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Formelsammlung

Folgen und Reihen

De�nitionen

Bezeichnung De�nition

Folge (an)n∈N0 a : D −→ R, n 7→ an := a(n) mit D ⊆ N0

n-te Partialsumme von (an)n∈N0
sn =

n∑
k=0

ak

Reihe (sn)n∈N0

Wichtige Folgen & Reihen

Bezeichnung Explizite Folgendarstellung Partialsumme

Arithmetische Folge mit
an+1 − an = d ∀n ∈ N0

an+1 = a0 + (n+ 1)d sn =

n∑
k=0

(a0+kd) = (n+1)

(
a0 +

nd

2

)

Geometrische Folge mit
an+1

an
= q ∀n ∈ N0 ; q ∈ R \ {0}

an+1 = qn+1a0 sn = a0

n∑
k=0

qk =

{
a0

1−qn+1

1−q q 6= 1

a0(n+ 1) q = 1

Eigenschaften einer Folge an mit a, c ∈ R

Beschränkt |an| ≤ c ∀n ∈ N0

Nach unten beschränkt an ≥ c ∀n ∈ N0

Nach oben beschränkt an ≤ c ∀n ∈ N0

Monoton wachsend an ≤ an+1 ∀n ∈ N0

Monoton fallend an ≥ an+1 ∀n ∈ N0

Konvergent mit Grenzwert a ∀ε > 0 ∃n0 ∈ N0 : |an − a| < ε ∀n ≥ n0

Rechenregeln für konvergente Folgen mit lim
n→∞

an = a, lim
n→∞

bn = b und c ∈ R

• lim
n→∞

(an ± bn) = lim
n→∞

an ± lim
n→∞

bn = a± b

• lim
n→∞

acn =
(

lim
n→∞

an

)c
= ac , falls an > 0, a > 0

• lim
n→∞

can = c

(
lim
n→∞

an
)

= ca , falls c > 0

• lim
n→∞

(anbn) = lim
n→∞

an lim
n→∞

bn = ab

• lim
n→∞

can = c lim
n→∞

an = ca

• lim
n→∞

an
bn

=
lim
n→∞

an

lim
n→∞

bn
=
a

b
, falls bn 6= 0, b 6= 0

Konvergenzkriterien für Reihen

Eine Reihe
∑∞
k=0 ak heiÿt absolut konvergent, wenn die Reihe

∑∞
k=0 |ak| konvergent ist.

Konvergenzkriterium

Quotientenkriterium
∣∣∣ak+1

ak

∣∣∣ ≤ q 0 < q < 1 ; ak 6= 0 ;∀k ≥ k0 ; k0 ∈ N0

Wurzelkriterium k
√
|ak| ≤ q 0 < q < 1 ;∀k ≥ k0 ; k0 ∈ N0
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Di�erenzierbarkeit im Rn

Häufungspunkt und Grenzwert

Bezeichnung De�nition

Häufungspunkt x0 ∈ Rn x0 ∈ Rn heiÿt Häufungspunkt der Menge D ⊆ Rn,
wenn zu jedem ε > 0 unendlich viele x ∈ D mit ||x− x0|| < ε existieren.

Isolierter Punkt x0 ∈ Rn Ist x0 kein Häufungspunkt der Menge, aber gilt x0 ∈ D,
dann wird x0 als isolierter Punkt bezeichnet.

Grenzwert c ∈ R Ist x0 ein Häufungspunkt, dann sagt man,

dass die Funktion f für x→ x0 gegen den Grenzwert c ∈ R konvergiert,

wenn für jede Folge (xk)k∈N ⊆ D mit xk 6= x0 für alle k ∈ N
und lim

k→∞
xk = x0 stets lim

k→∞
f(xk) = c gilt.

Stetigkeit

Bezeichnung De�nition

Stetigkeit Eine Funktion f : D ⊆ Rn → R heiÿt stetig an der Stelle x0,

wenn x0 kein Häufungspunkt der Menge D ist

oder falls x0 ein Häufungspunkt der Menge D ist und die Funktion f für x→ x0

gegen den Grenzwert f(x0) konvergiert, d.h. wenn limx→x0
f(x) = f(x0) gilt.

Kurvendiskussion in R

Sei f : D ⊆ R→ R eine reellwertige, geeignet oft di�erenzierbare Funktion, d.h. der Grenzwert

lim
∆x→0

f(x0 + ∆x)− f(x0)

∆x
(Di�erentialquotient) existiert, sowie ε > 0. Dann gilt:

Bezeichnung De�nition Bedingungen

Supremum c von f c ist die kleinste obere Schranke von f

In�mum c von f c ist die gröÿte untere Schranke von f

globale Minimalstelle x0 x0 ∈ D mit f(x0) ≤ f(x) ∀x ∈ D f ′(x0) = 0 ∧ f ′′(x) > 0

globale Maximalstelle x0 x0 ∈ D mit f(x0) ≥ f(x) ∀x ∈ D f ′(x0) = 0 ∧ f ′′(x) < 0

lokale Minimalstelle x0 x0 ∈ D mit f(x0) ≤ f(x) f ′(x0) = 0 ∧ f ′′(x0) > 0

∀x ∈ D ∩ {x ∈ Rn : ||x− x0|| < ε}

lokale Maximalstelle x0 x0 ∈ D mit f(x0) ≥ f(x) f ′(x0) = 0 ∧ f ′′(x0) < 0

∀x ∈ D ∩ {x ∈ Rn : ||x− x0|| < ε}

Wendestelle x0 ∃ε > 0 mit f ∈ [x0 − ε, x0] streng konvex f ′′(x0) = 0 ∧ f ′′′(x0) < 0

konvex / konkav und f ∈ [x0, x0 − ε] streng konkav

Wendestelle x0 ∃ε > 0 mit f ∈ [x0 − ε, x0] streng konkav f ′′(x0) = 0 ∧ f ′′′(x0) > 0

konkav / konvex und f ∈ [x0, x0 − ε] streng konvex

Sattelstelle x0 f ′(x0) = 0 ∧ f ′′(x0) = 0

∧ f ′′′(x0) 6= 0
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Eigenschaften reeller Funktionen

Seien f : Df ⊆ Rn → R und g : Dg ⊆ Rn → R zwei reelle Funktionen und α ∈ R, dann gilt:

Bedingung Eigenschaft

falls f stetig bzw. di�erenzierbar an der Stelle x0 f + g, f − g, fg und αf stetig bzw. di�erenzierbar

an der Stelle x0

falls zusätzlich g(x0) 6= 0 f
g stetig bzw. di�erenzierbar an der Stelle x0

falls zusätzlich g(Dg) ⊆ Df und g an der Stelle x0 ∈ Dg f ◦ g : Dg ⊆ Rn → R an der Stelle x0

und f an der Stelle y0 = g(x0) stetig bzw. di�erenzierbar stetig bzw. di�erenzierbar

falls f streng monoton auf Df f−1 : f(Df )→ R stetig

Rechenregeln für di�erenzierbare Funktionen

Seien f : D ⊆ Rn → R und g : D ⊆ Rn → R zwei reelle Funktionen, die an der Stelle x0 di�erenzierbar sind,
und α ∈ R.
• (f + g)′(x0) = f ′(x0) + g′(x0)

• (f − g)′(x0) = f ′(x0)− g′(x0)

• (fg)′(x0) = f ′(x0)g(x0) + f(x0)g′(x0)

• (αf)′(x0) = αf ′(x0)

•
(
f
g

)′
(x0) = f ′(x0)g(x0)−f(x0)g′(x0)

g2(x0)

• (f ◦ g)′(x0) = f ′(g(x0))g′(x0)

Regeln von L'Hôspital

Die reellen Funktionen f, g : (a, b) → R seien di�erenzierbar mit g′(x) 6= 0 ∀x ∈ (a, b) und der Grenzwert

lim
x↑b

f ′(x)

g′(x)
existiere im eigentlichen oder uneigentlichen Sinne. Dann gilt:

Bedingung lim
x↑b

f(x) = lim
x↑b

g(x) = 0 Bedingung lim
x↑b

f(x) = ±∞ lim
x↑b

g(x) = ±∞

Erste Regel lim
x↑b

f(x)

g(x)
= lim

x↑b

f ′(x)

g′(x)
Zweite Regel lim

x↑b

f(x)

g(x)
= lim

x↑b

f ′(x)

g′(x)

Änderungsrate und Elastizität

f : D ⊆ R→ R di�erenzierbar in x0 mit f(x0) 6= 0 f : D ⊆ Rn → R partiell di�erenzierbar in x0

mit f(x0) 6= 0.

Änderungsrate ρf (x0) =
f ′(x0)

f(x0)
Partielle Änderungsrate ρf,xi(x0) =

∂f(x0)

∂xi
· 1

f(x0)

Elastizität εf (x0) = x0 ·
f ′(x0)

f(x0)
Partielle Elastizität εf ;xi

(x0) =
∂f(x0)

∂xi
· xi
f(x0)
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Partielle Di�erentiation

Es sei f : D ⊆ Rn → R eine reellwertige Funktion auf einer o�enen Menge D, die geeignet oft partiell di�eren-
zierbar ist.

Bezeichnung De�nition

Partielle Di�erentiation f heiÿt an der Stelle x bzgl. der i-ten Variablen xi partiell di�erenzierbar,
wenn der Grenzwert

lim
∆x→0

f(x + ∆x · ei)− f(x)

∆x
=:

∂f(x)

∂xi

existiert.

Gradient an der Stelle x gradf(x) =

(
∂f(x)
∂x1

, . . . , ∂f(x)
∂xn

)T
Stationäre Stelle x0 gradf(x0) = 0

Hesse-Matrix an der Stelle x Hf (x)=



∂2f(x)

∂x2
1

∂2f(x)
∂x1∂x2

. . . ∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)

∂x2
2

. . . ∂2f(x)
∂x2∂xn

.

.

.

.

.

.

.

.

.

.

.

.

∂2f(x)
∂xn∂x1

∂2f(x)
∂xn∂x2

. . . ∂2f(x)
∂x2

n



Tangentialhyperebene t(x) = f(x0) + gradf(x0)T (x− x0)

Totales Di�erential df df = gradf(x0)T dx =
∑n
i=1

∂f(x0)
∂xi

dxi
an der Stelle x0

Implizite Funktion

Es seien D ⊆ Rn eine o�ene Menge und f : D× (a, b) ⊆ Rn+1 → R eine stetig partiell di�erenzierbare Funktion
mit

f(x0, y0) = 0 und
∂f(x0, y0)

∂y
6= 0.

Dann ist die implizite Funktion g : U → (a0, b0) stetig partiell di�erenzierbar und für ihre partiellen Ableitungen
gilt

∂g(x)

∂xi
= −

∂f(x,g(x))
∂xi

∂f(x,g(x))
∂y

für alle i = 1, . . . , n.
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Optimierung

Es sei f : D ⊆ Rn → R eine partiell di�erenzierbare Funktion, g1, . . . , gk : D ⊆ Rn → R stetig partiell
di�erenzierbare Funktionen und λ der Lagrange-Multiplikator.

Lagrange Funktion L(λ1, . . . , λk,x) := f(x) +
∑k
p=1 λpgp(x)

Optimierung gradf(x0) = 0 ∧Hf (x0) / Hf (x) negativ de�nit
ohne Nebenbedingung ⇒ lokales / globales Maximum bei x0

gradf(x0) = 0 ∧Hf (x0) / Hf (x) positiv de�nit
⇒ lokales / globales Minimum bei x0

Optimierung ∂L(λ1,...,λk,x0)
∂xj

= 0 ∧Hf (x0) / Hf (x) negativ de�nit
unter Gleichheitsnebenbedingungen ⇒ lokales / globales Maximum bei x0

gp(x) = 0 für p = 1, . . . , k ∂L(λ1,...,λk,x0)
∂xj

= 0 ∧Hf (x0) / Hf (x) positiv de�nit
⇒ lokales / globales Minimum bei x0

Optimierung ∂L(λ1,...,λk,x0)
∂xj

= 0 ∧Hf (x0) positiv de�nit
unter Ungleichheitsnebenbedingungen ⇒ globales Minimum bei x0

min f(x)

gp(x) ≤ 0 für p = 1, . . . , k
λp ≥ 0 für p = 1, . . . , k
λpgp(x0) = 0 für p = 1, . . . , k

Approximationsverfahren

Taylor-Formel

Taylorpolynom n-ten Grades der Funktion f um den Entwicklungspunkt x0:

Tn;x0
(x) =

n∑
k=0

f (k)(x0)

k!
(x− x0)k = f(x0) + f ′(x0)(x− x0) +

f ′′(x0)

2!
(x− x0)2 + . . .+

f (n)(x0)

n!
(x− x0)n

Der Approximationsfehler entspricht dem n-ten Restglied

Rn;x0
(x) = f(x)− Tn;x0

(x).

Newton-Verfahren und Sekantenverfahren

Sei f : R→ R eine stetig di�erenzierbare Funktion.

Newton-Verfahren xn+1 = xn −
f(xn)

f ′(xn)
mit f ′(xn) 6= 0

Vereinfachtes Newton-Verfahren xn+1 = xn −
f(xn)

f ′(x0)
mit f ′(x0) 6= 0

Sekantenverfahren xn+1 =
f(xn)xn−1 − f(xn−1)xn

f(xn)− f(xn−1)
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Integration

Es sei die Riemann-integriebare Funktion f : [a; b]→ R gegeben. Dann gilt:

Bezeichnung De�nition

Stammfunktion F : [a; b]→ R F ′(x) = f(x) ∀x ∈ [a; b]

Bestimmtes Riemann-Integral
∫ b

a

f(x) dx = F (b)− F (a)

Unbestimmtes Riemann-Integral
∫
f(x) dx = F (x) + C mit C ∈ R

Uneigentliches Riemann-Integral 1. Art
∫ ∞
a

f(x) dx := lim
b→∞

∫ b

a

f(x) dx

mit f : [a;∞)→ R

Uneigentliches Riemann-Integral 2. Art
∫ b

a

f(x) dx := lim
t↑b

∫ t

a

f(x) dx

mit f : [a; b)→ R mit |f(x)| → ∞ für x ↑ b

Rechenregeln für Integrale mit α, β ∈ R, a ≤ c ≤ b∫ b

a

(αf(x) + βg(x)) dx = α

∫ b

a

f(x) dx+ β

∫ b

a

g(x) dx

∫ b

a

αf(x) dx =

∫ c

a

αf(x) dx+

∫ b

c

αf(x) dx∫
f(x)g′(x) dx = f(x)g(x)−

∫
f ′(x)g(x) dx

∫
f(g(t))g′(t) dt =

∫
f(x) dx mit x = g(t)

Riemann-Stieltjes-Integral

Es seien f : [a, b]→ R und g : [a, b]→ R zwei reelle Funktionen.

Bezeichnung De�nition

Riemann-Stieltjes-Integral
∫ b

a

f(x)dg(x)

Transformationssatz Ist f Riemann-integrierbar und g stetig di�erenzierbar,
dann ist f bzgl. g Riemann-Stieltjes-integrierbar und es gilt∫ b

a

f(x)dg(x) =

∫ b

a

f(x)g′(x)dx

Riemann-Integral im Rn

Satz von Fubini

Die reellwertige Funktion f : [a, b] ⊆ Rn → R sei stetig. Dann gilt:∫
[a;b]

f(x) dx =

∫ bn

an

(
. . .

∫ b2

a2

(∫ b1

a1

f(x1, . . . , xn) dx1

)
dx2 . . .

)
dxn

=

∫ bn

an

. . .

∫ b2

a2

∫ b1

a1

f(x1, . . . , xn) dx1 dx2 . . . dxn



Ableitungen und Stammfunktionen elementarer Funktionen

f(x) = F ′(x) F (x) + C =
∫
f(x) dx Bemerkungen

a ax+ C

xc 1
c+1x

c+1 + C R für c ∈ N0

R \ {0} für c ∈ {−2,−3, . . .}
R+ für c > 0

R+ \ {0} für c < 0 mit c 6= −1

1
x ln |x|+ C x 6= 0

ex ex + C

erx 1
r e
rx + C r 6= 0

ax 1
ln(a)a

x + C a > 0, a 6= 1

xx(1 + ln(x)) xx + C x > 0

ln(x) x(ln(x)− 1) + C x > 0

loga(x) x
ln(a) (ln(x)− 1) + C a > 0, x > 0

sin(x) − cos(x) + C

cos(x) sin(x) + C

tan(x) − ln | cos(x)|+ C x 6= (2k + 1)π2 , k ∈ Z

cot(x) ln | sin(x)|+ C x 6= kπ, k ∈ Z
1

sin2(x)
− cot(x) + C x 6= kπ, k ∈ Z

1
cos2(x) tan(x) + C x 6= (2k + 1)π2 , k ∈ Z

1√
1−x2

arcsin(x) + C |x| < 1

1
1+x2 arctan(x) + C


