Mathematik für Betriebswirte II (Analysis)

2. Klausur Sommersemester 2017 30.09.2017

BITTE LESERLICH IN $\underline{\mathbf{DRUCKBUCHSTABEN}}$ AUSFÜLLEN

achname:			
orname:			
Iatrikelnummer:			
tudienfach:			
ame des Tutors:			
Vorkurs Mathematik besucht?			
Unterschrift der/des Studierenden:			
Überprüfen Sie die Klausur auf Vollständigkeit, sie besteht aus 11 Seiten.			
Bemerkungen:			

Aufgabe	max. Pkt.	err. Pkt.
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
Summe	90	
Note		

Aufgabe 1: Folgen und Reihen (10 Punkte)

a) Untersuchen Sie die Folge

$$a_n = (-1)^{n+2} \frac{-2n^4 + 3n^2}{3n^2 - 5n^4 + 1}$$

mit $n \in \mathbb{N}$ auf Konvergenz, Häufungspunkte und Beschränktheit.

b) Prüfen Sie die Reihe

$$\sum_{k=0}^{\infty} \frac{2^k}{(4+(-1)^{k+1})^k}$$

unter Verwendung des Wurzelkriteriums auf absolute Konvergenz.

Lösung:

a) Monotonie: Die Folge a_n ist alternierend und daher nicht monoton.

Häufungspunkte: Die Folge a_n besitzt die zwei Häufungspunkte $\frac{2}{5}$ und $-\frac{2}{5}$.

Beschränktheit: Die Folge a_n ist beschränkt, da die Teilfolgen konvergent sind.

Konvergenz: Da a_n die beiden verschiedenen Häufungspunkte $\frac{2}{5}$ und $-\frac{2}{5}$ besitzt, ist sie nicht konvergent.

b)

$$\sqrt[k]{|a_k|} = \sqrt[k]{\frac{2^k}{(4+(-1)^{k+1})^k}} = \frac{2}{4+(-1)^{k+1}}$$

Damit gilt für ungerades k:

$$\lim_{k \to \infty} \frac{2}{4 + (-1)^{k+1}} = \frac{2}{5} < 1$$

Und für gerades k gilt:

$$\lim_{k \to \infty} \frac{2}{4 + (-1)^{k+1}} = \frac{2}{3} < 1$$

Nach dem Wurzelkriterium ist die Reihe absolut konvergent.

Aufgabe 2: Differential rechnung in \mathbb{R} (10 Punkte)

Für welche Werte $t \in \mathbb{R}$ und $s \in \mathbb{R}$ ist die folgende Funktion

$$f: \mathbb{R} \longrightarrow \mathbb{R},$$

$$x \mapsto f(x) = \begin{cases} tx + 2s & \text{für } x < 2 \\ x^2 + s & \text{für } x \ge 2 \end{cases}$$

stetig und differenzierbar?

Lösung: Die Funktion ist an allen Stellen $x \neq 2$ für alle $s,t \in \mathbb{R}$ stetig und differenzierbar. Für t=4 und s=-4 ist die Funktion auch an der Stelle x=2 stetig und differenzierbar.

Aufgabe 3: Differential rechnung in \mathbb{R} (10 Punkte)

Gegeben ist die Funktionenschar

$$f_t : \mathbb{R} \longrightarrow \mathbb{R} \quad \text{mit} \quad t \in \mathbb{R}_+,$$

$$x \mapsto f_t(x) = \frac{1}{3}x^3 - t^2x.$$

- a) Geben Sie die Nullstellen der Funktionen $f_t(x)$ in Abhängigkeit von t an.
- b) Untersuchen Sie das Monotonie- und Krümmungsverhaltenverhalten der Funktionen f_t in Abhängigkeit von t.

Lösung:

- a) Aus der Bedingung $f_t(x)=\tfrac{1}{3}x^3-t^2x=0, \ \text{folgt} \ x=-\sqrt{3}t \vee x=0 \vee x=\sqrt{3}t \ .$
- b) Für die 1. Ableitungen von f_t gilt:

$$f_t'(x) = (x+t)(x-t).$$

Für $x\in]-\infty,-t[\cup]t,\infty[$ ist die Funktion f_t monoton steigend und für $x\in]-t,t[$ monoton fallend.

Für die 2. Ableitung gilt:

$$f_t''(x) = 2x$$

Also ist die Funktion f_t für x<0rechtsgekrümmt und für x>0linksgekrümmt.

Aufgabe 4: Differential rechnung in \mathbb{R} (10 Punkte)

1. Bestimmen Sie die folgenden Grenzwerte, sofern sie existieren:

a)

$$\lim_{x \to 1} \frac{\ln(2x - 1)}{x^2 - 1}$$

b)

$$\lim_{x \to 0} \frac{e^{-x^2} - 1}{2\cos(x) - 2}$$

2. Geben Sie die erste Ableitung der folgenden Funktionen an und vereinfachen Sie soweit wie möglich:

a)

$$f(x) = \sqrt{3\cos(x^2 + 1) - 3}$$

b)

$$f(x) = \frac{\ln(3x)}{x^2 + 2}$$

Lösung:

1.a)

$$\lim_{x \to 1} \frac{\ln(2x - 1)}{x^2 - 1} = 1$$

1.b)

$$\lim_{x \to 0} \frac{e^{-x^2} - 1}{2\cos(x) - 2} = 1$$

2.a)

$$f'(x) = -\frac{3x\sin(x^2 + 1)}{\sqrt{3\cos(x^2 + 1) - 3}}$$

2.b)

$$f'(x) = \frac{x + \frac{2}{x} - 2x\ln(3x)}{(x^2 + 2)^2}$$

Aufgabe 5: Approximationsverfahren (10 Punkte)

Berechnen Sie mit dem NEWTON-Verfahren unter Verwendung des Startwertes

$$x_0 = 1$$

eine reelle Lösung der Gleichung

$$x - e^{-x} = 0$$

auf vier Iterationen und fünf Nachkommastellen genau.

Lösung: Es gilt:

$$f(x) = x - e^{-x}$$

$$f'(x) = 1 + e^{-x}$$

Damit folgt für die NEWTON-Iteration:

$$x_{n+1} = x_n - \frac{x_n - e^{-x_n}}{1 + e^{-x_n}}$$

Mit dem Startwert $x_0 = 1$ ergibt sich:

x_1	0,53788
x_2	0,56699
x_3	0,56714
x_4	0,56714

Aufgabe 6: Differential rechnung im \mathbb{R}^n (10 Punkte)

Bestimmen Sie für die Funktion

$$f: (0, \infty) \times \mathbb{R}^2 \to \mathbb{R},$$

 $(x, y, z) \mapsto -2x^2y^2z - 2y\ln(x) - e^{-z^2}$

das totale Differential und die Tangentialhyperebene an der Stelle $(x_0, y_0, z_0) = (1, 1, 0)$.

Lösung: Das totale Differential der Funktion $f(x_1, x_2, x_3)$ nimmt im \mathbb{R}^3 folgende Form an:

$$df(x_1, x_2, x_3) = \frac{\partial f}{\partial x_1}(x_1, x_2, x_3) dx_1 + \frac{\partial f}{\partial x_2}(x_1, x_2, x_3) dx_2 + \frac{\partial f}{\partial x_3}(x_1, x_2, x_3) dx_2$$

Die partiellen Ableitungen von f(x, y, z) nach den Variablen x, y und z sind:

$$\frac{\partial f}{\partial x}(x, y, z) = -4xy^2z - \frac{2y}{x}$$
$$\frac{\partial f}{\partial y}(x, y, z) = -4x^2yz - 2\ln(x)$$
$$\frac{\partial f}{\partial z}(x, y, z) = -2x^2y^2 + 2ze^{-z^2}$$

Damit ergibt sich das totale Differential der Funktion $f(x_1, x_2)$ als:

$$df(x,y,z) = -4xy^2z - \frac{2y}{x}dx - 4x^2yz - 2\ln(x)dy - 2x^2y^2 + 2ze^{-z^2}dz$$

Für den Gradienten von f gilt:

$$\mathbf{grad}_{f}(x, y, z) = \begin{pmatrix} -4xy^{2}z - \frac{2y}{x} \\ -4x^{2}yz - 2\ln(x) \\ -2x^{2}y^{2} + 2ze^{-z^{2}} \end{pmatrix}$$

Tangentialhyperebene an der Stelle $(x_0, y_0, z_0) = (1, 1, 0)$:

$$\begin{split} f(1,1,0) &= -1 \\ \mathbf{grad}_f(1,1,0)^T &= (-2,0,-2) \end{split}$$

$$\mathbf{grad}_f(1,1,0)^T \cdot \begin{pmatrix} x-1\\y-1\\z \end{pmatrix} = -2x - 2z + 2$$

$$t(\mathbf{x}) = f(1, 1, 0) + \mathbf{grad}_f(1, 1, 0)^T \cdot \begin{pmatrix} x - 1 \\ y - 1 \\ z \end{pmatrix} = -2x - 2z + 1$$

Aufgabe 7: Integral rechnung in \mathbb{R} (10 Punkte)

Berechnen Sie folgende Integrale:

a)

$$\int_{0}^{1} -2xe^{-x^{2}+2t} dx$$

b)

$$\int_{1}^{2} \int_{0}^{\frac{\pi}{2}} \cos x_{1} \cdot \frac{1}{x_{2}} dx_{1} dx_{2}$$

Lösung:

a) Substituiere:

$$u := -x^2 + 2t$$

$$dx = -\frac{1}{2x}du$$

Damit ergibt sich:

$$\int -2xe^{-x^2+2t} dx = \int -2xe^u \cdot \left(-\frac{1}{2x}du\right)$$
$$= \int e^u du$$
$$= e^u + C$$

Also:

$$\int_0^1 -2xe^{-x^2+2t} \, dx = \left[e^{-x^2+2t}\right]_0^1 = e^{2t} \left(\frac{1}{e} - 1\right)$$

b)

$$\int_{1}^{2} \int_{0}^{\frac{\pi}{2}} \cos x_{1} \cdot \frac{1}{x_{2}} dx_{1} dx_{2} = \int_{1}^{2} \sin(x_{1}) \cdot \frac{1}{x_{2}} \Big|_{0}^{\frac{\pi}{2}} dx_{2} = \int_{1}^{2} \frac{1}{x_{2}} dx_{2} = \ln(2)$$

Aufgabe 8: Differential rechnung im \mathbb{R}^n (10 Punkte)

Bestimmen Sie für die Funktion

$$f: \mathbb{R}^2 \to \mathbb{R}, (x,y) \mapsto \sin(xy) + e^{2y}$$

den Gradienten und die HESSE-Matrix an der Stelle $(x, y) = (\pi, 1)$.

Lösung:

grad
$$f(x,y) = \begin{pmatrix} y\cos(xy) \\ x\cos(xy) + 2e^{2y} \end{pmatrix}$$

Die Hesse-Matrix ergibt sich zu:

$$\mathbf{H}_f(x,y) = \begin{pmatrix} -y^2 \sin(xy) & \cos(xy) - xy \sin(xy) \\ \cos(xy) - xy \sin(xy) & -x^2 \sin(xy) + 4e^{2y} \end{pmatrix}$$

Damit erhält man die Lösungen:

$$\operatorname{grad} f(\pi, 1) = \begin{pmatrix} -1 \\ -\pi + 2e^2 \end{pmatrix}$$

und

$$\mathbf{H}_f(\pi, 1) = \begin{pmatrix} 0 & -1 \\ -1 & 4e^2 \end{pmatrix}$$

Aufgabe 9: Optimierung im \mathbb{R}^n (10 Punkte)

Die Nachfragefunktionen $x_1(p_1)$ und $x_2(p_2)$ zweier Güter in Abhängigkeit der Preise p_1 und p_2 lauten:

$$x_1(p_1) := -2p_1 + 140$$
 mit $p_1 \in [0, 70]$
 $x_2(p_2) := -3p_2 + 360$ mit $p_2 \in [0, 120]$

Die Herstellungskosten seien gegeben durch:

$$K(x_1, x_2) := 2x_1^2 + 3x_2^2$$

Bei welchen Preisen wird der Gewinn maximal? Berechnen sie diesen Gewinn.

Die Gewinnfunktion $G(p_1, p_2, x_1, x_2)$ ergibt sich als Differenz von Umsatz $U(p_1, p_2, x_1, x_2) = p_1x_1 + p_2x_2$ und Kosten $K(x_1, x_2) = 2x_1^2 + 3x_2^2$:

$$G(p_1, p_2, x_1, x_2) = p_1 x_1 + p_2 x_2 - 2x_1^2 - 3x_2^2$$

Mit Hilfe der Nachfragefunktion lassen sich die Preise durch die Mengen ausdrücken:

$$p_1 = 70 - \frac{1}{2}x_1$$
$$p_2 = 120 - \frac{1}{3}x_2$$

Die Preisfunktionen in Abhängigkeit der Mengen werden nun in die Gewinnfunktion eingesetzt:

$$G(x_1, x_2) = \left(70 - \frac{1}{2}x_1\right)x_1 + \left(120 - \frac{1}{3}x_2\right)x_2 - 2x_1^2 - 3x_2^2$$
$$= -\frac{5}{2}x_1^2 - \frac{10}{3}x_2^2 + 70x_1 + 120x_2$$

Der Gradient $\mathbf{grad}_G(x_1, x_2)$ von $G(x_1, x_2)$ ergibt sich zu:

$$\mathbf{grad}_{G}(x_{1}, x_{2}) = \begin{pmatrix} -5x_{1} + 70\\ -\frac{20}{3}x_{2} + 120 \end{pmatrix}$$

Nullsetzen des Gradienten $\mathbf{grad}_G(x_1,x_2)$ und Umstellen nach x_1 und x_2 ergibt $x_1=14$ und $x_2=18$.

Zur Überprüfung, ob es sich bei $(x_1, x_2) = (14, 18)$ um ein Maximum handelt, wird die Hesse-Matrix $\mathbf{H}_G(x_1, x_2)$ benötigt:

$$\mathbf{H}_G(x_1, x_2) = \begin{pmatrix} -5 & 0\\ 0 & -\frac{20}{3} \end{pmatrix}$$

Die Hesse-Matrix $\mathbf{H}_G(x_1,x_2)$ ist also stets negativ definit. Es handelt sich bei $(x_1,x_2)=(14,18)$ also sogar um ein globales Maximum.

Mit $x_1 = 14$ und $x_2 = 18$ erhält man die optimalen Preise $p_1 = 63$ und $p_2 = 114$.

Der maximale Gewinn beträgt G(14, 18) = 1570.