulatedAnnealingJetal, there can aso be distinct modifications of a
metaheuristic that result in specialized components, which are not directly derived
from the general metaheuristic. That is, it does not seem reasonable to follow some
“one component fits all” approach, since there will always be some distinct modifica-
tions, which one has not thought about when defining and implementing the “general”
metaheuristic. In particular, one should not try to capture in one large (complicated)
component all kinds of variation points. HOTFRAME allows to define such new meta-
heuristic components, which, of course, may reuse problem-specific components and
other elementary components.

4.4.1.3 Neighborhood Traversal. The iterative traversal of the neighbor-
hood of the current solution and the selection of one of these neighbors is the core
of metaheuristics that are based on the local search approach. A generic implemen-
tation of different neighbor selection rules requires flexible and efficient access to the
respective neighborhood. The basic idea of generic programming — algorithms oper-
ate on abstract structures — conforms to the neighborhood traversal task and enables
an efficient and flexible design.

The different neighbor selection rules imply a few basic requirements, which are
illustrated in Figure 4.7 (adaptation of Figure 4.1). Thetraversal of the neighborhood
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N(s) of asolution s conforms to a sequence of moves u that correspond to neighbor
solutionsn;(s), i =1,...,|N(s)|.
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Figure 4.7 Neighborhood Traversal

Theimplementation of aneighbor selection rule such as BestNeighbor impliesthe
need for the following basic functionality:

m  Construction of amoveto thefirst neighbor 71 (s)

= Increment of avalid move to the subsequent neighbor (in accordance with C++
represented by an increment operator “++")

= Computation of the move evaluation f (1)
m  Check for validity of amove

In principle, this functionality is also sufficient to implement the other neighbor se-
lection rules. However, with respect to run-time efficiency we may need to directly
construct a move to a random neighbor for metaheuristics such as simulated anneal-
ing. Otherwise, to construct arandom neighbor, we would have to construct all moves
and to select one of these by chance. Thisis obviously not practical for metaheuristics
that require the efficient construction of a random move in each iteration. So we also
require the following functionality:

m  Direct construction of amoveto arandom neighbor

However, only suitable neighborhood structures alow an efficient implementation of
the selection of arandom move, if one requiresto apply auniform probability distribu-
tion. Thereis often atrade-off between the run-time of the random move construction
and the quality of the probability distribution. So one generally may need to cope with
non-uniform move selection for certain neighborhood structures.

The functionality of the neighborhood traversal largely conforms to the iterator
pattern, which is about a sequential traversal of some (container) structure without
knowing about the specific representation of this structure. That is, the iterator pattern
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explicitly separates structures from algorithms that operate on these structures; see
Gammaet a. (1995). Accordingly, we may refer to respective neighborhood classes
as neighborhood iterator classes. The design of these classes is based on the concept
of the iterator classes of the Sandard Template Library; see Musser and Saini (1996).
The solution classtakesthe virtual role of acontainer class (solution space). Movesas
objects of a neighborhood iterator class store a reference to a particular solution and
transformational information with respect to the neighbor solution wherethey point to.
For reasons of efficiency, it is apparently not reasonable to physically construct each
neighbor solution object but only the neighbor solution that is eventually selected as
the new current solution.

To illustrate the neighborhood traversal, we show a (simplified) generic method
that implements the selection of the best neighbor (C++ code):

template <class S, class N>
N BestNeighbor ( const S& s )
{
N move N( &s, FirstNeighbor ) ;
N best = move;
if ( move.isValid() )
++move;
while ( move.isValid() )

{

if ( *best < *move )
best = move;
++move ;

}

return best;

}i

Thistemplate method is generic with respect to the solution space S and the neighbor-
hood structure N, which are modeled as type parameters. For the dynamic parameter
s, the first neighbor of this solution is constructed (i.e., the corresponding move).
Then, in each iteration, the next move is constructed (increment operator), checked
for validity, and compared with the best move obtained so far.

4.4.1.4 Commonalities and Variabilities of Problem-Specific
Abstractions. Theprincipal problem-specific abstractions (solution space, neigh-
borhood structure, ...) are modeled by corresponding interfaces. These interfaces
define the requirements that must be fulfilled by problem-specific components to be
applicable as realizations of respective type parameters of metaheuristic components.
Such interfaces can be modeled as classes without data elements (by using the UML
stereotype interface). Figure 4.8 shows simplified interfaces for solution space tem-
plate classes and neighborhood template classes. These interfaces are generic: the
solution space class depends on a problem class and a neighborhood class; the neigh-
borhood class depends on a solution space class. While thelatter dependenceis appar-
ent, one may argue that a solution space class should not depend on a neighborhood
class. However, for principal reasons— only the solution class knows about the objec-
tive function while the neighborhood component defines the transformations — with
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regard to run-time efficiency, thisis indeed a sensible model. This tight relationship
between solution classes and neighborhood classes will be discussed on page 116.

—— == =TT

- P,N | - s
<<interface>> - <<interface>> e f
S N
S(p:P) N(s:S,

f() position : NeighborhoodPosition )
evaluate( move : N ) operator++( )
doMove( move : N ) operator*( )

isValid( )

T

|

| <<enumeration>>

} NeighborhoodPosition

SpecificS FirstNeighbor
SomeRandomNeighbor
InvalidNeighbor

Figure 4.8 Interfaces for Solution Space Classes and Neighborhood Classes (Simplified)

The solution space interface defines the basic functionality that must be imple-
mented by problem-specific classes: construction of a solution (given a problem in-
stance), objective function computation, computation of the evaluation of a given
move, modification of the solution according to a given move. The requirements for
the neighborhood interface are in accordance with the discussion about the neighbor-
hood traversal. That is, we need operations for the construction of aneighbor (i.e., the
corresponding move) in dependence of a parameter that specifies which moveisto be
constructed (e.g., first versus random), for the increment to the next neighbor, for the
evaluation of a move (star/dereference operator), and for the check of the validity of
the move.

The relationship between the class SpecificS and the interface S, which is shown
in Figure 4.8, denotes that the latter one is an implementation of the requirements set
by the former one. HOTFRAME is based on such a clear separation between types
(requirements defined by interfaces) and classes, which implement respective require-
ments.

An analysis of different types of problems shows that there are often quite sim-
ilar solution spaces and neighborhood structures. So it seems reasonable to model
respective commonalitieswith regard to data structures and algorithms by inheritance
hierarchies; see Figure 4.9. This enables an (optional) reuse of the implementation of
some common problem-specific structures. The objective function value of the cur-
rent solution (evaluation) is obviously a common data element of the most genera
abstract solution space class Generic_S. There are two specidizing classes (BV_S
for the hit-vector solution space and Perm _S for the permutation solution space) that
inherit this data element (as well as the obligation to implement the interface S) from
the general class. BV_S and Perm_S, which add some specific data elements and op-
erations, are still abstract (i.e., one cannot instantiate objects of these classes), because
they lack an operation that computes the objective function.
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Figure 4.9 Inheritance Hierarchy of Solution Space Classes (Simplified)

4.4.2 Architecture

Building on the above discussion of the basic design ideas, in this section we describe
the framework architecture (i.e., the framework components and their interplay) in
more detail. For modeling variabilities we use the UML with some extensions. Un-
fortunately, “UML provides very little support for modelling evolvable or reusable
specifications and designs” (Mens et al. (1999), p. 378), so we sporadically extend the
notation if necessary.

4.4.2.1 Basic Configuration Mechanisms. Fixing the variable features of
a reusable component may be called configuration. In the following, we describe the
basi c configuration mechanisms of HOTFRAME.

In accordance with generic programming, static configuration means fixing tem-
plate parameters to define the primary behavior of reusable components (generic clas-
ses). Different metaheuristics have different options for configuration, which would
lead to heterogeneous templ ate parameter sets for different metaheuristic components.
This complication can be avoided by using so-called configuration components that
encapsulate parameter sets. That is, a configuration component defines, in accordance
with respective requirements, a set of static parameters. These parameters mostly
congtitute type information, modeled as features of class interfaces. Since the UML
provides no specific constructs to directly model requirements on such configuration
components (the use of the Object Constraint Language (OCL) is not reasonable for
our needs), we introduce a stereotype static interface to model respective type re-
quirements (in a sense analogous to the common interface stereotype). By conven-
tion, we mark configuration components by aleading C, while denoting requirements
by an R.

A basickind of variability, which may concernall components, regardsthe numeric
data types. We distinguish between a (quasi-)continuous type T (e.g., for cost data)
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<<static interface>>
RNumeric

T
Range

CNumeric

T = Real
Range = Integer

Figure 4.10 Realization of Requirements RNumeric by a Configuration Component CNu-
meric

and a discrete type Range (e.g., for counting objects). Both data types are required
to be symmetric with respect to the representation of positive and negative values.
For example, in C++, one typically defines T as float or double, and Range as int.
The elementary configuration of components by T and Range is encapsulated in a
configuration component with a static interface that has to conform to RNumeric
as shown in Figure 4.10. CNumeric is a typical realization of such a configuration
component, which may be implemented in C++ as follows:

struct CNumeric

{

typedef float T;
typedef int Range;

Vi

All problem-specific components require a configuration component that imple-
ments RNumeric. On top of this basic condition, the essential use of configuration
componentsis to capture problem-specific type information of metaheuristic compo-
nents. The specific requirements of metaheuristic components are defined in Sec-
tion 4.4.2.3. In the following, we exemplify this concept for a component Steepest-
Descent.

<<static interface>>

RNumeric

<<static interface>> TiﬁJn;eﬁcﬂ\
RSteepestDescent CSteepestDescent T
S S = TSPO_S<CNumeric>

N N = Perm_S_N_Shift<CNumeric>

Figure 4.11 Configuration Component CSteepestDescent

Figure 4.11 illustrates modeling the requirements on the respective static interface.
RSteepestDescent inherits the requirements of RNumeric, so CSteepestDescent
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has to define, in addition to S and N, the basic numeric types T and Range. This
can be implemented in a modular way by defining CSteepestDescent as a tem-
plate class where the template parameters model the numeric configuration. That is,
CSteepestDescent actually deploysahierarchical parameterization of configuration
components by other configuration components. To simplify the presentation, we as-
sume an implicit transfer of type definitions of configuration componentsthat are used
as template parameters. The componentsthat are used in Figure 4.11 to define S and
N are described in Section 4.4.2.2 and Section 4.6.2. The actual implementation of
CSteepestDescent in C+ requires an explicit “transfer” of the defined types:

template <class CNumerics>
struct CSteepestDescent

{

typedef typename CNumeric::T T;

typedef typename CNumeric::Range Range;
typedef TSPO S<CNumerics> S;

typedef Perm S N Shift<CNumerics> N;

}i

We illustrate the hierarchical configuration of metaheuristic components for Iter-
atedLocalSearch (see Algorithm 1, p. 89). As described above, the configuration
of metaheuristics can be decomposed in a problem-specific configuration C' p and a
metaheuristic-specific configuration C'ir. Accordingly, we may define a correspond-
ing requirements hierarchy; see Figure 4.12. RplteratedLocalSearch definesthe re-
quirements for the problem-specific configuration of IteratedLocalSearch. Rliterat-
edLocalSearch defines the additional metaheuristic-specific requirements. The con-
figuration component CplteratedLocalSearch realizes RplteratedLocalSearch in
the same way as CSteepestDescent realizes RSteepestDescent (see Figure 4.11).
On top of this, ClteratedLocalSearch realizes the requirements of RlteratedLo-
calSearch by using CplteratedLocalSearch and additionally defining the neighbor
selection rule. In Section 4.4.2.3, we shall describe the application of this design ap-
proach in more detail for different metaheuristic components.

A disadvantage of the template approach, at least when using C++, is that the tem-
plate-based configurationisfixed at compile-time. Behavioral variability requirements
may a so be modeled by defining data elements with class-scope (in C++, such data el-
ement are called “static”). This approach is not appropriate if one wants to enable
constructing objects with different state information (e.g., heuristics of the same kind
with different parameter settings with respect to the termination criterion). However,
class-scope is reasonable for configuration options with regard to modules of meta-
heuristics. Such components can indeed be parameterized by using data elements
with class-scope (which are set according to respective data elements of the config-
uration component). This design, which is illustrated in Figure 4.13 for the cooling
schedule GeometricCooling, enables the dynamic variation of respective configura-
tion parameters at run-time. To simplify the presentation, we do not explicitly model
the requirements of such components on the configuration component in the diagrams,
but we assume respective requirements as implicitly defined. For example, we implic-
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<<static interface>>
RNumeric
<<static interface>> (ENJITTGFI(;‘\
RplteratedLocalSearch CplteratedLocalSearch T
s ~ | s=TSPO_S<CNumeric>
N N = Perm_S_N_Shift<CNumeric>
1 CplteratedLocalSearch !

<<static interface>> ClteratedLocalSearch ~ — "~~~ 7~~~ -
RlteratedLocalSearch

NeighborSelection
NeighborSelection = BestPositiveNeighbor<CplteratedLocalSearch>

Figure 4.12 Configuration Component ClteratedLocalSearch

itly assume the configuration component CSimulatedAnnealing to be subject to the
requirement of defining a numeric data element alpha.

GeometricCooling '————7————————

alpha : Real .

R alpha = CSimulatedAnnealing.alpha %

Figure 4.13 Static Parameterization of Components by Numeric Data Elements with
Class-Scope

The design provides, from the application point-of-view, a flexible, efficient, and
straightforward mechanism to construct components with a special functionality by a
composition of adaptable elementary modules (see below).

The natural mechanism to dynamically configure objectsis by plain data elements
of classes, which are initialized in connection with object construction (in C++, by
using constructor parameters). The specification of the termination criterion is the
most obvious kind of a dynamic configuration. In accordance with the specification
of the metaheuristics IteratedLocalSearch, GeneralSimulatedAnnealing, Simu-
latedAnnealingJetal, and TabuSearch, the dynamic parameterization conforms to
theinterfaces of the Algorithms 1, 5, 10, and 11, respectively.

In addition to the usual termination criteria (e.g., iteration number and run-time),
we define, for each metaheuristic component, an object parameter that represents the
asynchronous termination criterion w (see p. 88). The plain abstract interface of a
corresponding base class, which is called Omegalnterface, is shown in Figure 4.14.
The class Omegalnterface is parameterized by the solution space. Metaheuristic
components provide the interface with the current solution after each iteration (by
calling the operation newSolution( s : S )). Furthermore, metaheuristics call the
operationomega() after each iteration —with the metaheuristic being terminated when
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the operation returnstrue. For example, one may want to terminate the search process
when an “acceptable” solution has been obtained. In general, this design enables the
implementation of external termination criteriain online settings.

[l

Omegalnterface

newSolution(s: S)
omega( ) : Boolean

Figure 4.14 Base Class Omegalnterface

Additional parameters of metaheuristics are also model ed as data elements and cor-
responding dynamic parameters of constructors. This concerns both simple numeric
parameters (such as the initial temperature of simulated annealing) and more com-
plex kinds of a configuration. In particular, the tabu criterion of Algorithm 11 (see
p. 96) isimplemented as an object parameter, which may be explained asfollows. The
tabu criterion depends on actua state information (search history). The sameis true
for the diversification method (as a specific instance of some metaheuristic). So both
variation points (TabuCriterion, Diversification) are implemented as dynamic object
parameters, which allows a flexible use of such objects at run-time. (On the contrary,
the static variation point TabuNeighbor Selection is modeled as a template parameter;
see p. 133)

Variable requirements with regard to the introspection of the search process must
also be modeled in aflexible and efficient way. We apply an extensible class hierarchy
that represents the different kinds of introspection (e.g., a complete documentation
of the move selection in every iteration versus the return of only the fina solution).
In Section 4.4.2.4, we describe the interface of a base class, which defines a set of
operations, which are called by metaheuristic componentsto convey information about
the search process. By deriving classes from this base class and implementing the
operations in the needed form, one can model specific introspection requirements.
Metaheuristics are called with instances of these classes as dynamic object parameters
to implement the introspection interface.

4.4.2.2 Problem-Specific Components. In this section, we define prob-
lem-specific componentsin accordance with the algorithmic specifications from Sec-
tion 4.3.1. In particular, we describe the component interfaces, which implicitly es-
tablishes the basic form of the interplay among components.

We do not need to define (abstract) base classes, since the problem-specific compo-
nents are used to statically configure metaheuristic components by means of template
parameters. Nevertheless, due to implementation reuse, it is possible to model com-
monalities of problem-specific components by inheritance hierarchies, which allows
reuse of common data structures and algorithms (see pp. 122). Such inheritance hi-
erarchies simplify the framework application for suitable problem types, while they
do not restrain the possibilities for problem-specific adaptations (due to their optional
character).
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Thefollowing overview especialy refersto problem-specific componentsand their
interdependencies. Specific realizations of such componentsare by convention marked
by aleading “X_", where X refersto the problem type that is represented. We assume
that the problem-specific abstractionsintroduced in Section 4.3.1 are implemented by
the following components:

m  ProblemP —  Problem component X _P

m  SolutionspaceS —  Solution component X_S

m  (Hash-)Functionh —  Solution information component X S |
s Neighborhood Ng —  Neighborhood component X_S_N

m  Solutionattributeout of ¥ —  Attribute component X S_A

The intended application of metaheuristics implies the need to implement a respec-
tive subset of the problem-specific components according to corresponding interfaces.
While the components X_P and X_S must be implemented for al kinds of applica-
tions, one needs no neighborhood component for evolutionary methods (without local
search hybridization). Components X _S_I and X_S _A are only required for particular
tabu search methods.

The class diagram shown in Figure 4.15 model s the typical relations between prob-
lem-specific components (neglecting data structures, operations, and template param-
eters). The basic dependencies may be classified as usage relationships (use-stereo-
type) and derivation relationships (derive-stereotype). Furthermore, there are explicit
structural references that represent direct associations between objects of respective
classes. The suitability of a problem-specific component as an element of a config-
uration component only depends on fulfilling the requirements of the interfaces that
are described later on. In the class diagram, this is indicated by respective realization
relationships.

The solution component X _S uses the problem component X P to access the prob-
lem data. Accordingly, we need a reference from a solution object to the respective
problem object. The information that is represented by X S 1 is derived from the data
of a respective solution object. Since the state of solution objectsis transient we in-
deed need X_S_I objects to capture such information. The same argument applies to
the attribute component X_S_A. In general, attributes can be derived both from solu-
tion objects and from move (neighbor) objects. With regard to the latter, we have to
distinguish between (“created”) plus attributes and (“ destroyed”) minus attributes.

The neighborhood component X_S_N models the neighborhood traversal as de-
scribed in Section 4.4.1.3. In general, the semantics of X_S N dependson X S, asone
needs to know about the objective function (implemented as part of X S) to be able
to evaluate moves. On the contrary, X_S depends on X S N, because the execution
of amove to a neighbor alters the solution object (X _S implements the solution data
structures while X_S_N models the transformational information).

Thetight relationship between, in particular, X_S and X _S N requires to model re-
spective interdependenciesin the types of interface parameters of specific operations.
For example, the solution component includes an operation that executes a move; the
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<<derive>>

S_A

: ‘ plus / minus attributes \%

Figure 4.15 Basic Dependencies Between Problem-Specific Components

respective interface must reflect that we may have different types of neighborhoods.
Because of the lack of an appropriate UML notation, we call such operations abstract
(with italicization of respectivetypeidentifiers). (Under some restrictions, such avari-
ability requirement could be implemented in C++ by the member template construct
(i.e., member functions with separate type parameters), which would provide a mod-
ular, efficient and type-safe implementation. As shall be explained below, we actually
cannot use this mechanism but have to rely on basic code supplements.)

Problem Component. A problem type P isimplemented by a corresponding
problem component P. In dependence on the considered type of problem, problem
datais modeled by specific datastructures (e.g., cost vectors). According to the object-
oriented concept of encapsulation of implementation details, the component interface
defines the access to the data of problem instance objects. Appropriate constructors
must be defined. For example, constructor parameters may point to an input stream,
which provides problem data in a specific text format. With regard to a random gen-
eration of problem instances, constructor parameters may define the respective prob-
ability distribution. The problem component may also serve as an online proxy that
connects the metaheuristic to an application system or a data base that comprise the
problem instance. In general, respective constructor and access operations depend
on the considered application, so we only require one common interface element for
all problem components: There should be a serialization of the problem data, which
prints to a given output stream; see Figure 4.16.

Solution Component. Thebasic purposes of a solution component are the con-
struction and representation of solutions from a solution space S, the computation of
the objective function, and the modification of solutions according to a given move
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t CNumeric |

<<interface>>
P

print( output : Ostream )

Figure 4.16 General Interface of Problem Components

to a neighbor solution. Figure 4.17 shows the general interface of solution compo-
nents. (By the sterectype local search, we denote that the subsequent operations are
required only if one wantsto apply alocal search procedure.)

| CNumeric |

<<interface>>
S

S(p: P, observer : Observer )
evaluate()

fO): T

lowerBound() : T
upperBound() : T

observer() : Observer

print( output : Ostream )
clone(): S

<<local search>>
doMove( move : N)
computeEvaluation( move : N,
out evaluation : T,
out delta: T') : Boolean

Figure 4.17 General Interface of Solution Components

Realizing the interface S by a corresponding component means implementing the
following operations with “algorithmic content”:

m  S(p: P, observer: Observer)
The constructor builds an initial solution for a given problem p. Additional
parameters may be needed with respect to the actual rules of construction (e.g.,
random construction versus application of a simple construction algorithm).

= evaluate()
This operation computes (and stores) the objective function value of the actua
solution. Calling this operation from the outside is usually not necessary, since
the operation f() returns by definition the objective function value of the current
solution.

= doMove(move: N)
There are two basic options to implement the modification of a solution;

1. The neighborhood component transforms the data of the solution com-
ponent, which requires the neighborhood component to know about the
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respective data structures. This enables the introduction of new neighbor-
hood structures without the need to modify solution components.

2. The solution component interprets the modification due to the move and
modifiesits own data accordingly. In this case, introducing new neighbor-
hood structures requires the adaptation of an existing doMove operation
(or the addition of a new doMove operation if the method is statically
parameterized by the actual neighborhood type).

Due to reasons of efficiency, it is apparently not possible to dissolve this tight
relationship between the solution component and the neighborhood component
in astrict object-oriented manner (where each class should fully encapsulate its
internal implementation).

computeEvaluation( move : N, out evaluation : T, outdelta: T ) : Boolean
Since only the solution component knows about the computation of the objec-
tive function, the primary responsibility to actually assess the advantageousness
of a move should be assigned to the solution component. This also leads to a
tight relationship between the solution component and the neighborhood com-
ponent. The return parameters evaluation and delta represent the evaluation
of a move and the implied change of the objective function value, respectively.
These values may equa each other for many applications. In other cases, an
appropriate move evaluation may require a special measurement function. In
particular, this differentiation is reasonable when there is some kind of min-
max objective function, where asingle move usually does not directly affect the
objective function. Furthermore, for some kinds of problems the exact compu-
tation of the implied change of the objective function value may be too costly
as to be done for each of the considered moves. In such a case one needs to
estimate the “quality” of a move in an approximate manner without computing
delta; thismust be indicated by returning false (otherwise the operation returns
true).

If moves are evaluated by the implied change of the objective function value,
a standard implementation of this operation may be available by actually per-
forming the move (for a copy of the solution object), computing the objective
function of the resulting solution from scratch, and finally comparing the re-
spective objective function value with the objective function value of the cur-
rent solution. However, for reasons of efficiency, one usually has to implement
a special, adaptive form of the move evaluation.

The following operations primarily serve for the encapsulation of the data structures
of the solution component;

fO:T
Return of the objective function value of the solution.

lowerBound() : T
Return of the best known lower bound for the optimal objective function value
(remember that we consider minimization problems).
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m  upperBound(): T
Return of the best known upper bound for the optimal objective function value.

m  observer() : Observer
Return of the observer object.

= print( output : Ostream )
Print the solution in some defined format to an output stream.

Furthermore, one must implement an operation clone(), which constructs a copy of
the actual solution object (in the sense of avirtual constructor, see Stroustrup (1997),
pp. 424). For some metaheuristics (in particular, evolutionary algorithms), one may
need an operation that computes the “difference” between two solutions according
to some measurement function (see, e.g., Woodruff (2001)). This requirement might
have been specified as amember function of the solution component. However, to sSim-
plify the interface of the solution component, we use free template functionsdistance
(with a static template parameter S and both solution objects as dynamic parameters).

Solution Information Component. A solution information component mod-
els elements of the set Sj,. Respective objects are used to store the search trgjectory,
which means that the solution information component is only needed for tabu search
methods that use such tragjectory information. In accordance with this specia role, the
interface (and the corresponding functionality) of the solution information component
is quite simple; see Figure 4.18 and the following description.

<<interface>> = “—————
S_|

S_I(s:S)

S_I(move: N)

operator==(rhs : S_| ) : Boolean
operator<(rhs : S_| ) : Boolean
print( output : Ostream )

Figure 4.18 General Interface of Solution Information Components

m SI(s:S)
Construction of the object that corresponds to h(s) by computing the transfor-
mationh : S — Sy,

= S(move:N)
Due to reasons of efficiency, we require a means to directly construct the solu-
tion information of the neighbor solution that correspondsto agiven move. (One
may also construct the solution information of a neighbor by actually construct-
ing the solution object and deriving the solution information from this object.)

m  operator==(rhs: S_I) : Boolean
The definition of the equivalence relation is needed to implement the trajectory
data structures.
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m  operator<(rhs: S_l): Boolean
Tree data structures, which may be used to store the trgjectory, require the defi-
nition of an order operator.

= print( output : Ostream )
Print the solution information in some defined format to an output stream.

Usually, the solution information component models a hash-function. In this case,
the constructors include the respective computations, while the operators are simply
implemented as the comparison of integer values.

Neighborhood Component. Neghborhood components (neighborhood itera-
tors) represent neighborhood structures N s (i.e., respective moves from N¥) for a
solution space S. Move object data generally consists of a reference to the actual
solution and information about the transformation to a neighbor solution. In accor-
dance with the discussion in Section 4.4.1.3, the basic functionality of neighborhood
componentsis shown in Figure 4.19.

- rCNumeric }
<<interface>> T
N
N( s : S, position : NeighborhoodPosition, depth : Integer = 1) <<enumeration>>
isValid() : Boolean NeighborhoodPosition

operator++()

evaluate()

operator*(): T
deltalnformation( ) : Boolean
delta(): T

size() : Integer

print( output : Ostream )

FirstNeighbor
SomeRandomNeighbor
InvalidNeighbor

Figure 4.19 General Interface of Neighborhood Components

m N(s: S, position : NeighborhoodPosition, depth : Integer = 1)
To construct a neighbor (i.e., the respective move) for a solution s one speci-
fies by using the parameter position whether the first, arandom, or the invalid
neighbor isto be constructed. The optional parameter depth may define aneigh-
borhood depth greater than one (i.e., a respective concatenation of elementary
moves of the basic neighborhood structure).

= isValid() : Boolean
Thisoperation returnstrueif and only if the actual moveisvalid. Thefollowing
operations may only be called for valid moves.

m  operator++()
Increment of avalid move to the next neighbor.

= evaluate() .
The evaluation of a move (accordingto f) usualy occurs when a moveis con-
structed or incremented. Theimplementation of the eval uation may be delegated
to the respective solution class; see the discussion in Section 4.4.2.2.
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operator*() : T R
This operation returns the move evaluation (according to f).

deltalnformation() : Boolean

Thevaluetrue isreturnedif and only if one may use the operation delta() to ask
for the implied change of the objective function value that is due to the move;
see the discussion in Section 4.4.2.2.

delta(): T

This operation returns the implied change of the objective function that is due
to the actual movesif and only if thisinformation is avail able (see the operation
deltalnformation()).

size() : Integer

Some metaheuristics need an estimation of the neighborhood size (e.g., Algo-
rithm 10, p. 94). For reasons of efficiency, we do not require this operation to
return the exact number of neighbors of the actual solution, but only a reason-
able upper bound.

print( output : Ostream )
Print the move in some defined format to an output stream.

The sequence diagram of Figure 4.20 illustrates the interaction between solution
and neighborhood components by describing the typical neighborhood traversal of a
local search approach. At the beginning, the move to the first neighbor of the actual
solution is constructed and evaluated. Iteratively, the move is incremented to the next
neighbor until we have reached theinvalid neighbor. Finally, the best move found will
be executed.

: SteepestDescent s:X S

{ transient }

|

|

: ) |

create( s, FirstNeighbor ) o] move: X SN }
|

|

|

|

|

evaluate()

computeEvaluation
E (' move, evalution, delta )

e

*[move.valid()]: operator++() |

computeEvaluation
E ( move, evalution, delta )

Figure 4.20 Sequence Diagram of the Interaction Between Solution and Neighborhood
Components
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Attribute Component. Attribute componentsrepresent el ementary solution at-
tributes. From the point of view of moves, we haveto distinguish between plusand mi-
nus attributes. Such informationis used by tabu search methodsthat apply an attribute-
based memory. (The decomposition of solutionsin elementary moves may be used by
tabu search methods that build new solutions by combining attributes from a vocabu-
lary of “promising” solution attributes.) The general interface of attribute components
isshownin Figure 4.21.

CNumeric |

-
<<interface>> -
S_A

S_A( move : N, attributelndex : Integer )

S_A(s: S, attributelndex : Integer )
getNumberOfPlusAttributes( move : N ) : Range
getNumberOfMinusAttributes( move : N') : Range
getNumberOfAttributes( s : S') : Range
operator==( move : N ) : Boolean

print( output : Ostream )

Figure 4.21 General Interface of Attribute Components

s S_A(move : N, attributelndex : Integer)
Move attributes are constructed in dependence on the parameter attributelndex.
Positive and negative val uesindicate plus and minus attributes, respectively. For
example, the move attribute 4, () is constructed when attributelndex is set to
—1.

m S _A(s: S, attributelndex : Integer)
The operation constructs the attributes of a solution.

= getNumberOfPlusAttributes( move : N ) : Range
This operation returns the number of plus attributes of a move (|¢» ™ (u)]). The
result of this and the next two operations does not depend on a specific object.
(In C++, this leads to an implementation as static class methods.)

= getNumberOfMinusAttributes( move : N ) : Range
This operation returns the number of minus attributes of amove (| —(u)|).

= getNumberOfAttributes(s: S) : Range
This operation returns the number of attributes of asolution (J¢(s)|).

m  operator==( move : N ) : Boolean
The equivalence relation between an attribute and a move reflects whether the
actual attribute is “destroyed” when the considered move is executed. That is,
this operation returns true if and only if the attribute corresponds to a minus
attribute of the move. (For reasons of efficiency, we do not rely on the explicit
construction and comparison of all minus attributes of a move, but require the
implementation of this redundant operation.)
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m  print( output : Ostream )
Print the attribute in some defined format to an output stream.

Standard Problem-Specific Components. Asdiscussed in Section 4.4.1.4,
different types of problems often possess some commonalitieswith respect to the solu-
tion space. So it seems reasonable to exploit these commonalities by defining, imple-
menting, and (re)using problem-specific components, which provide respective data
structures and algorithms. In particular, afactoring of common concepts may be mod-
eled by inheritance hierarchiesrefering to the problem-specific components/interfaces
that have been defined above. The goal is to provide a set of reusable classes, from
which a user of the framework can derive special classes according to his application.
Then, one has to implement the remaining concernsthat are specific to the considered
application (e.g., the objective function), while general data structures and algorithms
with respect to the solution space, neighborhood structure, etc. may be reused. To
summarize, applying HOTFRAME in any case means reuse of the respective architec-
ture and metaheuristics components— if one of the standard problem-specific compo-
nents that are available fits the considered problem, there is also the option to exploit
implementation reuse on the problem side.

In the following, we describe standard problem-specific components for bit-vector
and permutation solution spaces. The solution components BV S and Perm S rep-
resent solutions of the kind z = (z1,...,2,),z; € {0,1},1 < i < n,adIl =
(71, ...,mp), with IT being a permutation of (1,...,n), respectively. For these so-
lution spaces, we implement commonly used neighborhood structures as respective
neighborhood components. (HOTFRAME al so includes components for combined as-
signment and sequencing problems, i.e., a solution is defined by an ordered assign-
ment of some kind of objects to some kind of resources, which are not described in
this paper.)

For BV_S, the neighborhood component BV _S _N represents neighbors (i.e., corre-
sponding moves) that result from (one or more) bit inversions. For sequencing prob-
lems, there exist several popular neighborhood structures. So we introduce an addi-
tional layer in the class hierarchy by defining an abstract component Perm S N, from
which three specific neighborhood components are derived, which represent three dif-
ferent neighborhood structures with a neighborhood size of O(n2). The component
Perm_S_N_Shift represents neighbors that result from shifting one object to another
position (with the option to restrict the maximum “shift distance”). Swaps of two
objects are represented by the component Perm _S _N _Swap. The 2-exchange neigh-
borhood (component Perm _S N _2Exchange) represents those neighbors that result
from replacing two predecessor-successor relations (edges when considering the se-
guencein a graph representation) by two other predecessor-successor relations so that
afeasible solution (sequence) results; this move corresponds to an inversion of a par-
tial sequence. There are quite afew additional neighborhood structuresfor sequencing
problems, which may be represented by additional neighborhood components; see,
e.g., Tianet al. (1999).

As an extension to Figure 4.9 (see p. 109), Figure 4.22 shows the inheritance rela-
tionship of solution components. Figure 4.23 shows the according diagram for neigh-
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borhood components. The usual way of reusing these componentsis by deriving anew
solution component and applying some suitabl e neighborhood component unchanged.
(The close relationship between solution components and neighborhood components
(“dual inheritance hierarchies”) leads to some subtle problems, which will be briefly
discussed below.)

In the abstract base class Generic_S, we define data elements and operations that
are common to all solution components. In particular, every solution component has
data elements to store the objective function value, an lower and upper bound, and
areference to an observer object. For al such data elements, we define correspond-
ing access operations. With regard to other methods, we can only define abstract
interfaces, which have to be complemented by respective implementations in derived
classes. (According to the UML, such operationsare shown italicized in the diagram.)
To simplify the diagrams, we do not show all access operations for data elements
(which are implicitly assumed to exist with the identifier set according to the data
element).

In the derived classes BV_S and Perm_S, one needs to implement, based on the
neighborhood, the operations for the default evaluation of moves (according to the
implied change of the objective function value that is due to the considered move) and
the execution of moves for particular neighborhood structures/components. So we
must provide respective adaptation mechanisms. Due to subtle technical reasons (see
Stroustrup (1997), p. 348), C++ does not allow member template methodsto bevirtual,
which unfortunately prevents us from using member template constructsto implement
those operations for specific neighborhoods. So we must refer in the interface decla-
rations of these operations to the most general neighborhood type (Generic S N).
Implementing those member functions requires dynamic type-casts (“ downcasts") for
respective neighborhood types, applying run-time-type information (RTTI) to check
for type-conformance. Adding new neighborhood structures requires changing these
member functions. (See the discussion of this crucia problem of object-oriented de-
sign with regard to dual inheritance hierarchies (“ codependent domains’) by Martin
(1997) and Coplien (1999), pp. 210-227.)

Implementing a concrete solution component with a specific objective function for
a problem that may be modeled by a bit-vector or permutation solution space means
deriving a new solution component from BV S or Perm_S, respectively. To meet
the requirements defined by the solution component interface S one has to implement
an appropriate constructor, the clone operation, and the computation of the objective
function. With regard to run-time efficiency, one may aso need to implement an
adaptive move evaluation.

The definition of BV _S includes a specific addition to the solution component. The
member functions shown below the variable fixation stereotype enable — in com-
bination with appropriate neighborhood components, which use these operations —
restricting the neighborhood by excluding variables of the solution vector from con-
sideration regarding bit inversions. That is, the value of some of the variables may be
temporarily fixed by an appropriate implementation of the operations firstVariable,
nextVariable, and randomVariable.
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Generic_S

evaluation : T
lowerBound : T
upperBound : T
observer : Observer

S( observer : Observer)
evaluate()

fO:T

lowerBound() : T
upperBound() : T
observer() : Observer
print( output : Ostream )

clone() : Generic_S<CNumeric>
doMove( move : Generic_S_N<CNumeric>)
computeEvaluation
( move : Generic_S_N<CNumeric>,
out evaluation : T, out delta : T ) : Boolean

/\

BV S

n : Integer
vector<Bit> b

BV_S( nObjects : Integer,
observer : Observer )
print( output : Ostream )
doMove( move :
Generic_S_N<CNumeric> )
computeEvaluation
(move :
Generic_S_N<CNumeric>,
out evaluation : T,
out delta: T) : Boolean

<<variable fixation>>
firstVariable() : Range
nextVariable( i : Range ) : Range
randomVariable() : Range

Figure 4.22

CNumeric

-
1

Perm_S

n: Integer
vector<Range> perm

Perm_S( nObjects : Integer,
observer : Observer )
print( output : Ostream )
doMove( move :
Generic_S_N<CNumeric> )
computeEvaluation
(move :
Generic_S_N<CNumeric>,
out evaluation : T,
out delta: T ) : Boolean

Inheritance Hierarchy for Solution Components
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- | CNumeric|
Generic. S N T TTT—~ r
evaluation : T

deltalnformation : Boolean

delta: T

depth : Integer

Generic_S_N( depth : Integer = 1)
isValid() : Boolean

operator++()

evaluate()

operator*(): T

deltalnformation() : Boolean
delta(): T

size() : Integer

print( output : Ostream )

S ——— |

} CNumeric | } CNumeric !
BV.SN T r Perm_ S N o= r’
s : BV_S<CNumeric> s : Perm_S<CNumeric>
flips : Vector<Range>
neighborhoodType : NeighborhoodType Perm_S_N('s : Perm_S<CNumeric>,
- depth : Integer = 1)
<<typedef>> NeighborhoodType : .
{ AllFlips, Constructive, Destructive } fransform( perm : Vector<Range> )

BV_S_N('s : BV_S<CNumeric>,
position : NeighborhoodPosition,
depth : Integer=1) | —7 |  ______

isValid() : Boolean . | CNumeric |
operator++() Perm_S_N_Shit ~  ————~ r
eyaluate() shifts : Vector< Pair<Range, Range> >

size() : Integer maxDistance : Range

print( output : Ostream )

Perm_S_N_Shift( s : Perm_S<CNumeric>,
position : NeighborhoodPosition,

ro-——7-" depth : Integer = 1)
i CNumeric | | jsvalid() : Boolean
Perm_S_N_Swap operator++()
swaps : Vector< Pair<Range, Range> > evaluate()

transform( perm : Vector<Range> )
size() : Integer
print( output : Ostream )

maxDistance : Range

(PSR-
1 CNumeric |

Perm_S_N_2Exchange

exchanges : Vector< Pair<Range, Range> >

Figure 4.23 Inheritance Hierarchy for Neighborhood Components
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Common data elements and respective access operations of neighborhood compo-
nents are defined in the abstract base class Generic_S_N. For the bit-vector solution
space, the bit inversion neighborhood is implemented by the component BV S N,
which isdirectly derived from Generic_S_N. The BV_S_N component defines as data
elements areference to the respective solution object and a vector of integer numbers,
which define the variables that are to be flipped. This enables modeling moves that
comprise multiple bit inversions (note the depth parameter in Generic S N). By the
static (class-scope) parameter neighborhoodType one can restrict the neighborhood
to “constructive” or “destructive” moves, which means that only bit inversion from O
to 1 or 1 to O are considered, respectively.

In addition to the constructors, the specific neighborhood components implement
those operationsthat are defined in the base classes as virtual. As discussed above, the
evaluation of movesisusually implemented by a del egati on to the solution component.

The commonalities of the neighborhood components Perm .S N Shift, Perm -
S_N_Swap, and Perm_S_N_2Exchange are modeled by an abstract classPerm_S_N.
This component defines areference to a solution object of Perm _S, a constructor, and
the abstract member function transform, which represents the move's transformation
of the solution data structure according to the implementation in the derived classes.
Specialized neighborhood componentsinclude data structuresthat represent the move.
For example, in Perm_S_N_Shift, a pair of integer numbers defines which object has
to be shifted to which position. Vectors of such pairs define concatenations of moves.
For Perm_S_N_Shift and Perm_S_N_Swap, the data element maxDistance can be
used to restrict the neighborhood with regard to the shift or swap distance, respec-
tively. The operations of Perm_S_N_Swap and Perm_S_N_2Exchange, which are
not shown in Figure 4.23, are defined in the same way as Perm _S N _Shift.

Solution information components and attribute components are only needed for
particular tabu search methods. Thereis no need to define common base classes, since
thereare no general referencerelationsthat refer to these components. Moreover, there
are no common data structures, which may be modeled in a base class. So we define
separate standard components for respective solution spaces. These componentsfully
implement theinterfacesS_| and S _A, respectively, and thus can be applied right away.

The solution information components, which are defined in Figure 4.24, represent
solutions by applying hash-functions (see p. 119). The respective constructors com-
pute hash-valuesfor solution objects and for neighbor objects. Pre-defined implemen-
tations are available for the standard sol ution spaces and neighborhood structures that
have been described above.

The attribute components shown in Figure 4.25 represent attributive information
with regard to solutions and neighborhoods. The attributes match the elements of bit-
vector and permutation solutions (elementary bit inversions and predecessor-succes-
sor-relations). Implementations for the introduced solution spaces and neighborhood
structures are available.
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Bv.s!1  TTTTT
hashCode : Integer

BV_S_I(move :BV_S_N)

operator<(rhs : BV_S_1I ) : Boolean
print( output : Ostream )

Perm_S_I( move : Perm_S_N)

operator<( rhs : Perm_S_| ) : Boolean
print( output : Ostream )

BV S I(s:BV_S) s

} CNumeric !
Perm.s1 === r
hashCode : Integer
Perm_S_I(s:Perm_S) s |

operator==( rhs : Perm_S_1 ) : Boolean 4@

operator==(rhs : BV_S_I ) : Boolean 4@

Figure 4.24 Solution Information Components

| CNumeric|
BV_S_A i
flip : Range
BV_S_A(move : N, attributeIndex : Integer )
BV_S_A('s:BV_S, attributelndex : Integer ) S A

getNumberOfPlusAttributes( move : BV_S_N ) : Range
getNumberOfMinusAttributes( move : BV_S_N ) : Range
getNumberOfAttributes( s : BV_S ) : Range

operator==( neighbor : N') : Boolean

print( output : Ostream )

-
1

CNumeric
Perm_S_A T

|
pagl

x : Range
y : Range

PERM_S_A( move : N, attributelndex : Integer )
PERM_S_A(s : Perm_S, attributelndex : Integer )
getNumberOfPlusAttributes( move : Perm_S_N ) : Range
getNumberOfMinusAttributes( move : Perm_S_N ) : Range
getNumberOfAttributes( s : Perm_S ) : Range

operator==( neighbor : N') : Boolean

print( output : Ostream )

S A

—O

Figure 4.25 Solution Attribute Components
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4.4.2.3 Metaheuristic Components. The metaheuristic concepts that have
been described in Section 4.3.2 areimplemented by corresponding metaheuristic com-
ponents. In the following, we describe the most important operations of these com-
ponents, which also includes the requirements with regard to respective configuration
components; see Section 4.4.2.1. (To simplify the presentation, we do not explicitly
show data elements and corresponding access operations.)

The general interface Heuristic of a metaheuristic is shown in Figure 4.26. To
enable a flexible (polymorphic) application of respective algorithmic objects, specific
metaheuristic classes of the framework are derived from a common base class (also
named Heuristic). This base classis statically parameterized by the solution space.

Ny
- 1S
<<interface>> -
Heuristic

search( s : S, maxMoves : Integer =0)

/\

| —

Heuristic -

search( s : S, maxMoves : Integer=0) -+{----- "empty" implementation %

Figure 4.26 General Interface and Base Class Heuristic

The derivation of metaheuristic components from Heuristic, which is shown in
Figure 4.27, follows the well-known strategy pattern; see Gamma et al. (1995). First
of al, metaheuristic components provide an operation search, which transforms a
solution. The optional parameter maxMoves facilitates such a modification of the
termination criterion, which may be used, e.g., when triggering an adaptive diversi-
fication. The operation search of the base class Heuristic is defined as an “empty”
method, so that respective objects can be used when one needs a default behavior for
some feature (e.g., a non-existent diversification).

Iterated Local Search. Iterated local search and similar methods, which have
been discussed in Section 4.3.2, are implemented by the component IteratedLocal-
Search; see Figure 4.28. The static configuration of this component as well as the
implementation of the features Diversification and Q2 as dynamic object parameters
have already been discussed in Section 4.4.2.1. The parameter depth determines the
neighborhood depth. The parameter returnBest defines whether the algorithm should
return the best solution found or the last traversed solution.

The static parameter NeighborSelection, which is an element of the configuration
of IteratedLocalSearch, must conform to the interface defined in Figure 4.29, which
also shows some components that realize popular neighbor selection rules.

The derivation of specific metaheuristic componentsis exemplified in Figure 4.30.
IteratedSteepestDescent is defined by fixing the type parameter NeighborSelec-
tion accordingly.
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Heuristic

_—————

t CHeuristic }

IteratedLocalSearch

, —{ CHeuristic |
GeneralSimulatedAnnealing [~~~

- - i CHeuristic }
SimulatedAnnealingJetal T
e

1 CHeuristic |

TabuSearch I
e
I CHeuristic |

IteratedLocalSearchID T
I CHeuristic |

EvolutionaryAlgorithm R

Figure 4.27 Derivation of Specific Metaheuristic Components from Heuristic

- <<static interface>>
%‘S RNumeric
Heuristic
| o ‘ %
i ClteratedLocalSearch | <<static interface>>

lteratedLocalSearch T T T T T T T T T T \

\ RplteratedLocalSearch

IteratedLocalSearch( \ s
observer : Observer<CNumeric>, \ N
maxTimelnSeconds : Real, \
maxMoves : Integer, \
repetitions : Integer,
omegalnterface : Omegalnterface<S>,
diversification : Heuristic<S>,
depth : Integer,
returnBest : Boolean )

search( s : S, maxMoves : Integer =0 ) NeighborSelection

<<static interface>>
RlteratedLocalSearch

Figure 4.28 Component IteratedLocalSearch

Simulated Annealing and Variations. Simulated annealing and variations,
which have been described in Section 4.3.2.2, are implemented by the components
GeneralSimulatedAnnealing and SimulatedAnnealingJetal shownin Figure 4.31.
With regard to the metaheuristic-specific configuration, one has to specify the features
acceptance criterion, cooling schedule, and an optional reheating scheme. In the fol-
lowing, we describe the general interface of respective componentsand some common
instances of these interfaces. With regard to the implementation in C++, these mod-
ules are applied by using class-scope parameters (in accordance with the discussion
onp. 111).

The interface AcceptanceCriterion is defined in Figure 4.32. The acceptance cri-
terion is implemented by the operation check. In general, the acceptance of a move
depends on the current value of the temperature parameter (tau), the evaluation of
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<<interface>> fe
NeighborSelection

select(s: S, depth : Integer=1): N

W \\ = \‘ BestPositiveNeighbor

W
AN : | CplteratedLocalSearch |

\\\\\ BestNeighbor T
N
NN — - | CplteratedLocalSearch !
Y FirstPositiveNeighbor '=———————— - =)

\

N
' . | CplteratedLocalSearch |

1 RandomNeighbor T

Figure 4.29 Interface NeighborSelection and Respective Components

T —— | CiteratedLocalSearch |
‘ eratedLocalsearc T

AN

} <<bind>>
| (NeighborSelection=BestPositiveNeighbor<CplteratedLocalSearch>)

L
‘ l CplteratedLocalSearch |
‘ lteratedSteepestDescent  ——————— i -

Figure 4.30 Derivation of lteratedSteepestDescent

the considered move (moveEval), and the objective function value of the respective
neighbor solution (newSolutionEval).

Figure 4.33 shows the interface CoolingSchedule and some respective compo-
nents, which implement popular schemes for decreasing the temperature parameter.
When specific events occur, respective operationsare called; see Algorithms 5 and 10.
If an eventis not relevant for some cooling schedul e, the corresponding operation does
not alter the temperature (i.e., “empty” implementation). Specific numeric parameters
of the cooling schedule components are implemented as data elements with class-
scope. The configuration componentsareimplicitly required to provide corresponding
definitions.

Reheating components, which have to conform to the Reheating interface shown
in Figure 4.34, re-initialize the temperature parameter when caled by a simulated
annealing algorithm. The new initial temperature value may depend on the preceding
initial value (tinitial), the temperature when the best solution was found (tbest), and
the last temperature (tau). We also define an “empty” component NoReheating,
which does not affect tinitial (reheating is an optional feature).
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sl
Heuristic - <<static interface>>
RNumeric
A e .
GeneralSimulatedAnnealing | CGeneralSimulated /}nﬁngaﬁllggi\\ Z%
\\ <<static interface>>
GeneralSimulatedAnnealing( \\ RpSimulatedAnnealing
observer : Observer<CNumeric>, \\
maxTimelnSeconds : Real, \ S
maxMoves : Integer, \\ N
omegalnterface : Omegalnterface<S>, \
depth : Integer, \
returnBest : Boolean,
tinitial : Real, <<static interface>>
maxRepetitions : Integer, RSimulatedAnnealing
deltaRepetitions : Real,
numberOfReheatings : Integer ) AcceptanceCriterion
search( s : S, maxMoves : Integer =0 ) CoolingSchedule
Reheating

!

S, 7
Heuristic —|~ //

/
/
/
777777777777777 1/
|

SimulatedAnnealingdetal ~ '———————————~———

GeneralSimulatedAnnealing(
observer : Observer<CNumeric>,
maxTimelnSeconds : Real,
maxMoves : Integer,
omegalnterface : Omegalnterface<S>,
depth : Integer,
returnBest : Boolean,
initialAcceptanceFraction : Real,
frozenAcceptanceFraction : Real,
sizeFactor : Real,
frozenParameter : Integer,
numberOfReheatings : Integer )

search( s : S, maxMoves : Integer =0)

Figure 4.31 Components GeneralSimulatedAnnealing and SimulatedAnnealingJetal

<<interface>> =TT
AcceptanceCriterion

check( tau : Real, moveEval : Real, newSolutionEval : Real ) : Boolean

S~~~ Ly WA TR |
~~ CpSimulatedAnnealin
AN \{ ClassicExponentialAcceptanceCriterion Lpoimt T 9_i
NN
\ N

e ——————————
|

N - T
AN \‘ ClassicThresholdAcceptanceCriterion | CpSimulatedAnnealing |

\ T 77777777

\

N\
\‘ AbsoluteThresholdAcceptanceCriterion ————— 1

Figure 4.32 Interface AcceptanceCriterion and Respective Components
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<<interface>>
CoolingSchedule
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e ———
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| CpSimulatedAnnealing |

repetitionintervalDone( inout tau : Real, tinitial : Real, iteration : Integer )
moveAccepted( inout tau : Real, moveEval : Real, newSolutionEval : Real )

Figure 4.33

moveRejected( inout tau : Real, moveEval : Real, newSolutionEval : Real )
newBestObjective( inout tau : Real, newSolutionEval : Real )
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Interface CoolingSchedule and Respective Components
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Tabu Search. The component TabuSearch, shown in Figure 4.35, implements
the classic tabu search scheme according to Algorithm 11. A tabu search configuration
component in particular defines the neighbor selection rule and an aspiration criterion.
The implementation of the features TabuCriterion and Diversification as dynamic
object parameters has already been discussed in Section 4.4.2.1.

<<static interface>>
RNumeric
sl
|:‘ S
Heuristic —[~ %
A <<static interface>>
‘ ‘*C*T*b* 78777?]7 RpTabuSearch
TabuSearch |z 18uzearcl N
\ S
\ N
TabuSearch( \
observer : Observer<CNumeric>, \
maxTimelnSeconds : Real, :
maxMoves : Integer,
omegalnterface : Omegalnterface<S>, <<static interface>>
tabuCriterion : TabuCriterion<CpTabuSearch>, RTabuSearch
diversification : Heuristic<S>,
depth : Integer=1) TabuNeighborSelection
search(s : S, maxMoves : Integer =0) AspirationCriterion

Figure 4.35 Component TabuSearch

The components for different tabu criteria (Algorithms 14-17) are derived from a
common base class; see Figure 4.36. The base class defines the general interface of
a tabu criterion component according to the discussion in Section 4.3.2.3. Specific
requirements of the tabu criteria with regard to the need to define problem-specific
components S_| as well as S_A within the configuration component CpTabuSearch
conform to the feature diagram shown in Figure 4.4.

Thetwo operationsthat feed the tabu criterion with applied movesand traversed so-
Iutions (addToHistory) provide areturn parameter, which is used to indicate whether
thereis an apparent need for an explicit diversification. By returning avalue k greater
than zero, the tabu criterion “suggests’ to apply some big “escape move” to some so-
lution that is about £ moves away from the current solution. Such an explicit diversi-
ficationis usually accompanied by acall to the operation escape, which re-initializes
the tabu memory in an appropriate way. The operation print writes information about
the tabu memory in some format to an output stream. The dynamic configuration of
the tabu criteria (i.e., the initialization of respective numeric parameter elements such
as, e.g., the tabu list length) results from calling constructors, which are not shown in
the diagram.

For the component REMTabuCriterion we make two restrictionswith regard to an
efficient implementation of Algorithm 15. Firstly, we restrict the application of this
tabu criterion to single-attribute moves. Secondly, we require the definition of afree
template function moveNumber, which computes for each move a unique integer
number representative. We identify such free (global) functions in the diagram by
using a stereotype free function; see Figure 4.36.
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The component TabuSearch requires the definition of a neighbor selection rule
(i.e., a corresponding component), which itself depends on the aspiration criterion.
Figure 4.37 shows the interface TabuNeighborSelection and respective components.
The components BestAdmissibleNeighbor and BestNeighborConsideringPenal-
ties use the aspiration criterion, which is configured in CTabuSearch, in accordance
with Algorithms 12 and 13, respectively. The interface of the (optional) aspiration
criterion is shown in Figure 4.38. The component NewBestSolutionAspiration-
Criterion implements the most popular aspiration criterion: A tabu-statusis neglected
if the move would lead to a new best solution. An efficient implementation of this cri-
terion requires actual information about the implied change of the objective function

OPTIMIZATION SOFTWARE CLASS LIBRARIES

TabuCriterion

addToHistory(s: S, i: Integer) : Integer

addToHistory( move : N, i : Integer ) : Integer

tabu( move : N ) : Boolean
tabuDegree( move : N ) : Real

escape()
print()

AN

StaticTabuCriterion

tabuListLength
tabuThreshold

ReactiveTabuCriterion

tabuThreshold
adaptationParameter1
adaptationParameter2
maxTabuListLength
chaosParameter
repetitionParameter
smoothingParameter

————————— 7
| CpTabuSearch v
StrictTabuCriterionByTrajectory — [~~~ ~~ ~ —
— | CpTabuSearch|
REMTabuCriterion e
tabuDuration
rcsLengthParameter
T
| <<use>>
N

<<free function>>

: Integer

N
moveNumber( move : N ) l

—
!

| E—

<<static interface>>

S A

<<static interface>>

S|

Figure 4.36 Base Class TabuCriterion and Derived Classes

value that is due to the considered moves (deltalnformation); see p. 119.
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- | CTabuSearch !
<<interface>> [Bafcnpa e
TabuNeighborSelection
select( s : S, tabuCriterion : TabuCriterion<CpTabuSearch>,
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No--  CTabuSearch |
T \ BestAdmissibleNeighbor I ‘
\\
N F———————— |
AN 1 CTabuSearch

BestNeighborConsideringPenalties = ——1—————

penaltyFactor : Real

Figure 4.37 Interface TabuNeighborSelection and Respective Components
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check( move : N, tabuCriterion : TabuCriterion<CpTabuSearch> ) : Boolean

N - — ——— CpTabuSearch |

AN - ‘ NewBestSolutionAspirationCriterion - — i
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\‘ NoAspirationCriterion =l fo-=2s |

Figure 4.38 Interface AspirationCriterion and Respective Components

4.4.2.4 Introspection. In Section 4.4.2.1, we argued in favor of flexible in-
trospection means regarding information about the search process. We apply the fol-
lowing design: The interface of a concrete base class Observer represents a com-
prehensive set of introspection elements; see Figure 4.39. The diagram shows only a
subset of the interface. For example, it does not show operations that are specific to a
metaheuristic (e.g., an operation that provides access to the contents of the tabu list).

Metaheuristic components and solution components are dynamically parameter-
ized by an object of the class Observer or a derived class. Appropriate object op-
erations are called at respective steps of the algorithms. The member functions of
the class Observer are implemented as “empty” functions. So the class Observer
defines the maximal introspection interface, yet actually implements a minimal intro-
spection (nothing at all). Special introspection needs are implemented by respective
member functionsin derived classes, which overwrite the behavior of the base class.
Figure 4.39 shows three such components, which all rely on sending data to a stream.
The component StreamingObserver simply prints al received data, while the other
two components only output the best objective function value and possibly the com-
putation time.

To enable a flexible change of the degree of introspection during the search pro-
cess, we provide operationsto activate or deactivate an observer object. A deactivated
object neglects all information sent to it. Moreover, a caller may check for the ac-
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| CNumeric |

<<interface>>
Observer

activate()
deactivate()
active() : Boolean

getStream() : Ostream
flush()

cpuTimeOfProcess( cpuTime : Real )
numberOfiterations( iterations : Integer )

comment( info : String )

start( info : String )

end( info : String )
searchSuspended( info : String )

iteration( iteration : Integer )
currentProblem()
currentSolution()
currentNeighbor()

move()

newUpperBound( evaluation : T )
bestEvaluation( evaluation : T')
cpuTimeOfProcess( cpuTime : Real )

N h | CNumeric |
AN ~~-| StreamingObserver bbbl J
\ \\

Y N StreamingObserver( output : Ostream )
\
\ \
N
AN ) | CNumeric |
\ JustTheBestEvaluationToStream —r = E

\ JustTheBestEvaluationToStream( output : Ostream )
\ | bestEvaluation( evaluation : T')

\
JustTheBestEvaluationAndTheCPUTimeToStream ~—|—————

JustTheBestEvaluationAndThe CPUTimeToStream(
output : Ostream )

bestEvaluation( evaluation : T')

cpuTimeOfProcess( cpuTime : Real )

Figure 4.39 Derivation of Special Introspection Classes from the Base Class Observer

tivation status of the assigned observer object, which allows to suppress costly data
preparations (which would be neglected anyway).

To simplify the transfer of non-atomic information to the observer (e.g., the solu-
tion representation in some format), the operation getStream providesthe caller with
a stream, where respective data may be sent to. With regard to a semantic interpre-
tation of stream data, the caller has to call an appropriate operation before using the
stream (e.g., currentSolution). After completing the transfer, the transaction must be
finalized by calling the operation flush.
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This design, which decouples the search process from the introspection, provides
a flexible means for extension. For example, search processes may be coupled to an
environment for experimental tests with regard to visualization or statistical anaysis
of the search process and respective results; see Jones (1994), Jones (1996). Moreover,
one may integrate the search processin a decision support system; see Ball and Datta
(1997).

4.5 IMPLEMENTATION

As emphasized by Nygaard, Programming is understanding. In this sense, imple-
menting metaheuristics as reusable software components — and also eventually using
these components— serves for the comprehension of the respective genericity of meta-
heuristic algorithms. In the following, we briefly describe some essential aspects of
the implementation.

4.5.1 Technical Environment and Conventions

In Section 4.4, we argued that C++ is an appropriate programming language in the
given context. C++ provides powerful language constructs (in particular with regard to
enabling adaptation by type parameterization and inheritance), it facilitates run-time
efficient implementations, and it isin wide use in practice. The main argument against
C++isits complexity; see, e.g., thediscussionin Gillam (1998), p. 41. However, while
this complexity indeed affectsthe actual devel oper of aframework, it ismainly hidden
from the plain user of aframework.

Theimplementation is based on Standard C++ (1SO/IEC 14882), which should lead
to wide portability. Due to deficiencies of some of the available compilerswe decided
not to employ member templates, covariant return types, and the exception mecha-
nism. As primary development platform we used Microsoft Visual C++ 6.0 (Service
Pack 3 and higher). The code was also successfully tested with the compilers gcc 3.0
and MIPSporo C++ 7.3. A few incompatibilities of these compilers are handled in the
source code by relying on preprocessor variables VCC, GCC, and MIPS.

The discussion of the design in the preceding section leads to a broad use of tem-
plates. With regard to generic components, the C++ template construct provides a
type-safe and run-time efficient means to implement respective adaptation require-
ments. (On the other hand, the unfamiliarity of most programmers with the template
construct and insufficient compiler support with regard to debugging template-intense
code may make debugging difficult).

To prevent name clashes al HOTFRAME components are defined in a namespace
HotFrame. To apply respective components one may use explicit qualification (e.g.,
“HotFrame::TabuSearch<. .. >"), using declarations (e.g., “using HotFrame::Ta-
buSearch<...>"), or using directives (e.g., “using HotFrame”).

To streamline the implementation we follow by convention a few coding rules.
Class or type identifiers start with a capital letter, while identifiers for global meth-
ods, member functions, and local variables start with alower case letter. Member data
identifiers start with an underscore (“_"); static class members start with“ s”. Com-
posite identifiers are partitioned by using capital letters (e.g., computeEvaluation).
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Member data access functions are usually named in accordance with the identifier of
the member data (e.g., n() providesaccessto _n). For al problem-specific classes, one
has to define appropriate copy constructors, assignment operators, and destructors, if
the compiler-generated default versions are not adequate. Member functions that pro-
vide a dynamically alocated object for which the caller is responsible (in particular
with regard to object destruction) start with create, copy, or clone. Variables that
represent iteration numbers are declared as unsigned long; i.e., the maximal iteration
number is typicaly 232 ~ 4.3 x 10°. With x representing an appropriate acronym
that identifies the problem type, problem-specific code is usually put into two files
x_p.h (problem component) and x s.h (other components such as the solution space
component etc.).

4.5.2 Problem-Specific Standard Components

Applying HOTFRAME involves appropriate probl em-specific componentsthat particu-
larly implement the solution space and the neighborhood structure. In Section 4.4.2.3,
we described respective requirements in dependence on the metaheuristics that one
wants to use. In case the pre-defined problem-specific standard components do not fit
for some new type of problem, one may need to implement such components from
scratch. HOTFRAME includes the following problem-specific standard components
(see pp. 122):

template <class C> class Generic S;
template <class C> class Generic S N;

template <class C> class BV_S : public Generic_ S<C>;
template <class C> class BV _S N : public Generic S N<C>;
template <class C> class BV_S A;

template <class C> class BV_S I;

template <class C> class Perm S : public Generic S<Cs>;
template <class C> class Perm S N : public Generic S N<C»>;
template <class C> class Perm S N Shift : public Perm S N<C>;
template <class C> class Perm S N Swap : public Perm S N<C>;
template <class C> class Perm S N 2Exchange

: public Perm S N<C>;
template <class C> class Perm S A;
template <class C> class Perm S I;

For the sake of completeness, we also name the componentsfor combined assignment
and seguencing problems (without description):

template <class C> class AS_S;
template <class C> class AS S N Shift;
template <class C> class AS_S Al;
template <class C> class AS S A2;
template <class C> class AS_S I;

The implementation of BV_S and Perm_S illustrates the alternative strategies to
implement the moveinterpretation as part of the member functionsdoMove and com-
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puteEvaluation (see the discussion on p. 116). On the one hand, BV _S directly inter-
prets and executes the modificationsto a solution that are due to aconsidered move. In
contrast, Perm_S_N and derived classes define a member function transform, which
realizes respective modifications of the solution data structures and thus can be used
by Perm_S. It isimportant to note that respective default implementations of doMove
and computeEvaluation are only valid if the derived solution class for the specific
application does not define specia data elements that are affected by a move. In such
cases, one has to provide specialized implementations of these member functions.

The enumeration NeighborhoodPosition defines the general possibilities to con-
struct neighbor/move objects:

enum NeighborhoodPosition { FirstNeighbor, SomeRandomNeighbor,
InvalidNeighbor };

For all problem-specific classes X, the following stream output operator is defined,
which enables a polymorphic call of the respective print member function:

template <class C»>
ostream& operator<<( ostream& output, const X<C>& x );

4.5.3 Metaheuristic Components

We briefly describe the actual C++ interfaces of the metaheuristic components that
have been described in Section 4.4.2.3. The interface of the common base class of
metaheuristic componentsis defined as follows (see Figure 4.26):

template <class S>
class Heuristic
{
public:
virtual “Heuristic( )
{1}
virtual void search( S& s, unsigned long maxMoves = 0 )
{1}

7

4.5.3.1 Iterated Local Search. Theinterface of the component IteratedLo-
calSearch is defined as follows (see Figure 4.28):

template <class C»>
class IteratedLocalSearch
: public Heuristic<typename C::S>

{

public:

typedef typename C::T T;

typedef typename C::Range Range;
typedef typename C::CNumeric CNumeric;
typedef typename C::S S;

typedef typename C::N N;
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typedef typename C::NeighborSelection NeighborSelection;

protected:
Observer<CNumeric> * observer;
float maxTimeInSeconds;
unsigned long maxMoves;
unsigned long repetitions;
Omegalnterface<S> * omegalnterface;
Heuristic<S> * diversification;
short depth;
bool returnBest;

public:

IteratedLocalSearch( Observer<CNumeric> *observer = 0,
float maxTimeInSeconds 0,
unsigned long maxMoves = 0,
unsigned long repetitions = 1,
OmegalInterface<C> *omegalInterface=0,
Heuristic<S> *diversification = 0,
short depth = 1,
bool returnBest = true );

virtual void search( S& s, unsigned long maxMoves = 0 );

bi

The type definitions conform to the requirements on the configuration components,
which have been specified in Figure 4.28. The explicit re-definition of these types
in the first part of the interface makes requirements explicit and simplifies the use of
respective types. The data elements correspond to the method parameters as defined
by the constructor interface. (To simplify the presentation, we omit type definitions
and data structures from the following descriptions, because these elements can be
directly deduced from the requirements formulated in Section 4.4.2.3.)

The constructor interface specifies for all parameters default values. For max-
TimelnSeconds and maxMoves, the default value of O represents the lack of a cor-
responding restriction. The constructor definition consists only of theinitialization of
respective class data elements. The actual iterated local search algorithm is imple-
mented in the member function search.

Components that implement a neighbor selection rule must conform to the follow-
ing interface NeighborSelection (see Figure 4.29):

template <class C>
class NeighborSelection

{
public:
static N select( S& s, short depth =1 );

}
The following realizations of this interface are pre-defined:

template <class C> class BestPositiveNeighbor;
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template <class C> class BestNeighbor;
template <class C> class FirstPositiveNeighbor;
template <class C> class RandomNeighbor;

4.5.3.2 Simulated Annealing and Variations. Algorithms5 and 10 are
implemented by the following two components (see Section 4.4.2.3):

template <class C»>

class GeneralSimulatedAnnealing

: public Heuristic<typename C::S>
{

public:

GeneralSimulatedAnnealing(
Observer<CNumerics> *observer = 0,
float maxTimeInSeconds = O,
unsigned long maxMoves = 0,
OmegalInterface<S> *omegalnterface = 0,
short depth = 1,
bool returnBest = true,
double tinitial = 100,
unsigned long maxRepetitions = 1,
double deltaRepetitions = 1,
unsigned int numberOfReheatings = 0 );

virtual void search( S& s, unsigned long maxMoves = 0 );

}i

class SimulatedAnnealingJdetal
: public Heuristic<typename C::S>
{

public:

SimulatedAnnealingdetal (
Observer<CNumerics> *observer = 0,
float maxTimeInSeconds = 0,
unsigned long maxMoves = 0,
OmegalInterface<S> *omegalnterface = 0,
short depth = 1,
bool returnBest = true,
float initialAcceptanceFraction = 0.4,
float frozenAcceptanceFraction = 0.02,
float sizeFactor = 16,
unsigned int frozenParameter = 5,
unsigned int numberOfReheatings = 0 );

virtual void search( S& s, unsigned long maxMoves = 0 );

}i

The determination of the initial temperature for the latter component is imple-
mented in the following way: Beginning with the initial solution, atrial run of size-
Factor - | N (s)| iterationsis performed, where in each iteration a neighbor solution is
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randomly generated and accepted if and only if the move evaluation is strictly posi-
tive. The observed evaluations of the other moves are stored and sorted. Eventually,
the temperature is set so that initialAcceptanceFraction of the observed neighbors
would have been accepted.

The interface for components that implement an acceptance criterion is defined as
follows (see Figure 4.32):

template <class C>
class AcceptanceCriterion
{
public:
static bool check( double tau, double moveEval,
double newSolutionEval = 0 );

Vi
Thisinterface is realized by three pre-defined generic classes:

template<class C> class ClassicExponentialAcceptanceCriterion;
template<class C> class ClassicThresholdAcceptanceCriterion;
template<class C> class AbsoluteThresholdAcceptanceCriterion;

In accordance with Figure 4.33, the interface for components that implement a
cooling schedule is defined as follows:

template <class C»>
class CoolingSchedule
{
public:
static void repetitionIntervalDone
( double& tau, double tinitial, unsigned long iteration );
static void moveAccepted
( double& tau, double moveEval, double newSolutionEval ) ;
static void moveRejected
( double& tau, double moveEval, double newSolutionEval ) ;
static void newBestObjective
( double& tau, double newSolutionEval ) ;
}i

The following realizations define non-relevant functions by an “empty” implementa
tion:

template <class C> class GeometricCooling;
// double C::alpha;
template <class C> class HajekCooling;
template <class C> class LundiMeesCooling;
// double C::alpha;
template <class C> class DowslandCooling;
// double C::alphal;
// double C::alpha2;
template <class C> class GreatDelugeCooling;
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// double C::alphal;
// double C::alpha2;

template <class C> class RecordToRecordTravelCooling;
// double C::alpha;

The commentaries with regard to data elements of the configuration component C
indicate the respective parameterization (see Figure 4.33).

In accordance with Figure 4.34, the interface of reheating componentsis defined as
follows:

template <class C»>
class Reheating
{
public:
static void reheat ( double& tinitial, double tbest = 0,
double tau = 0 );

}i
Thisinterfaceis realized by four pre-defined generic classes:

template <class C> class ReheatingToHalfOfInitial;

template <class C> class ReheatingToBest;

template <class C> class ReheatingToAverageOfBestAndInitial;
template <class C> class NoReheating;

4.5.3.3 Tabu Search. Theinterface of the fundamental tabu criteriais defined
as follows (see Figure 4.35):

template <class C»>

class TabuSearch

: public Heuristic<typename C::S>
{

public:

TabuSearch( Observer<CNumeric> *observer = 0,
float maxTimeInSeconds = 0,
unsigned long maxMoves = 0,
OmegalInterface<S> *omegalnterface = 0,
TabuCriterion<Cp> *tabuCriterion = 0,
Heuristic<S> *diversification = 0,
short depth =1 );

virtual void search( S& s, unsigned long maxMoves = 0 );

}i

In accordance with Figure 4.36, the base class for the tabu criteria is defined as
follows:

template <class C»>
class TabuCriterion

{
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public:
virtual “TabuCriterion( )
{1}
virtual unsigned long addToHistory
( const S& s, unsigned long iteration = 0 )
{ return 0; }
virtual unsigned long addToHistory
( const N& move, unsigned long iteration = 0 )
{ return 0; }
virtual bool tabu( const N& move ) const
{ return false; }
virtual double tabuDegree( const N& move ) const
{ return tabu( move ); }
virtual void escape( )
{1}
virtual void print( ) const
{1}
}i

Different classes are derived from TabuCriterion to implement the tabu criteria ac-
cording to Algorithms 14-17. Specific requirements of these classes on the configu-
ration component C result from Figure 4.36 (with the addition of an observer object
parameter). We restrict the following descriptions of tabu criteria components to the
constructor:

template <class C>

class StrictTabuCriterionByTrajectory
: public TabuCriterion<typename C::Cp>
{

public:
StrictTabuCriterionByTrajectory
( Observer<CNumeric> *observer = 0 );

}

template <class C»>

class REMTabuCriterion

: public TabuCriterion<typename C::Cp>
{

public:
REMTabuCriterion (
Observer<CNumeric> *observer = 0,
unsigned long tabuDuration = 1,
unsigned long rcsLengthParameter = 1,
unsigned long maximumMoveNumber
= numeric_limits<unsigned long>::max()) ;

}

The fourth parameter of the constructor of the REM tabu criterion results from atech-
nical requirement of the implementation, which needs to know about a maximum
move number that may occur during the search process.
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template <class C»>
class StaticTabuCriterion
public TabuCriterion<typename C: :Cp>
{
public:
StaticTabuCriterion (
Observer<CNumerics> *observer = 0,
Range tabulistLength = 7,
Range tabuThreshold = 1 );

template <class C>
class ReactiveTabuCriterion
: public TabuCriterion<typename C: :Cp>

public:
ReactiveTabuCriterion (

Observer<CNumerics> *observer = 0,
Range tabuThreshold = 1,
float adaptationParameterl = 1.2,
short adaptationParameter2 = 2,
Range maxTabulListLength = 50,
unsigned int chaosParameter = 3,
unsigned int repetitionParameter = 3,
float smoothingParameter = 0.5 );

}

Components that implement a neighbor selection rule must conform to the follow-
ing interface (see Figure 4.37):

template <class C»>
class TabuNeighborSelection
{
typedef typename C::AspirationCriterion AspirationCriterion;
public:
static N select( S& s,
TabuCriterion<Cp>& tabuCriterion,
short depth = 1 );

}

Thefollowing two componentsrealize thisinterfacein accordancewith Algorithms 12
and 13:

template <class C»>
class BestAdmissibleNeighbor;
template <class C»>
class BestNeighborConsideringPenalties;
// double C::penaltyFactor;

In Figure 4.38, the interface of aspiration criteriawas specified as follows:
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template <class C>
class AspirationCriterion

{
public:
static bool check( N& move,
TabuCriterion<Cp>& tabuCriterion ) ;
Vi

Thisinterface is realized by two pre-defined components:

template <class Cp>

class NewBestSolutionAspirationCriterion;
template <class Cp>

class NoAspirationCriterion;

The latter component represents the waiving of an aspiration criterion (i.e., check
always returnsfalse).

4.5.4 Miscellaneous Components

In Section 4.4.2.4, we described the use of observer objects to flexibly implement
different kinds of introspection needs. The following components correspond to Fig-
ure 4.39:

template <class C»>

class Observer;
template <class C>

class StreamingObserver : public Observer<Cs;
template <class C»>

class JustTheBestEvaluationToStream : public Observer<Cs;
template <class C>

class JustTheBestEvaluationAndTheCPUTimeToStream

: public Observer<Cs;

As an addition to the core functionality, HOTFRAME includes some classes that
provide useful functionality such as the computation of hash-codes or the representa-
tion of matrices and graphs.

4.6 APPLICATION

In this section, we provide an overview with respect to the actual application of frame-
work components. After illustrating the requirements and procedures of the applica-
tion of metaheuristicsin Section 4.6.1, we discuss an incremental application process
in Section 4.6.2. We mostly restrict to exemplary descriptions, which should enableto
transfer a respective understanding to other application scenarios.

4.6.1 Requirements and Procedures

First of al, toapply alocal search procedure one must be ableto formulatethe problem
accordingly (solution representation, scalar objective function, neighborhood struc-
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ture, etc.). That is, the problem should fit with regard to the problem-specific abstrac-
tions introduced in Section 4.3.1, which correspond to components of the framework
architecture.

In conformance to the “no-free-lunch theorem” mentioned on p. 82, HOTFRAME
enables the implementation of problem-specific components from scratch to fully
adapt metaheuristics for the considered problem. In generdl, if the problem-type ne-
cessitates the use of a special solution space and neighborhood structure, the adapta-
tion of metaheuristics may require non-trivial coding. On the contrary, if the problem
fits to some typical solution space and neighborhood structure that are available as
pre-defined problem-specific components, the application of HOTFRAME may reduce
to afew lines of code.

To apply some metaheuri stic-component one needs suitabl e problem-specific com-
ponents according to the requirements defined in Section 4.4.2.3. Table 4.1 provides
a summary of these requirements for the metaheuristics that have been described in
this paper. A “+” indicates the need for the respective component; for the REMTabu-
Criterion one additionally needs a free function moveNumber (see p. 133). Interface
requirementsfor S, N, S_I, and S_A have been described in Section 4.4.2.2.

[S[N[SI[SA
+

IteratedLocalSearch
GeneralSimulatedAnnealing
SimulatedAnnealingJetal
Tabu Search
— StrictTabuCriterionByTrajectory +
— REMTabuCriterion
— StaticTabuCriterion +
— ReactiveTabuCriterion + +

++ |+

+
+
+

Table 4.1 Summary of the Main Problem-Specific Requirements of Metaheuristics

4.6.1.1 TIterated Local Search. To specialize the component IteratedLo-
calSearch regarding some common uses, there are pre-defined configuration com-
ponents. In particular, the following configuration components define the neighbor
selection rule to be applied:

template <class C> struct CSteepestDescent;
template <class C> struct CFirstDescent;
template <class C> struct CRandomWalk;

These simple components conform to the requirements RiteratedLocalSearch de-
fined in Figure 4.28. In each case, a problem-specific configuration is extended by
the definition of the feature NeighborSelection. For example, CSteepestDescent
isimplemented as follows:

template <class C»>
struct CSteepestDescent
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{

typedef BestPositiveNeighbor< C > NeighborSelection;

typedef typename
typedef typename
typedef typename
typedef typename
typedef typename
typedef C Cp;

2T T,

: :Range Range;

: :CNumeric CNumeric;
::S S;

::N N;

NN

Vi

Given some problem-specific configuration component Cp, which defines T, Range,
CNumeric, S, and N, one can generate a steepest descent heuristic by:

IteratedLocalSearch< CSteepestDescent< Cp > >

The C++ template construct consequently enables a direct implementation of the ab-
stract design of Figure 4.28. Thus, a typical application of some metaheuristic com-
ponent is structured as a three-level hierarchical configuration: numeric base types,
problem-specific abstractions solution space and neighborhood structure, and neigh-
bor selection rule.

The actual application of a steepest descent heuristic for an initial solution s means
that one has to construct a respective object and to call the member function search:

Heuristic< Cp::S >

*steepestDescent

= new IteratedLocalSearch< CSteepestDescent < Cp > >;
steepestDescent->search( s );

As another example, using the dynamic configuration of IteratedLocalSearch as
shownin Figure 4.28, Algorithm 4 (IteratedSteepestDescentWithPerturbationRe-
starts) can be applied as follows:

Heuristic< Cp::S >
*diversification
= new IteratedLocalSearch< CRandomWalk< Cp > >
(o, o, 10, 1, 0, 0, 1, false );
Heuristic< Cp::S >
*iteratedSteepestDescentWithPerturbationRestarts
= new IteratedLocalSearch< CSteepestDescent < Cp > >
(0, 0, 0, 5, 0, diversification );
iteratedSteepestDescentWithPerturbationRestarts->search( s );

In this example, one first constructs an object that represents the diversification (ten
random moves, return of the last traversed solution). This object is applied as a pa-
rameter to the actual iterated local search procedure.

4.6.1.2 Simulated Annealing and Variations. The generation of the Al-
gorithms 6-9, which have been defined in Section 4.3.2.2, is based on the component
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GeneralSimulatedAnnealing. This component is adapted by using one of the fol-
lowing configuration components:

template <class C> struct CClassicSimulatedAnnealing;
template <class C> struct CThresholdAccepting;
template <class C> struct CGreatDeluge;

template <class C> struct CRecordToRecordTravel;

These configuration components fix the features cooling schedule, acceptance crite-
rion, and reheating scheme.

The application of atypical simulated annealing procedurefor 10,000 moves, using
aninitial temperature of 100, looks as follows:

Heuristic< Cp::S >
*classicSimulatedAnnealing
= new GeneralSimulatedAnnealing
< CClassicSimulatedAnnealing < Cp > >
(0, 0, 10000, 0, 1, true, 100 );
classicSimulatedAnnealing->search( s );

The main advantage of the simulated annealing algorithm according to Johnson
et al. (1989) is the robustness with respect to the parameter setting. In particular,
the user does not need to experiment with the initial temperature. The configuration
component CSimulatedAnnealingJetal defines the classic ingredients of simulated
annealing as used by Johnson et al. (1989) (exponential acceptance criterion, geomet-
ric cooling schedule, no reheating). Such an algorithm, with the default parameter
setting, is applied in the following example:

Heuristic< Cp::S >
*simulatedAnnealingJetal
= new SimulatedAnnealingdetal
< CSimulatedAnnealingdetal < Cp > >;
simulatedAnnealingJetal->search( s );

4.6.1.3 Tabu Search. The peculiarity of the application of tabu search is that
the main variable feature, the tabu criterion, is configured dynamically by an object
parameter; see Figure 4.35. Thisisalso the case for the optional explicit diversification
procedure, while the neighbor sel ection rule and the aspiration criterion are defined by
configuration components. The pre-defined configuration component CTabuSearch-
ByTabuization specifies the mostly used tabu search variant: The tabu criterion is
used to dynamically prohibit certain moves, while the aspiration criterion overwrites
atabu statusif the move would lead to a new best solution:

template <class C»>
struct CTabuSearchByTabuization
typedef NewBestSolutionAspirationCriterion< C >
AspirationCriterion;
typedef BestAdmissibleNeighbor
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< CTabuSearchByTabuization< C > >
TabuNeighborSelection;

2T T,
: :Range Range;
: :CNumeric CNumeric;

typedef typename
typedef typename
typedef typename

NN

typedef typename C::S S;
typedef typename :N N;
typedef typename :S A S A;
typedef typename :S I S I;

typedef C Cp;

bi

In the same way, the configuration component CTabuSearchByPenalties defines
the neighbor selection according to Algorithm 13 (without applying an aspiration cri-
terion):

template <class C> struct CTabuSearchByPenalties

{

typedef NoAspirationCriterion< C > AspirationCriterion;
typedef BestNeighborConsideringPenalties
< CTabuSearchByPenalties< C > >
TabuNeighborSelection;

static double penaltyFactor;

}

The tabu criterion, which is applied as an object parameter to the genera tabu
search component, is itself statically parameterized with regard to problem-specific
aspects. Figure 4.36 and Table 4.1 summarize respective requirements for different
tabu criteria; the dynamic parameterization of a tabu criterion object is described in
Section 4.5.3.3. Thefollowing code exampl e shows the construction of atabu criterion
object and its use as part of atypical application of tabu search:

TabuCriterion< Cp >
*staticTabuCriterion
= new StaticTabuCriterion< Cp >( 0, 7, 1 );

Heuristic< Cp::S >
*classicTabuSearch
= new TabuSearch< CTabuSearchByTabuization< Cp > >
(0, 0, 1000, 0, staticTabuCriterion ) ;

4.6.1.4 Combination of Different Algorithms. An appropriatecombina
tion of ideas from different methods often leads to high-quality results. Having avail-
able a set of flexible metaheuristics software components greatly simplifies building
and applying hybrid search strategies. Thisisillustrated by the following example:
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m  Reactivetabu search with move penalties on the basis of tabu degreeinformation
= Neighborhood depth of 2 (“quadratic neighborhood”)

= Applying the pilot method (see Duin and VoR3 (1999)) to evaluate neighbor so-
lutions by, e.g., performing five steepest descent moves

m  Explicit diversification by short simulated annealing runs with adifferent neigh-
borhood than used for the primary search process

Eventually, after writing a few lines of code to construct a corresponding heuristic
object, one may even use this object to hybridize an evolutionary agorithm (not de-
scribed in this paper). That is, aframework providesthe user with a powerful toolbox,
which can be exploited to easily construct and apply novel algorithms.

4.6.2 Incremental Application

Tofully grasp the rules and mechanismsto apply aframework one may haveto manage
asteep learning curve. Therefore, aframework should enable an incremental applica
tion process (“adoption path”); see Fink et al. (1999a). That is, the user may start with
asimple scenario, which can be successively extended, if needed, after having learned
about more complex application mechanisms. Such an evolutionary problem solving
approach corresponds to the general tendency of a successive diffusion of knowledge
about a new technology and its application; see Allard (1998) and Rogers (1995).

In the following, we describe a typical adoption path for the case that some of the
problem-specific standard components are appropriate for the considered application.
In this process, we quickly — after completing the first step — arrive at being able to
apply severa kinds of metaheuristics for the considered problem, while efficiently
obtaining high-quality results may require to follow the path to a higher level.

1. Objective Function: After selecting an appropriate solution component, one has
to derive a new class and to code the computation of the objective function.
Of course, one also needs some problem component, which provides problem
instance data. All other problem-specific components may be reused without
change.

2. Efficient Neighborhood Evaluation: In most cases, the system that results from
step 1 bears a significant potential with regard to improving run-time efficiency.
In particular, one should implement an adaptive computation of the move eval-
uation (which replaces the default evaluation by computing objective function
values for neighbor solutions from scratch). In this context, one may also im-
plement some move evaluation that differs from the default one (implied change
of the objective function value).

3. Problem-Specific Adaptation: Obtaining high-quality solutions may require the
exploitation of problem-specific knowledge. This may refer to the definition
(and implementation) of a new neighborhood structure or an adapted tabu crite-
rion by specific solution information or attribute components.



152 OPTIMIZATION SOFTWARE CLASS LIBRARIES

4. Extension of Metaheuristics: While the preceding steps only involve problem-
specific adaptations, one may eventually want to extend some metaheuristic or
implement a new heuristic from scratch.

We exemplify thisincremental adoption path for the “ open traveling salesman prob-
lem” (TSPO): Given are n “locations” with “distances’ ¢;5, 1 < 4,5 < n, between
respective locations. The goal is to obtain a permutation I1 that minimizes the sum of
distances

n—1
z(Il) = Z Cryymiga -
i=1

By 7; we denote the location that is at position i in the sequence. This problem is
obviously suited to the solution component Perm _S. So, in step 1, one can derive
TSPO_S from Perm_S:

template <class C»>
class TSPO_S : public Perm S<C»>
{
protected:
TSPO_P<C>& _problem;

public:
enum FirstSolution { Identity=0, Random, GivenSolution };
TSPO_S( TSPO P<C>& p,
Observer<C> *observer = 0,
FirstSolution firstSolution = Identity,
vector<Range> startPermutation = vector<Range>()) ;
virtual void evaluate() ;

bi

The constructor implementation includes the determination of the initial permutation
according to alternative strategies. The computation of the objective functionisimple-
mented in the member function evaluate. After implementing a problem component
one can immediately apply different metaheuristics by defining the following con-
figuration component (reusing Perm _S_N _Shift, Perm_S_A, and Perm_S | without
change):

template <class C»>

struct CpTemplateTSPO

{
typedef typename C::T T;
typedef typename C::Range Range;
typedef C CNumeric;

typedef TSPO P<C> P;
typedef TSPO S<C> S;
typedef Perm S N Shift<C> N;
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typedef Perm S A<C> S _A;
typedef Perm S I<C> S I;

}i
typedef CpTemplateTSPO<CNumerics> Cp;

In step 2, the neighborhood eval uation might be implemented in an efficient way in
the following move evaluation operation of TSPO S :

virtual bool computeEvaluation( const Generic S N<C>& move,
T& evaluation, T& delta );

For the considered problem, this would mean subtracting the length of the deleted
edges from the sum of the length of the edges inserted, which provides the implied
change of the objective function value (delta). If we use this measure to actually
evaluate the advantageousness of a move, evaluation results as —delta.

In case one wants to experiment with, e.g., some new neighborhood structure (such
as somekind of a3-exchange), arespective neighborhood component might be derived
from Perm_S_N and implemented (step 3). Eventually, applying ideas with regard to
variable depth neighborhoods or gjection chain approaches requires to specially code
respective algorithms, which is accompanied with a fluent transition to step 4.

If there are no problem-specific components available that fit for the considered
problem type, one has to implement respective components in accordance with the
defined requirements for the metaheuristics that one wants to apply (see Table 4.1).

4.7 CONCLUSIONS

The principal effectiveness of HOTFRAME regarding competitive results has been
demonstrated for different types of problems; see, e.g., Fink and VoR3 (1999a), Fink
(2000), Fink et al. (2000), Fink and Vol (2001). Moreover, we have used the frame-
work for different practical scenarios in an online setting; see Bose et al. (2000) and
Gutenschwager et al. (2001).

HoTFRAME may be extended in variousdirections. Onthe one hand, new problem-
specific standard components may be added. 1deally, this eventually resultsin alarge
set of implemented solution spaces and corresponding components, which enablesfor
many common problem types a straightforward and easy framework application. On
the other hand, one may add new metaheuristic components.

However, with regard to the first-time use of HOTFRAME by a new user, even
Step 1 of the proposed adoption path requires some easy yet crucial knowledge about
the framework. For example, one needs to know which metaheuristic components do
exist, how can these metaheuristic components be configured, which problem-specific
componentsare needed, how can problem-specific componentsbe combined with each
other, which source code files must be included, and so on. To facilitate the use of the
framework we experiment with a software generator with agraphical user interface. A
software generator builds customized applications on the basis of high-level specifica
tions (seg, e.g., Czarnecki and Eisenecker (2000)). That is, declarative specifications
are transformed to specialized code. Our generator, which is based on joint work with
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Figure 4.40 |llustration of the User Interface of the Generator

Biskup (2000), is based on a general model which allows to represent framework ar-
chitectures. Specific frameworks are modeled by using a configuration language. On
the basis of the design of HOTFRAME we have defined the framework architecture in
this configuration language:

m  Metaheuristic components and their static and dynamic parameters
m  Problem-specific components and their interdependencies

= Requirements of metaheuristic components regarding problem-specific compo-
nents

m  Associations of components with source code templates and substitution rules
regarding the actual configuration

The generator, which is implemented in Java, provides a graphical user interface;
see Figure 4.40. The example shows the configuration of an iterated local search
component as discussed in Section 4.4. The generator provides an intuitive interface
to configure the framework regarding the intended application of some metaheuristic
to some problem type. After selection of a metaheuristic, one is provided with cus-
tomized options to configure dynamic search parameters, problem-specific concepts,
and numeric data types. Eventualy, the generator produces, in dependence on the
specified configuration, customized source code with a few “holes’ to be filled by
the user. In simple cases, this manual programming is restricted to the coding of the
objective function. In general, however, following the argumentation in Section 4.4,
one may still have to do considerable parts of the implementation to exploit problem-
specific knowledge. Thus, the use of HOTFRAME generally reflects the tradeoff be-
tween flexibility and ease-of-use.






