
Applications of modern heuristic search methods to
pattern sequencing problems∗

Andreas Fink† Stefan Voß†

May 1998

Scope and Purpose—Pattern sequencing problems have important applications, es-
pecially in the field of production planning. Those problems generally consist of finding
a permutation of predetermined production patterns (groupings of some elementary
order types) with respect to different objectives. These objectives may represent, e.g.,
handling costs or stock capacity restrictions, which usually leads to NP-hard prob-
lems. Thus, the use of heuristics to construct respective pattern sequences is generally
assumed to be appropriate.

Abstract—This article describes applications of modern heuristic search methods to
pattern sequencing problems, i.e., problems seeking for a permutation of the rows of a
given matrix with respect to some given objective function. We consider two different
objectives: Minimization of the number of simultaneously open stacks and minimiza-
tion of the average order spread. Both objectives require the adaptive evaluation of
changed solutions to allow an efficient application of neighbourhood search techniques.
We discuss the application of several modern heuristic search methods and present
computational results.

1 Introduction

Pattern sequencing problems seek for an optimal permutation of the rows of a given
matrix with respect to some given objective function. More formally, pattern sequenc-
ing problems may be stated as follows: Let C be an m × n matrix with integer el-
ements cij, 1 ≤ i ≤ m, 1 ≤ j ≤ n. The objective is to construct a permutation
Π = (π1, . . . , πm) of the rows (=patterns) of this matrix that minimizes some given
objective function. Here πi denotes the pattern that is positioned at the i-th posi-
tion. Thus the new i-th row of the matrix is now (cπi,1, . . . , cπi,n). Objective functions

∗to appear in Computers & Operations Research c©
†Technische Universität Braunschweig; Allg. BWL, Wirtschaftsinformatik und Informationsman-

agement; Abt-Jerusalem-Str. 7, D-38106 Braunschweig, Germany; email: {a.fink, stefan.voss}@tu-
bs.de.

1

considered here differ from travelling salesman like problems by the non-locality of
the evaluation; i.e., the evaluation of a permutation can not be computed by using
values that only depend on patterns adjacent to each other. The interpretations of
these problems are generally based on the assumption that the columns represent
some elementary “orders” and that the patterns represent predetermined groupings
of these orders. In the sequel we first present several relevant objective functions to be
minimized, each with an example representative of real life applications, before giving
theoretical results and discussing the rest of the paper.

1.1 Applications

Pattern sequencing problems have important applications, especially in the field of
production planning. In the following we summarize some of these problem types.

1.1.1 Simultaneously open stacks (PSP-SOS)

Consider the production of the order patterns given by C. An entry cij of C repre-
sents the frequency of order type j in pattern i; in the following it is only relevant
whether cij > 0. An order j is called open, if its production has been started but not
yet been finished. More formally, an order j may be defined open at position i′ of the
pattern sequence if (

∑i′
i=1 cπi,j)(

∑m
i=i′ cπi,j) > 0. The PSP-SOS consists of constructing

a sequence of the order patterns with respect to minimizing the number of simulta-
neously open order stacks. This objective may refer to corresponding handling costs
or restrictions like, e.g., a limited number of containers to be served simultaneously
(provided that each order is assigned to one container) or restrictions concerning stock
capacity. Yanasse [1] gives an example in the field of wood cutting.

1.1.2 Average order spread (PSP-AOS)

Starting from the same assumptions as for the PSP-SOS with an additional frequency
vector α with αi representing the frequency of pattern i, the objective is now to find a
sequence of order patterns with respect to the following policy: as there may be some
handling costs connected with each open order, we may strive for a minimization of
the average length each order is open, the so-called average order spread. Formally,
the average order spread of a permutation Π is defined as

AOS(Π) =
1

n

n∑
j=1

 max{k|cπk,j>0}∑
i=min{k|cπk,j>0}

απi − 1

 .
Madsen [2] gives an example from the field of cutting stock problems, where the
patterns are results of a prior optimization step with the aim to minimize waste

2

of material. A possible modification would be to consider the minimization of the
maximum order spread.

1.1.3 Actor costs (AC) of shooting schedules

Consider the shooting of a movie (cf. [3, 4]). The patterns of C define the scenes to
be done. The binary matrix elements are interpreted as follows: cij equals 1 if and
only if actor j is needed in scene i. A cost vector γ represents the costs γj of actor
j per time unit. An actor is paid the time from the first to the last scene where he
or she is needed. A frequency vector α may define the length αi (in time units) the
corresponding scene i requires to be completed. The objective is to find a sequence of
scenes that minimizes the total actor costs. The actor costs (AC) of a permutation Π
are defined as

AC(Π) =
n∑
j=1

γj

max{k|cπk,j>0}∑
i=min{k|cπk,j>0}

απi .

The objective AC(Π) may be referred to as a generalization of the objective AOS(Π).
More specifically, it may be seen as a weighted version of AOS(Π) with γj = 1 for all
j = 1, . . . , n.

1.1.4 Further problem types

There are objective functions for sequencing problems that lead to the classical travel-
ling salesman problem, e.g., minimize the discontinuities of the production of the order
types; there the “distance” between two patterns i and k is defined as the number of
order types that are contained in exactly one of these patterns.

Sequencing problems related to those described above also exist in various other
domains, e.g., sequencing of DNA segments [5], ordering of some “information” items
[6, 7, 8], or data base organization [9].

1.1.5 Example

Consider the following example with m = 4 patterns and n = 4 order types, where
these patterns are produced according to the given sequence (1, 2, 3, 4):

C =


0 1 1 1
0 0 0 1
1 1 1 0
0 0 1 1


While producing the third pattern all four order types are simultaneously open. As-
suming that all pattern frequencies are equal to one, the average order spread of the
given sequence is (0 + 2 + 3 + 3)/4 = 2. Further on, we will use this example to
illustrate potential improvements due to advanced heuristics.

3

1.2 Theoretical results

In this section we discuss the computational complexity of the problem types defined
above. As PSP-AOS is assumed to be NP-hard in some papers without giving a
proof or a literature reference (cf., e.g., [10]) while the problem complexity is not even
touched in other papers (cf., e.g., [11]), we give a simple proof of the NP-hardness of
a special case of PSP-AOS, which also shows that PSP-AC is NP-hard. The proof is
based on the idea of [3] as cited in [4].

Proposition: PSP-AOS is NP-hard.
Proof: The decision version of PSP-AOS is in NP. We transform the Optimal Lin-
ear Arrangement Problem to the decision version of PSP-AOS. The optimal linear
arrangement problem may be stated as follows: Given is a graph G = (V,E) and
a positive integer K. Is there a one-to-one function f : V → {1, 2, . . . , |V |} such
that Ψ(f) =

∑
(u,v)∈E |f(u)− f(v)| ≤ K? The optimal linear arrangement problem is

NP-complete, even if G is bipartite (cf. [12]).
The transformation from the optimal linear arrangement problem to the decision

version of PSP-AOS is as follows. Let V = {1, . . . ,m} and E = {e1, . . . , en}. The rows
(columns) of the matrix Cm×n correspond to the vertices (edges) of G. The binary
entries of C are defined as follows: cij equals 1 if and only if edge ej is incident to
vertex i. The pattern frequencies αi are all set to one. To prove that this is indeed a
transformation, we show that a function f with the specified property exists if and
only if there is a permutation Π of the rows of C with AOS(Π) ≤ K/n.

The function f constitutes a permutation Π of the rows of the matrix. The sum-
mands |f(u)−f(v)| of Ψ(f) represent the “distance” between the two non-zero entries
of the corresponding columns of C. So we can state the following equivalence:

Ψ(f,Π) =
∑

(u,v)∈E
|f(u)− f(v)|

=
n∑
j=1

(max{k|cπk,j > 0} −min{k|cπk,j > 0})

=
n∑
j=1

 max{k|cπk,j>0}∑
i=min{k|cπk,j>0}

απi − 1


= nAOS(Π) .

As we have constructed a polynomial tranformation from the optimal linear arrange-
ment problem to PSP-AOS, the decision version of PSP-AOS is NP-complete, i.e.,
PSP-AOS is NP-hard. 2

The transformation provides us with the NP-hardness for a special type of PSP-
AOS with pattern frequencies of one and each order type produced in exactly two
patterns. Further, due to the bipartite graph G the patterns may be classified in two
sets, with each order type produced in patterns from both sets.

4

Whether PSP-SOS is NP-hard or efficiently solvable is open (cf. [1]).

1.3 Earlier work

Yanasse [1] surveys some open problems concerning the PSP with the goal to min-
imize the number of simultaneously open stacks (PSP-SOS). The question, whether
PSP-SOS is NP-hard or efficiently solvable is open, whereas general pattern sequenc-
ing problems are NP-hard. He gives some conjectures concerning the relationships
of PSP-SOS with similar problems. Furthermore, he describes lower bounds and a
Branch-and-Bound scheme for PSP-SOS. However, he does not present any compu-
tational results.

Yuen [13, 11] compares different priority rules to construct solutions for PSP-SOS.
Yuen and Richardson [14] present methods to establish the optimality of sequences
for PSP-SOS (lower bounds, disjoint subgraphs, exhaustive search).

In a case study presenting problems from the glass industry, Madsen [2] applies
travelling salesman routines to solve PSP-AOS like problems.

Foerster [15] compares priority rules and different metaheuristics for PSP-AOS.
Foerster and Wäscher [10] examine especially the application of 3-opt and simulated
annealing for PSP-AOS.

Chen et al. [3] pose the problem to minimize the actor costs of shooting schedules
(PSP-AC). Nordström and Tufekci [4] present a genetic algorithm with computational
results for PSP-AC.

1.4 Motivation and outline

A motivation for this paper is to deal with the different problem types of the research
field described above in a unifying way. Here we consider the two primary repre-
sentatives of the most relevant objectives: minimization of the average order spread
(PSP-AOS) and minimization of the number of simultaneously open stacks (PSP-
SOS). The use of heuristics is generally assumed to be appropriate, as these objective
functions usually constitute some imprecise, derived goals. For example, the objective
of minimizing the average order spread (PSP-AOS) may approximately substitute the
goal “minimization of handling costs”, which may generally not be exactly defined and
quantified. Besides, the problem types considered here belong to the class of NP-hard
problems (PSP-AOS) or there is no known efficient algorithm (PSP-SOS).

As described in Section 1.3, the research done so far mostly lacks the application
of advanced local search based metaheuristics. Only Foerster [15] applies correspond-
ing methods, however, concerning tabu search, with modest success. This is partly
due to the difficulties to evaluate the solution space within a neighbourhood search
in an efficient way. In the next section we first examine the problem of efficiently
constructing good starting solutions; then we present efficient algorithms to evaluate

5

neighbours. In Section 3 we discuss the heuristics applied; we focus on different tabu
search heuristics. Afterwards, we present computational results and lastly draw some
conclusions.

2 Solution space

2.1 Construction of starting solutions

The application of local search heuristics requires the construction of initial feasible
solutions. This can be accomplished by, e.g., starting with the identity permutation,
a random permutation, or some heuristically determined starting solution. Which of
these strategies is useful generally has to be decided by experimental computations
(cf. Section 4). Here we consider starting with the identity permutation or with a
permutation determined by two different construction heuristics: cheapest insertion
and cheapest insertion of worst pattern, where the latter may be referred to as farthest
insertion, too.

The cheapest insertion heuristic works as follows. Start with a partial sequence
Π =< i >, that includes only one pattern i (here pattern 1). Now build successively a
complete permutation by choosing in each iteration k = 2, . . . ,m the best combination
under consideration of the remaining m−k+ 1 patterns and all k insertion positions.
That is, we have to evaluate the objective function increase for all these combina-
tions at each iteration. Generally this may be accomplished in O(m3) time only if
it is possible to evaluate each insertion position in constant time; so the exact time
complexity depends on the evaluation function. A trivial evaluation for the objective
functions considerd here leads to O(m4n) time. Due to these seemingly prohibitive
costs the cheapest insertion heuristic was neglected in [15].

However, we may reduce the average time needed considerably by performing
calculations as shown for PSP-AOS in Algorithm 2 in the Appendix. There we use
vectors first and last that represent the current first and last occurrences, respectively,
of each order in the pattern sequence. ∆ is computed as the increase of the order
spread when inserting pattern i before position p. For each order type j we calculate
the increase of the order spread by distinguishing four cases: i) First production of
order j. ii) New earliest production of order j. iii) Order j to be produced neither
earliest nor latest. iv) New latest production of order j.

The respective evaluation for PSP-SOS is shown in Algorithm 3 in the Appendix.
There we further use a vector open that holds for each position of the partial sequence
the number of simultaneously open orders. The number of simultaneously open orders
for the inserted pattern is computed as adaptedOpen[0]. However, the evaluation of an
insertion as presented in Algorithm 3 by comparing the maximal values of both vectors
may be too rough to provide appropriate information about the quality of potential

6

insertions. In Section 2.4 we present a modified evaluation function for neighbourhood
solutions, that might also be used here.

Apart from these cheapest insertion heuristics we also used a modified approach,
where in each step that pattern is selected for insertion whose cheapest insertion leads
to a maximal increase of the objective function. This algorithm may be termed as
cheapest insertion of worst pattern. This approach is similar to the farthest insertion
method for the travelling salesman problem. The motivation for the application of
such strategies is due to the idea of performing the important decisions (those that
lead to a high increase of the objective function value) first.

2.2 Neighbourhood

Consider a permutation Π as a chain of patterns, each connected by an edge, with
two dummy patterns that represent a virtual fixed first (0) and last (m+1) pattern.
Now a 2-exchange move is defined for a pair (p1, p2) with 0 ≤ p1 and p1 + 2 ≤ p2 ≤ m
as the deletion of the edges (πp1, πp1+1) and (πp2 , πp2+1) and the inclusion of the edges
(πp1 , πp2) and (πp1+1, πp2+1). The number of neighbours of a given solution for this
neighbourhood may be computed as

m−1∑
i=1

i =
m(m− 1)

2
= O(m2).

Here we concentrate on the 2-exchange neighbourhood, as further useful neighbour-
hoods, that may be determined by other possible move definitions (e.g. 3-exchange),
might lead to a great increase of running time of the advanced heuristics considered
below.

As the neighbourhood considered here has size O(m2), it is crucial to perform
the evaluation of a neighbourhood in an adaptive way to reach sufficiently efficient
implementations. Though the worst case of the algorithms presented below still leads
to O(m3n) time for the evaluation of a neighbour, the average time is significantly
reduced.

2.3 Neighbourhood evaluation for PSP-AOS

In order to achieve efficiency we define the vectors first and last, which represent the
first and last occurrences, respectively, of each order in the current pattern sequence.
These vectors have to be adapted each time a move is performed; this may be done
in connection with the reordering of the patterns with no significant cost overhead.

To evaluate a neighbour (p1, p2) of a given solution we have to distinguish for all
orders j the cases shown in Figure 1. Neighbours of type a, c, d or f do not lead to
a different objective function value; only for neighbours of type b or e does the order
spread change. The evaluation of a neighbour may be done as shown in Algorithm 4 in

7

f i r s t

l a s t

a b c

d e

f

p 1 + 1

p 2

Figure 1: Cases to differentiate when evaluating neighbours.

the Appendix. Each time when first or last are affected, the respective order spread
changes. That is, for case b we have to subtract the frequencies of those patterns
that would be positioned before the new first position, and to add the frequencies of
those patterns that are currently positioned before the old first position but would
now be included in the order spread. In case e we have to subtract the frequencies of
those patterns that would be positioned after the new last position, and to add the
frequencies of those patterns that are currently positioned after the old last position
but would now be included in the order spread.

2.4 Neighbourhood evaluation for PSP-SOS

Besides the vectors first and last we further introduce a vector open, that stores for
each position i the number of simultaneously open orders for the current solution. To
evaluate a neighbour (p1, p2) of a given solution, we have to distinguish for all orders
j the cases shown in Figure 1. Neighbours of type a, d and f do not change the status
of an order for any position i. Only neighbours of type b, c or e may change open,
and so the evaluation (the maximum element of open). The efficient evaluation of a
neighbour may be accomplished as shown in Algorithm 5 in the Appendix. We briefly
describe the corresponding calculation for case b: First, we determine the new earliest
production of order j. Dependent on whether this leads to a move of the production of
order j up ahead, we must increase the open vector accordingly, or otherwise decrease
it.

8

As already noted for construction heuristics in Section 2.1, the simple evalua-
tion of a neighbour by the potential change of the objective function value does
not provide enough information to guide local search methods into promising search
regions. For instance, computational experiments have shown that steepest descent
often immediately terminates with the starting solution, as there is no move that
leads to an improvement of the objective function value, i.e., a direct decrease of
the maximum value of the open vector. However, there is often a sequence of moves
that successively decrease some entries of the open vector till finally a reduction of
the maximum value becomes possible. So we adopt the following evaluation of a
neighbour, that is based on the idea to “smooth” the solution space by evaluating
not only the maximum value but the most significant difference between two so-
lutions. Assume both vectors open and adaptedOpen as sorted descending. If open
equals adaptedOpen the evaluation is zero. Otherwise define η as the first position
with different entries, i.e. η = min{i|open[i] 6= adaptedOpen[i], i = 1, . . . ,m}. With
δ = open[η]− adaptedOpen[η] the evaluation is computed as

1

η + 1
+

δ

m(η + 2)(η + 3)
for δ > 0 ,

−1

η + 1
+

δ

m(η + 2)(η + 3)
for δ < 0 .

That is, the position of the most significant change of the open vector dominates the
evaluation of a neighbour. If η is equal for two neighbours the second term includes
the change of that value as secondary criterion.

3 Improvement methods

Improvement procedures for pattern sequencing problems may be based on local
search considering those neighbourhood ideas described in the previous section. Steep-
est descent selects in each iteration the best neighbour until no improving move is
possible. For the 2-exchange neighbourhood this leads to a so-called 2-opt locally op-
timal solution. As steepest descent may lead to local optima of non-satisfying solution
quality, in the sequel we consider the application of modern heuristic search methods,
i.e., simulated annealing and various tabu search approaches.

Consider the simple example from Section 1.1.5 regarded as PSP-AOS. Starting
from the given sequence (1, 2, 3, 4) the best 2-exchange move leads to the new sequence
(2, 1, 3, 4) with an average order spread of 1.5, which represents a local optimum. Thus,
a simple steepest descent approach will get stuck in this solution. However, the global
optimum (3, 1, 4, 2) (or the reverse sequence) has an average order spread of 1.25. All
methods discussed below easily obtain this solution.

9

3.1 Simulated annealing

Simulated annealing is a local search based metaheuristic that randomly allows dete-
riorating moves to overcome local optimality (cf. [16]). In every iteration a potential
move is randomly selected; this move is accepted if it leads to a solution with a better
objective function value than the current solution, otherwise the move is accepted
with a probability that depends on the deterioration δ of the objective function value.
The probability of acceptance is computed here according to the Boltzmann function
as e−δ/T using a temperature T . The temperature is reduced through multiplication
by a parameter a according to a cooling schedule. This reduction is performed after a
repetition interval that is increased by multiplication with a parameter b after every
reduction. Here we follow the procedure and use the parameters described in [10]:
the initial temperature is set to half of the objective function value of the starting
solution, the repetition interval is initialized by m, a by 1.15 and b by 0.75.

3.2 Tabu search

The basic idea of tabu search (cf. [17]) is to use information about the search history
to guide local search approaches to overcome local optimality. Primarily, this is done
by either statically or dynamically prohibiting certain moves; the different tabu search
strategies differ especially in the way how the tabu criteria are defined. A general de-
scription of a tabu search frame may be presented as shown in Algorithm 1 for a given
starting solution s and a tabu criterion that is represented by the object TabuMemory.
A neighbour (move) is called admissible, if it is not tabu or if an aspiration criterion
is fulfilled (e.g., the move leads to a neighbour which represents a better solution than
found so far). Eventually, a tabu search method may incorporate diversifying moves
that should drive the search into new regions when it might be trapped in a certain
area of the solution space. In the following we shortly describe different tabu criteria
that differ especially in the way they use the information provided (performed moves,
traversed solutions) to establish the tabu status.

3.2.1 Static tabu search

The basic idea of static tabu search is to prohibit the inversion of performed moves
for a fixed number of iterations (tabu duration). The possible disadvantage of such a
heuristic is that some parameters (here the tabu duration) have to be set in advance.

Considering a performed move (p1, p2) we store the attributes that represent the
inserted edges, i.e. (πp1, πp2) and (πp1+1, πp2+1), in a tabu list of fixed length. To obtain
the current tabu status of a neighbour that is represented by (p1, p2) we have to check
whether the edges to be deleted, i.e. (πp1 , πp1+1) and (πp2 , πp2+1), are contained in the
tabu list. However, for such multi-attribute moves there are different ways to define
the tabu criterion: a move may be classified tabu when at least one of the attributes

10

Algorithm 1 Generic tabu search heuristic.

TabuSearch(s, TabuMemory):

initialize TabuMemory
while (stopping criterion not fulfilled)
s′ = BestAdmissibleNeighbour(s, Neighbourhood, TabuMemory)
TabuMemory.add(move(s, s′))
s = s′

TabuMemory.add(s)
if (escape triggered by TabuMemory)

perform a diversifying move

of this move is contained in the tabu list, or when both are in the list. For our purpose
both criteria are investigated.

3.2.2 Strict tabu search

The basic idea of strict tabu search is to provide necessity and sufficiency with respect
to the idea of not revisiting any previously visited solution. So we have to prohibit a
move to a neighbour if and only if this neighbour has already been visited during the
previous part of the search. This may be done by alternative mechanisms: by exploiting
logical interdependencies between the sequence of moves performed throughout the
search process, as realized by the reverse elimination method, or by storing information
about all solutions visited so far. This may be done either exactly or approximately
by, e.g., the use of a hash code (cf. [18]). As the hash code of two different solutions
may be the same whenever a so-called collision occurs, moves might be unnecessarily
set tabu in some cases.

Here we do not use the reverse elimination method, but store the full permutation
Π = (π1, . . . , πm) or a hash code

∑m
i=1 riπi (for a vector (r1, . . . , rm) of pseudo-random

integers) of each solution visited. Each entry in this trajectory based memory is at-
tributed by the iteration when the corresponding solution was visited the last time
and by the frequency indicating how often this solution has been visited.

3.2.3 Reactive tabu search

Reactive tabu search is a modification of the static tabu criterion as the tabu duration
is appropriately adapted throughout the search (cf. [19]). This is done by using a
trajectory based memory as described in the previous subsection. Here we start with
a tabu duration d of 1 and increase it every time a solution has been repeated. The

11

increase of d is defined by d := min{max{d + 1, d × 1.1}, u}, given an upper bound
u (i.e., the size of the neighbourhood minus 1 to guarantee at least one admissible
move). If there has been no repetition for some iterations we decrease it appropriately
to max{min{d− 1, d× 0.9}, 1}. We use a static tabu list as described in Section 3.2.1
with a trajectory memory by hash codes as described in Section 3.2.2.

4 Computational results

4.1 Problem data

We applied the heuristics described above for the larger instances of the problem
sets described and used in [10]. The data represent heuristically determined solutions
(patterns) of randomly generated cutting stock problems. The parameter v represents
the relative size of the largest length of an order compared to the standard length
(cf. [10]). So a small v leads to a higher density of the resulting matrices. There are
four problem sets for m = 50 (v = 0.25, v = 0.5, v = 0.75, v = 1) with 100 problem
instances each, and four problem sets for m = 60 with 100 instances for v = 0.25 and
v = 0.5, 98 instances for v = 0.75 and 99 instances for v = 1 (summing up to 797
problem instances). For all problem instances m is close to n. The frequencies αi are
all set to one.

Optimal solutions for the test sets are not available. Defining c̃ij = 1 if cij > 0
(else 0), simple lower bounds for PSP-AOS may be computed as

AOSLB =
1

n

n∑
j=1

(
m∑
i=1

c̃ijαi − 1

)
,

and for PSP-SOS as

SOSLB = max

{
m∑
i=1

c̃ij | j = 1, . . . , n

}
.

Unfortunately, for the problem sets considered here the ratio of the objective function
value of the best solutions found (see below) to the computed simple lower bounds is
about two to four, so we do not report these lower bounds here.

4.2 Implementation

The implementation was made in C++ using a framework with generic components
for heuristic optimization. The different types of problems and different methods are
incorporated in a unifying way without any fine tuning. This provides a way for a fair
comparison of different heuristics by controlled and unbiased experiments.

12

The computations were performed on a PentiumII/266. To allow a comparison
with the computing times of [15, 10], the speed ratio between a PentiumII/266 and
a i486DX2/66 (as used in [10]) may be estimated for our purpose by 10, as our own
tests have shown.

4.3 Results

In the following we summarize some results of the application of different heuristics
on the eight problem sets described above. All results given in the tables below are
average values over 100 (or 98 or 99) problem instances. Z denotes the average ob-
jective function value, δ% denotes the distance percent to the best average objective
function value reached, T denotes the average CPU time in seconds. With s we de-
note the applied starting solution: identity permutation (s=id) in accordance with the
numbering of the patterns or the solution determined by the cheapest insertion (s=ci)
or the cheapest insertion of worst pattern (s=ciw) heuristic.

Table 1 shows the results of the application of both construction heuristics and
steepest descent (2-opt). The cheapest insertion of worst pattern heuristic achieves
significantly better results than the cheapest insertion heuristic, this supports the rea-
soning given in Section 2.1. Though, the solution quality of these construction heuris-
tics is far from those achieved by the improvement methods. The moderate computing
times of the construction heuristics and steepest descent support the efficiency of the
algorithms given in Section 2. As tests have shown, methods with randomized algo-
rithms like simulated annealing and tabu search with random escape moves do not
necessarily require good starting solutions, whereas the solution quality of determin-
istic methods may increase significantly when using relatively good starting solutions,
as is exemplified in Table 1 for steepest descent.

Chins Chins worst 2-opt 2-opt
(ci) (ciw) s=ci s=ciw

m v Z δ% T Z δ% T Z δ% T Z δ% T
50 0.25 19.69 40.2 0.2 18.06 28.6 0.2 14.93 6.3 1.0 14.84 5.7 0.8
50 0.50 17.65 42.0 0.2 16.14 29.8 0.2 13.30 7.0 0.9 13.17 6.0 0.7
50 0.75 8.54 75.4 0.2 7.08 45.4 0.2 5.30 8.8 0.6 5.24 7.6 0.5
50 1.00 2.53 83.3 0.2 1.93 39.9 0.2 1.47 6.5 0.3 1.46 5.8 0.2
60 0.25 23.44 42.8 0.4 21.75 32.5 0.4 17.64 7.5 2.3 17.50 6.6 2.9
60 0.50 21.03 43.9 0.4 19.06 30.5 0.4 15.61 6.8 1.9 15.53 6.3 1.6
60 0.75 9.45 77.3 0.4 7.97 49.5 0.4 5.78 8.4 1.1 5.86 9.9 0.9
60 1.00 2.90 100.0 0.4 2.09 44.1 0.4 1.53 5.5 0.5 1.56 7.6 0.4

Table 1: Results for PSP-AOS.

To facilitate a comparison with the computational results of [10] we included their
results (3-opt and simulated annealing) in the first columns of Table 2 with compu-
tation times scaled down by a factor of ten. Due to the high computation times of

13

3-opt [10] SA [10] SA TSS
s=id s=ciw

m v Z δ% T Z δ% T Z δ% T Z δ% T
50 0.25 14.66 4.4 166.2 14.73 4.9 6.1 14.29 1.8 17.1 14.61 4.1 34.2
50 0.50 13.04 4.9 158.5 13.12 5.6 5.8 12.68 2.0 16.6 12.94 4.1 32.6
50 0.75 5.21 7.0 177.0 5.39 10.7 5.4 5.01 2.9 10.8 5.14 5.5 32.0
50 1.00 1.47 6.5 63.0 1.57 13.8 4.1 1.42 2.9 7.3 1.42 2.9 26.8
60 0.25 − − − 17.27 5.2 13.2 16.85 2.7 21.6 16.98 3.5 55.3
60 0.50 − − − 15.42 5.5 5.5 14.96 2.4 21.7 15.20 4.0 50.5
60 0.75 − − − 5.86 9.9 10.8 5.56 4.3 13.3 5.65 6.0 46.7
60 1.00 − − − 1.68 15.9 8.8 1.49 2.8 8.7 1.53 5.5 39.6

Table 2: Results for PSP-AOS.

TSTA TSTAE TSRE TSRE5000
s=ciw s=ciw s=ciw s=ciw

m v Z δ% T Z δ% T Z δ% T Z δ% T
50 0.25 14.70 4.70 15.94 14.25 1.5 15.2 14.11 0.5 17.3 14.04 0.0 142.6
50 0.50 13.07 5.15 14.96 12.58 1.2 14.3 12.49 0.5 16.1 12.43 0.0 79.5
50 0.75 5.16 5.95 11.65 4.96 1.8 11.1 4.90 0.6 11.9 4.87 0.0 58.6
50 1.00 1.45 5.07 7.59 1.40 1.4 7.3 1.39 0.7 7.2 1.38 0.0 35.1
60 0.25 17.46 6.40 29.25 16.70 1.8 28.3 16.53 0.7 32.2 16.41 0.0 159.5
60 0.50 15.47 5.89 26.17 14.87 1.8 25.3 14.71 0.7 28.9 14.61 0.0 142.6
60 0.75 5.79 8.63 19.10 5.43 1.9 18.5 5.38 0.9 20.1 5.33 0.0 98.2
60 1.00 1.56 7.59 12.48 1.47 1.4 12.3 1.45 0.0 12.2 1.45 0.0 58.9

Table 3: Results for PSP-AOS.

3-opt, Foerster and Wäscher [10] do not provide the respective results for the prob-
lem instances with m = 60. Simulated annealing provides a significant improvement
concerning solution quality compared to steepest descent. Our simulated annealing
implementation was applied for 1,000,000 iterations, which resulted in significantly
better results than those of [10]. This might be based on the more efficient neighbour-
hood evaluation used here which facilitated the execution of more iterations.

For static tabu search (TSS, last column of Table 2) we used a tabu duration of 50
for 1,000 iterations; moves are classified tabu when both attributes of this move are
contained in the tabu list (cf. Section 3.2.1). Table 3 shows the results of the applica-
tion of advanced tabu search methods: strict tabu search by approximate trajectory
(TSTA) for 1,000 iterations, strict tabu search by approximate trajectory including
five random escape moves (TSTAE) after every 100 iterations for 1,000 iterations,
reactive tabu search including five random escape moves (TSRE) after every 100 it-
erations for 1,000 and 5,000 iterations. The solution quality of the simple tabu search
approaches is not satisfactory. The primary reason for this might be the inability to
diversify the search into unexplored regions of the search space as the neighbourhood
generally includes O(m2) solutions with minor changes of the objective function value.

14

On the other hand, the results show the superiority of tabu search methods with the
incorporation of simple diversification steps by random escape moves. Especially the
reactive tabu search with escape moves generated very good solutions, while taking
moderate running times.

The Tables 4, 5 and 6 show the respective results for PSP-SOS. We used for all
computations the modified evaluation function as described in Section 2.4, as the sim-
ple evaluation, by the change of the objective function value, resulted in clearly worse
results. The simulated annealing implementation was applied for 1,000,000 iterations,
the tabu search algorithms for 1,000 iterations (with the exception of the last column
of Table 6, that shows the reference results of 5,000 reactive tabu search iterations
with escape moves). Concerning the comparison of the different methods, these re-
sults primarily support the findings for PSP-AOS. Due to the additional case c to be
considered (cf. Section 2.4) the running times for PSP-AOS are generally higher than
those of PSP-SOS.

To summarize the computational experiments, reactive tabu search with the inclu-
sion of escape moves leads to overall best results. Simple tabu search approaches by
itself are not competitive, even the application of simulated annealing leads to better
results at an average. So we may conclude that diversification has been the crucial
component of the heuristic strategies considered here.

Chins Chins worst 2-opt 2-opt
(ci) (ciw) s=ci s=ciw

m v Z δ% T Z δ% T Z δ% T Z δ% T
50 0.25 27.32 34.85 0.5 25.95 28.08 0.8 21.30 5.13 4.8 21.27 4.99 4.1
50 0.50 24.44 32.11 0.5 24.15 30.54 0.8 19.60 5.95 4.0 19.68 6.38 3.8
50 0.75 14.13 62.04 0.5 12.14 39.22 0.8 9.31 6.77 2.7 9.48 8.72 2.4
50 1.00 7.55 91.62 0.5 4.89 24.11 0.8 4.16 5.58 1.4 4.10 4.06 1.1
60 0.25 31.73 37.36 1.0 29.94 29.61 1.7 24.45 5.84 12.3 24.59 6.45 10.8
60 0.50 29.55 36.24 1.0 28.60 31.86 1.7 23.12 6.59 9.7 23.19 6.92 8.6
60 0.75 15.69 63.78 1.0 13.83 44.36 1.7 10.38 8.35 5.9 10.39 8.46 5.3
60 1.00 8.48 104.34 1.0 5.20 25.30 1.7 4.34 4.58 3.1 4.26 2.65 2.2

Table 4: Results for PSP-SOS.

5 Conclusions

We presented the application of various heuristics for different types of pattern se-
quencing problems. Although the neighbourhood evaluation is rather expensive, the
considered heuristics may be implemented with satisfying efficiency. The computa-
tional results achieved (regarding solution quality and running times) are superior to

15

SA TSS TSTA
s=id s=ciw s=ciw

m v Z δ% T Z δ% T Z δ% T
50 0.25 20.75 2.42 47.1 21.32 5.23 98.3 21.19 4.59 67.3
50 0.50 19.00 2.70 47.7 19.79 6.97 95.6 19.49 5.35 65.1
50 0.75 9.10 4.36 51.7 9.37 7.45 98.8 9.41 7.91 65.5
50 1.00 4.00 1.52 72.0 4.03 2.28 56.2 4.09 3.81 37.8
60 0.25 23.89 3.42 60.6 24.76 7.19 164.0 24.58 6.41 127.6
60 0.50 22.42 3.37 61.9 23.23 7.10 151.2 22.98 5.95 115.8
60 0.75 10.29 7.41 63.7 10.39 8.46 152.4 10.26 7.10 95.7
60 1.00 4.31 3.86 87.4 4.24 2.17 91.7 4.26 2.65 63.8

Table 5: Results for PSP-SOS.

TSTAE TSRE TSRE5000
s=ciw s=ciw s=ciw

m v Z δ% T Z δ% T Z δ% T
50 0.25 20.45 0.94 62.2 20.36 0.49 57.5 20.26 0.00 288.3
50 0.50 18.69 1.03 60.0 18.64 0.76 56.1 18.50 0.00 282.2
50 0.75 8.80 0.92 58.5 8.81 1.03 53.8 8.72 0.00 300.1
50 1.00 3.94 0.00 32.7 3.95 0.25 29.5 3.94 0.00 147.2
60 0.25 23.34 1.04 115.3 23.30 0.87 99.3 23.10 0.00 531.4
60 0.50 21.99 1.38 106.7 21.93 1.11 97.7 21.69 0.00 521.6
60 0.75 9.68 1.04 99.7 9.67 0.94 91.4 9.58 0.00 446.0
60 1.00 4.15 0.00 56.5 4.18 0.72 51.4 4.15 0.00 250.3

Table 6: Results for PSP-SOS.

those presented in the literature. This may rule out the exclusive application of simple
priority rules as examined in [13, 11, 15].

Further work should include theoretical research, e.g., concerning the conjectures
given in [1] about the relationships of PSP-SOS with related problems.

In addition, our findings may be incorporated and tested within general frame-
works for heuristic methods where efficient ideas for software reuse are the main focus.
Respective research may underline the generality of our research as various problem
types may be subsumed under the heading of pattern sequencing.

References

[1] H.H. Yanasse. On a pattern sequencing problem to minimize the maximum
number of open stacks. European Journal of Operational Research 100, 454–463
(1997).

[2] O.B.G. Madsen. An application of travelling-salesman routines to solve pattern-
allocation problems in the glass industry. Journal of the Operational Research

16

Society 39, 249–256 (1988).

[3] T.C.E. Cheng, J. Diamond, and B.M.T. Lin. Optimal scheduling in film produc-
tion to minimize talent hold cost. Journal of Optimization Theory and Applica-
tions 79, 197–206 (1993).

[4] A.-L. Nordström and S. Tufekci. A genetic algorithm for the talent scheduling
problem. Computers & Operations Research 21, 927–940 (1994).

[5] F. Alizadeh, R.M. Karp, L.A. Newberg, and D.K. Weisser. Physical mapping of
chromosomes: A combinatorial problem in molecular biology. Algorithmica 13,
52–76 (1995).

[6] S.B. Deutsch and J.J. Martin. An ordering algorithm for analysis of data items.
Operations Research 19, 1350–1362 (1971).

[7] W.T. McCormick Jr., P.J. Schweitzer, and T.W. White. Problem decomposition
and data reorganization by a clustering technique. Operations Research 20, 993–
1009 (1972).

[8] P.M. Morse. Optimal linear ordering of information items. Operations Research
20, 741–751 (1972).

[9] J.A. Hoffer and D.G. Severance. The use of cluster analysis in physical database
design. In Proceedings of the First International Conference on Very Large Data
Bases (VLDB), IEEE Computer Society, 69–86 (1975).

[10] H. Foerster and G. Wäscher. Simulated annealing for the order spread minimiza-
tion problem in sequencing cutting patterns. European Journal of Operational
Research, to appear (1998).

[11] B.J. Yuen. Improved heuristics for sequencing cutting patterns. European Journal
of Operational Research 87, 57–64 (1995).

[12] M.R. Garey and D.S. Johnson. Computers and Intractability, A Guide to the
Theory of NP-Completeness. Freeman, New York (1979).

[13] B.J. Yuen. Heuristics for sequencing cutting patterns. European Journal of
Operational Research 55, 183–190 (1991).

[14] B.J. Yuen and K.V. Richardson. Establishing the optimality of sequencing heuris-
tics for cutting stock problems. European Journal of Operational Research 84,
590–598 (1995).

[15] H. Foerster. Fixkosten- und Reihenfolgeprobleme in der Zuschnittplanung. PhD
thesis, Technische Universität Braunschweig (1998).

17

[16] K.A. Dowsland. Simulated Annealing. In C. Reeves, editor, Modern Heuristic
Techniques for Combinatorial Problems, 20–69, Blackwell Scientific Publications,
Oxford (1993).

[17] F. Glover and M. Laguna. Tabu Search. Kluwer, Boston et al. (1997).

[18] D.L. Woodruff and E. Zemel. Hashing vectors for tabu search. Annals of Oper-
ations Research 41, 123–138 (1993).

[19] R. Battiti. Reactive search: Toward self-tuning heuristics. In V.J. Rayward-
Smith, I.H. Osman, C.R. Reeves, and G.D. Smith, editors, Modern Heuristic
Search Methods, 61–83, Wiley, Chichester (1996).

Appendix

Algorithm 2 Evaluation of inserting pattern i between positions p − 1 and p for
PSP-AOS.

∆ = 0
for (j=1; j ≤ n; ++j)

if ((first[j] == 0) and (cij > 0))
∆ = ∆ + αi − 1

else if ((p ≤ first[j]) and (cij > 0))
∆ = ∆ + αi
for (l=p; l < first[j]; ++l)

∆ = ∆ + απl
else if ((p > first[j]) and (p ≤ last[j]))

∆ = ∆ + αi
else if ((p > last[j]) and (cij > 0))

∆ = ∆ + αi
for (l=p-1; l > last[j]; --l)

∆ = ∆ + απl

18

Algorithm 3 Evaluation of inserting pattern i between positions p − 1 and p for
PSP-SOS.

adaptedOpen = open
adaptedOpen[0] = 0
for (j=1; j ≤ n; ++j)

if ((first[j] == 0) and (cij > 0))
++adaptedOpen[0]

else if ((p ≤ first[j]) and (cij > 0))
++adaptedOpen[0]
for (l = p; l < first[j]; ++l)

++adaptedOpen[l]
else if ((p > first[j]) and (p ≤ last[j]))

++adaptedOpen[0]
else if ((p > last[j]) and (cij > 0))

++adaptedOpen[0]
for (l=p-1; l > last[j]; --l)

++adaptedOpen[l]
∆ = max{adaptedOpen[0, . . .]} −max{open[1, . . .]}

Algorithm 4 Evaluation of a 2-exchange neighbour for PSP-AOS.

∆ = 0
for (j=1; j ≤ n; ++j)

if ((p1 < first[j]) and (p2 ≥ first[j]) and (p2 < last[j]))
// case b
for (i=p1+1; i < first[j]; ++i)

∆ = ∆− απi
for (i=p2; not cπi,j; --i)

∆ = ∆ + απi
else if ((p1 ≥ first[j]) and (p1 < last[j]) and (p2 ≥ last[j]))

// case e
for (i=p2; i > last[j]; --i)

∆ = ∆− απi
for (i=p1+1; not cπi,j; ++i)

∆ = ∆ + απi
∆ = ∆ / n

19

Algorithm 5 Basic evaluation of a 2-exchange neighbour for PSP-SOS.

adaptedOpen = open
for (j=1; j ≤ n; ++j)

if ((p1 < first[j]) and (p2 ≥ first[j]) and (p2 < last[j]))
// case b
i = p2

while (not cπi,j > 0)
--i

if ((p1+1)+(p2 − i) < first[j])
for (k=(p1+1)+(p2 − i); k < first[j]; ++k)

++adaptedOpen[k]
else for (k=first[j]; k < (p1 + 1) + (p2 − i); ++k)

--adaptedOpen[k]
else if ((p1 < first[j]) and (p2 ≥ last[j]))

// case c
if ((first[j] − (p1+1)) > (p2 − last[j])) // first and last would go down

for (k = (p1+1)+(p2 − last[j]); k < first[j]; ++k)
++adaptedOpen[k]

for (k = last[j]; k > p2 − (first[j] − (p1+1)); --k)
--adaptedOpen[k]

else // first and last would go up
for (k = first[j]; k < (p1+1)+(p2 − last[j]); ++k)

--adaptedOpen[k]
for (k = p2 − (first[j] − (p1+1)); k > last[j]; --k)

++adaptedOpen[k]
else if ((p1 ≥ first[j]) and (p1 < last[j]) and (p2 ≥ last[j]))

// case e
i = p1 + 1
while (not cπi,j > 0)

++i
if (p2 − (i− p1 − 1) > last[j])

for (k = p2 − (i− p1 − 1); k > last[j]; --k)
++adaptedOpen[k]

else for (k = last[j]; k > p2 − (i− p1 − 1); --k)
--adaptedOpen[k]

∆ = max{adaptedOpen[1], . . . , adaptedOpen[m]} −max{open[1], . . . , open[m]}

20

