Quantitatives Risikomanagement SS 2017

Univ.-Prof. Dr. Michael Merz Universität Hamburg

Lhst. für BWL, insb. Mathematik und Statistik in den Wirtschaftswissenschaften

Übungsaufgaben

1) Es gelte $X \sim \text{Exp}(\lambda)$ mit $\lambda > 0$ und

$$g: \mathbb{R}_+ \longrightarrow \mathbb{R}_+, \ x \mapsto g(x) := a \exp\left(\frac{\lambda x}{b}\right) - a$$

mit a,b > 0. Bestimmen Sie die Dichte und die Verteilung der transformierten Zufallsvariablen

$$Y := g(X)$$
.

2) Für die Einzelschadenhöhe gelte

$$Y := Z^{-1}$$
 mit $Z \sim \Gamma(\alpha, \beta)$

und $\alpha > 1$ sowie

$$X|Y = y \sim \text{Exp}(1/y).$$

- a) Bestimmen Sie die Dichte und den Erwartungswert von Y.
- b) Bestimmen Sie die (unbedingte) Verteilung von *X* (Hinweis: Verwenden Sie das Ergebnis aus Aufgabenteil a)).

3) Die Einzelschadenhöhe *Y* habe die Dichtefunktion

$$f_Y(y|\theta) = \frac{\tau \theta^{\tau}}{y^{\tau+1}} e^{-(\theta/y)^{\tau}}$$
 für $y > 0$,

wobei die Verteilung des Parameters θ die Dichtefunktion

$$u(\theta) = \frac{\tau \theta^{\tau \alpha - 1}}{\beta^{\tau \alpha} \Gamma(\alpha)} e^{-(\theta/\beta)^{\tau}} \quad \text{für } \theta > 0$$

besitzt. Berechnen Sie die unbedingte Dichte f_Y von Y, d.h. die Dichte der gemischten Einzelschadenhöhenverteilung F_Y (Hinweis: Verwenden Sie hierzu $\Gamma(\alpha+1)=\alpha\Gamma(\alpha)=\int_0^\infty z^\alpha e^{-z}\,dz$ für $\alpha>0$).

- 4) Weisen Sie für die beiden folgenden Verteilungen explizit nach, dass es sich um Heavy-Tail-Verteilungen handelt:
 - a) $Par(\alpha, \lambda)$ mit $\alpha, \lambda > 0$
 - b) Weibull(a,b) mit a < 1 und b > 0
- 5*) Es gelte $Y \sim \text{LN}(\mu, \sigma^2)$. Bestimmen Sie die Mean-excess-Funktion

$$e_Y:(0,\infty)\longrightarrow \mathbb{R},\ u\mapsto e_Y(u)=\mathbb{E}[Y-u|Y>u]$$

der Schadenhöhenverteilung F_Y .

6) Der Zufallsvektor $\mathbf{X} = (X_1, X_2)^T$ besitze eine bivariate Normalverteilung mit dem Erwartungswertvektor und der Varianz-Kovarianzmatrix

$$\mu = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 bzw. $\Sigma = \begin{pmatrix} 1 & 0.5 \\ 0.5 & 2 \end{pmatrix}$.

Bestimmen Sie die Verteilung der affin-linearen Transformation AX + b mit

$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \quad \text{und} \quad \mathbf{b} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

Gegeben sei der bivariate Zufallsvektor $\mathbf{X} = (X_1, X_2)^T$ mit der Dichtefunktion

$$f_{\mathbf{X}}(x_1, x_2) = \begin{cases} \frac{1}{\pi} \exp\left(-\frac{x_1^2 + x_2^2}{2}\right) & \text{falls } x_1 x_2 \ge 0\\ 0 & \text{sonst} \end{cases}$$
 (1)

Erläutern Sie, ob es sich bei (1) um die Dichtefunktion einer bivariaten Normalverteilung handelt. Bestimmen Sie ferner die Randdichtefunktionen f_{X_1} und f_{X_2} und kommentieren Sie das Ergebnis.

Der Zufallsvektor $\mathbf{X} = (X_1, X_2)^T$ besitze eine bivariate Normalverteilung. Berechnen Sie die bedingte Dichtefunktion $f_{\mathbf{X}}(x_1|x_2) = \frac{f_{\mathbf{X}}(x_1,x_2)}{f_{\mathbf{Y}}(x_2)}$, den bedingten Erwartungswert $\mathbb{E}[X_1|X_2]$ und die bedingte Varianz $\text{Var}(X_1|X_2)$.

9) Zeigen Sie mit Hilfe der Faltungsformel, dass im kollektiven Modell für die bedingte zusammengesetzte Gesamtschadenverteilung $F_S(s|S>0)$ und deren Dichte $f_S(s|S>0)$

$$F_S(s|S>0) = \frac{1}{1 - \mathbb{P}(N=0)} \sum_{n \in \mathcal{N}} F_Y^{\star n}(s) \cdot \mathbb{P}(N=n)$$

bzw.

$$f_S(s|S>0) = \frac{1}{1 - \mathbb{P}(N=0)} \sum_{n \in \mathcal{N}} f_Y^{\star n}(s) \cdot \mathbb{P}(N=n)$$

für s > 0 gilt.

- 10) Für den empirischen Mittelwert und die empirische Standardabweichung der Schadenanzahl N und Einzelschadenhöhen Y im kollektiven Modell gelte 6,7 und 2,3 bzw. 179247 und 52141. Bestimmen Sie damit Schätzungen für Erwartungswert und Varianz der zusammengesetzten Gesamtschadenverteilung F_S .
- 11) Es seien die Annahmen des kollektiven Modells erfüllt mit $N \sim \text{Geo}(p)$ und $Y \sim \text{Exp}(\lambda)$. Berechnen Sie mit Hilfe des Ergebnisses aus Übungsaufgabe 9 $f_S(s|S>0)$ sowie $F_S(s|S>0)$ und damit die zusammengesetzte Gesamtschadenverteilung $F_S(s)$.
- 12) Die Zufallsvariable S sei zusammengesetzt Poisson-verteilt mit $\lambda = 100$ und

$$Y \sim Par(4, 1500)$$
.

Berechnen Sie $\mathbb{E}[S]$, Var(S) und Vko(S).

13) Ein Betrieb besitzt den folgenden Fahrzeugpark:

Fahrzeugart	Anzahl
Personenwagen	40
Lieferwagen	30
Lastwagen	10
Gesamt	80

Über die Schäden sind folgende Kennzahlen bekannt:

	Fahrzeugart	Frequenz	Durchschnittliche	Vko der
i		in ‰	Schadenhöhe in CHF	Schadenhöhe
1	Personenwagen	250	2000	2,5
2	Lieferwagen	230	1700	2,0
3	Lastwagen	190	4000	3,0

Die Schadenanzahlen N_i seien $\Pi(\lambda_i)$ -verteilt und von den Schadenhöhen Y_i stochastisch unabhängig. Ferner seien die Schadenanzahlen und die Einzelschadenhöhen in unterschiedlichen Fahrzeugarten stochastisch unabhängig.

- a) Berechnen Sie den Erwartungswert und die Standardabweichung des Gesamtschadens $S = \sum_{i=1}^{3} S_i$.
- b) Ermitteln Sie die Prämie für das Gesamtrisiko S gemäß dem Varianzprinzip $\pi(S) = \mathbb{E}[S] + \alpha \text{Var}(S)$ mit einem Loading-Faktor $\alpha = 3 \cdot 10^{-6}$ Wie groß ist das Loading auf der reinen Risikoprämie $\mathbb{E}[S]$ in %.

Quantitatives Risikomanagement

14) Durch die unabhängigen und zusammengesetzt Poisson-verteilten Zufallsvariablen

$$S_1 := \sum_{i=1}^{N_1} U_i, \quad S_2 := \sum_{i=1}^{N_2} V_i \quad \text{und} \quad S_3 := \sum_{i=1}^{N_3} W_i$$

sei jeweils der Gesamtschaden von drei Versicherungsportfolios gegeben. Für die Parameter λ_i der Poisson-Verteilungen der Schadenanzahlen N_i mit i=1,2,3 gelte $\lambda_1=4,\,\lambda_2=2$ und $\lambda_3=6$. Die Verteilungsfunktionen F_i der Einzelschadenhöhen U,V und W seien durch die folgende Tabelle gegeben:

S	$\mathbb{P}(U=s)$	$\mathbb{P}(V=s)$	$\mathbb{P}(W=s)$
200	0,5	0,0	0,2
300	0,3	0,3	0,3
400	0,2	0,4	0,3
500	0,0	0,3	0,1
600	0,0	0,0	0,1

Berechnen Sie die Mischverteilung F der Einzelschadenhöhen, die Wahrscheinlichkeit $\mathbb{P}(S \leq 400)$ sowie die Momente $\mathbb{E}[S]$ und $\mathrm{Var}(S)$ für den aggregierten Gesamtschaden

$$S := S_1 + S_2 + S_3$$
.

15) Betrachtet wird ein kollektives Modell mit $\Pi(2)$ -verteilter Schadenanzahl N und für die Verteilungsfunktion der Einzelschadenhöhen Y gelte

$$f_Y(l) = \begin{cases} 0.6 \cdot 0.4^{l-1} & \text{für } l = 1, 2, 3, \dots \\ 0 & \text{sonst} \end{cases}$$

Berechnen Sie mit Hilfe des Panjer-Algorithmus $f_S(l)$ für l = 0, 1, 2, 3.

16) Der Gesamtschaden S_1 sei zusammengesetzt Poisson-verteilt mit Parameter $\lambda=2$ und der Gesamtschaden S_2 sei zusammengesetzt negativ Binomial-verteilt mit den Parametern r=2 und p=0,5. Für die Verteilungsfunktion der Einzelschadenhöhen Y gelte in beiden Fällen

$$f_Y(1) = 0.4$$
, $f_Y(2) = 0.35$ und $f_Y(3) = 0.25$.

Berechnen Sie die Wahrscheinlichkeiten

$$\mathbb{P}(S_1 + S_2 = l)$$
 für $l = 0, 1, 2, 3$

unter der Annahme, dass die beiden Gesamtschäden S_1 und S_2 stochastisch unabhängig sind.

- 17*) Berechnen Sie mit Hilfe von R und der FFT für die
 - a) zusammengesetzte Binomial-Verteilung,
 - b) zusammengesetzte Poisson-Verteilung und
 - c) zusammengesetzte negative Binomialverteilung

jeweils $f_S(s)$ und $F_S(s)$. Für die Schadenanzahl N gelte dabei:

- a) $\mathbb{E}[N] = np = 4 \text{ mit } n = 20 \text{ und } p = 0.2$
- b) $\mathbb{E}[N] = \lambda = 4$
- c) $\mathbb{E}[N] = (1-p)r/p = 4 \text{ mit } r = 4 \text{ und } p = 0.5$

In allen drei Fällen gelte für die Einzelschadenhöhen

$$Y \sim LN(4,4)$$
.

Stellen Sie $f_S(s)$ und $F_S(s)$ für die drei zusammengesetzten Gesamtschadenverteilungen jeweils in einer gemeinsamen Abbildung dar. Welche Beobachtung lässt sich machen?

18) Betrachtet wird ein Gesamtunternehmen $X = \sum_{i=1}^{3} X_i$, das aus den drei Geschäftsbereichen X_1, X_2, X_3 besteht. Für den Zufallsvektor $\mathbf{X} = (X_1, X_2, X_3)^T$ gelte

$$\mathbf{X} \sim \mathbf{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}),$$

wobei die Momente

$$\mu = (10,5,5)^T$$
, $Var(X_1) = 144$, $Var(X_2) = 6,25$, $Var(X_3) = 56,25$

und die Korrelationsmatrix

$$\mathbf{R} = \begin{pmatrix} 1 & 0.5 & 0 \\ 0.5 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

bekannt seien.

- a) Bestimmen Sie die Varianz-Kovarianzmatrix Σ von X.
- b) Berechnen Sie den Erwartungswert und die Varianz von X.
- c) Ermitteln Sie für die drei einzelnen Geschäftsbereiche X_1, X_2, X_3 und das Gesamtunternehmen X jeweils den Value-at-Risk und den Expected-Shortfall zum Sicherheitsniveau q = 99,5%.

19) Ermitteln Sie für das Risiko X mit der Wahrscheinlichkeitsfunktion

$$\mathbb{P}(X=c) = \begin{cases} 0.80 & \text{für } c = 0 \\ 0.12 & \text{für } c = 50 \\ 0.04 & \text{für } c = 80 \\ 0.02 & \text{für } c = 90 \\ 0.02 & \text{für } c = 100 \end{cases}$$

anhand einer Skizze für die Verteilungsfunktion $F_X(x)$ den Value-at-Risk zu den Sicherheitsniveaus q = 0.95; 0.96; 0.98 und 0.99.

20) Es sei $c \in (0,1)$ und X ein Risiko mit der Verteilungsfunktion

$$F_X(x) = \begin{cases} 0 & \text{für } x < 0 \\ cx & \text{für } x \in [0, 1) \\ 1 & \text{für } x \ge 1 \end{cases}$$

- Bestimmen Sie den Value-at-Risk $VaR_q(X)$ zum Sicherheitsniveau $q \in (0,1)$.
- b) Bestimmen Sie den Expected-Shortfall $ES_q(X)$ zum Sicherheitsniveau $q \in (0, c)$.

21*) Es sei X ein Exponential-verteiltes Risiko mit dem Parameter $\lambda > 0$. D.h. X besitzt die Dichtefunktion

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{für } x > 0\\ 0 & \text{sonst} \end{cases}.$$

Berechnen Sie

- a) analytisch den Value-at-Risk und den Expected-Shortfall von X zum Sicherheitsniveau $q \in (0,1)$ sowie
- b) mittels Excel die Werte des Value-at-Risks und des Expected-Shortfalls für die Parameterwerte $\lambda = \frac{1}{10}, \frac{1}{2}, 1, 2, 5$ und Sicherheitsniveaus q = 0.95; 0.99; 0.995. Was ist zu beobachten?

Hinweis: Es gilt

$$\int \ln(1-u) \, du = -(1-u) \ln(1-u) + (1-u) + C \quad \text{mit } C \in \mathbb{R}.$$

22) Die Zufallsvariablen X und Y seien stochastisch unabhängig und Bernoulli-verteilt mit dem Parameter p = 0,006. D.h. es gilt

$$\mathbb{P}(X=0) = \mathbb{P}(Y=0) = 0.994$$
 und $\mathbb{P}(X=1) = \mathbb{P}(Y=1) = 0.006$.

Weisen Sie damit nach, dass der Value-at-Risk i.A. kein subadditives Risikomaß ist. Verwenden Sie dabei das Sicherheitsniveau q = 99%.

23*) Es sei S der Jahresschadenaufwand eines Versicherungsunternehmens und Y der Schadenaufwand eines von S stochastisch unabhängigen seltenen Extremszenarios. Es wird angenommen, dass S Lognormal-verteilt ist mit

$$\mathbb{E}[S] = 2300 \text{ Mio. CHF}$$
 und $Vko(S) = \frac{\sqrt{Var(S)}}{\mathbb{E}[S]} = 5\%.$

Für das seltene Extremszenario wird ferner unterstellt, dass es durchschnittlich nur alle 500 Jahre eintritt und dann einen Schaden von 400 Mio. CHF verursacht.

- a) Ermitteln Sie das benötigte Risikokapital zum Sicherheitsniveau q=99% für den Jahresschadenaufwand S für die beiden folgenden Fälle:
 - i) $RK(S) = VaR_q(S \mathbb{E}[S])$ (sog. mean Value-at-Risk)
 - ii) $RK(S) = ES_q(S \mathbb{E}[S])$ (sog. mean Expected-Shortfall)
- b) Berechnen Sie nun für den Fall i) das benötigte Risikokapital für den aggregierten Schadenaufwand S+Y.

24*) Das Risiko X besitze die diskrete Verteilung F_X mit dem Träger

$$\cdots < x_{-2} < x_{-1} < x_0 < x_1 < x_2 \ldots$$

und den Wahrscheinlichkeiten $\mathbb{P}(X = x_i) = p_i > 0$. Ferner sei $q \in (0, 1)$ ein vorgegebenes Sicherheitsniveau und i_0 der kleinste Index, für den

$$\sum_{i=-\infty}^{i_0} p_i \ge q, \quad \text{also} \quad \sum_{i=-\infty}^{i_0} p_i = q + \delta \ \text{ für } \ \delta \ge 0$$

gilt.

a) Zeigen Sie

$$\mathrm{ES}_q(X) = \frac{1}{1 - q} \left(\mathbb{E}[X] - \sum_{i = -\infty}^{i_0} p_i x_i + \delta \mathrm{VaR}_q(X) \right).$$

- Bestimmen Sie $CTE_q(X) = \mathbb{E}[X|X > VaR_q(X)]$ und zeigen Sie, dass $\mathrm{ES}_q(X)$ und $\mathrm{CTE}_q(X)$ für $\delta = 0$ übereinstimmen.
- Betrachtet wird ein Extremszenario Y mit der Wahrscheinlichkeitsfunktion

$$Y = \begin{cases} 300 \text{ Mio. CHF} & \text{mit Wahrscheinlichkeit } p \\ 0 & \text{mit Wahrscheinlichkeit } 1 - p \end{cases}.$$

Ermitteln Sie $VaR_q(Y)$ und $ES_q(Y)$ für q = 99% und die drei folgenden Wahrscheinlichkeiten: p = 0.5%, p = 1% und p = 1.5%.

25) Es sei X eine $LN(\mu, \sigma^2)$ -verteilte Zufallsvariable und \widetilde{X} die daraus mittels der Wang-Transformation und der Distortion-Funktion

$$g(x) = \Phi(\Phi^{-1}(x) + \alpha)$$
 mit $\alpha \in \mathbb{R}$

resultierende risikoadjustierte Zufallsvariable. Zeigen Sie, dass $\widetilde{X} \sim \text{LN}(\mu + \alpha \sigma, \sigma^2)$ gilt.

26) Weisen Sie nach, dass das Kovarianzprinzip in Verbindung mit einem Risikomaß $\rho(X)$ mit der Eigenschaft

$$\frac{\sqrt{\operatorname{Var}\left(\sum_{i \in M} X_i\right)}}{\sqrt{\operatorname{Var}\left(\sum_{j=1}^n X_j\right)}} \le \frac{\rho\left(\sum_{i \in M} X_i\right)}{\rho\left(\sum_{j=1}^n X_j\right)} \qquad \text{für alle } M \subseteq \{1, \dots, n\}$$

das Axiom "no undercut" erfüllt.

Hinweis: Verwenden Sie dabei die Ungleichung

$$Cov(X, Y) \le \sqrt{Var(X)} \sqrt{Var(Y)}$$
.

27) Bei den Marktrisiken einer Versicherungsgesellschaft wurden unter der Normalverteilungsannahme $X_i \sim N(\mu_i, \sigma_i^2)$ für die einzelnen Risikokategorien X_i mittels

$$RK(X_i) = ES_q(X_i - \mathbb{E}[X_i])$$

(sog. mean Expected-Shortfall) für das Sicherheitsniveau q=99% die folgenden Stand-alone-Risikokapitalien ermittelt:

	Zinsänderungsrisiko	Spreadrisiko	Aktienpreisrisiko	Währungsrisiko
$RK(X_i)$	195 Mio. CHF	60 Mio. CHF	210 Mio. CHF	75 Mio. CHF

- a) Bestimmen Sie das Risikokapital RK(X) für das aggregierte Marktrisiko $X = \sum_{i=1}^{4} X_i$ unter der vereinfachenden Annahme, dass die Risiken in den vier Kategorien X_i stochastisch unabhängig sind. Um wieviel Prozent ist dieses Risikokapital kleiner als die Summe der Stand-alone-Risikokapitalien $RK(X_i)$ (Diversifikationseffekt)?
- b) Führen Sie nun die gleiche Berechnung unter der realistischeren Annahme durch, dass zwischen den Risiken in den vier Kategorien die folgenden Korrelationen ρ_{ij} bestehen:

Korrelationsmatrix						
	Zinsänderungsrisiko	Spreadrisiko	Aktienpreisrisiko	Währungsrisiko		
Zinsänderungsrisiko	1	-0,08	0,24	0,24		
Spreadrisiko	-0,08	1	-0,37	-0,29		
Aktienpreisrisiko	0,24	-0,37	1	0,37		
Währungsrisiko	0,24	-0,29	0,37	1 Universität		

- 28) Es sei wieder die Situation aus Aufgabe 18) gegeben. Berechnen Sie für die drei Geschäftsbereiche X_1, X_2, X_3 das jeweils resultierende Risikokapital
 - a) bei Verwendung der Stand-alone-proportionalen Allokation und des Value-at-Risk zum Sicherheitsniveau q = 0.995 als Risikomaß,
 - b) bei Verwendung des (modifizierten) Kovarianzprinzips und des Expected-Shortfalls zum Sicherheitsniveau q=0.995 als Risikomaß,
 - c) bei Verwendung des Conditional-Tail-Expectation-Prinzips zum Sicherheitsniveau q=0.995 und
 - d) bei Verwendung des Euler-Prinzips und des Expected-Shortfalls zum Sicherheitsniveau q=0.995 als Risikomaß.

- 29) Die Zufallsvariablen $(X_n)_{n\in\mathbb{N}}$ seien unabhängig und identisch-verteilt mit der Verteilungsfunktion F_X . Bestimmen Sie die asymptotische Grenzverteilung des standardisierten Maximums M_n für $n \to \infty$, falls gilt:
 - a) $X \sim Par(\alpha, \lambda)$, d.h.

$$F_X(x) = \begin{cases} 1 - \left(\frac{\lambda}{\lambda + x}\right)^{\alpha} & \text{für } x > 0\\ 0 & \text{sonst} \end{cases}$$

(verwenden Sie die Standardisierungskonstanten $a_n = \lambda n^{1/\alpha} - \lambda$ und $b_n = \frac{\lambda}{\alpha} n^{1/\alpha}$ für $n \in \mathbb{N}$)

b) $X \sim U(0,1)$, d.h.

$$F_X(x) = \begin{cases} 0 & \text{für } x \le 0 \\ x & \text{für } 0 < x < 1 \\ 1 & \text{für } x \ge 1 \end{cases}$$

(verwenden Sie die Standardisierungskonstanten $a_n=1$ und $b_n=\frac{1}{n}$ für $n\in\mathbb{N}$)

30) Der monatliche Maximalschaden M_{Monat} eines Risikos sei Fréchet-verteilt mit den Parametern ξ_M , μ_M und σ_M . Ferner sei angenommen, dass die monatlichen Maximalschäden unabhängig und identisch-verteilt sind. Zeigen Sie, dass der jährliche Maximalschaden M_{Jahr} ebenfalls Fréchet-verteilt ist mit den Parametern

$$\xi_J = \xi_M, \quad \mu_J = \mu_M - \frac{\sigma_M - \sigma_J}{\xi_M} \quad \text{und} \quad \sigma_J = 12^{\xi_M} \sigma_M.$$

31) Weisen Sie nach, dass für hinreichend große $n \in \mathbb{N}$

$$\mathbb{P}\left(\frac{M_n - a_n}{b_n} \le x\right) \approx F_{\xi}(x; \mu, \sigma) \quad \Longrightarrow \quad \mathbb{P}(M_n \le x) \approx F_{\xi}(x; \widetilde{\mu}, \widetilde{\sigma})$$

mit $\widetilde{\mu} = b_n \mu + a_n$ und $\widetilde{\sigma} = b_n \sigma$ gilt.

- 32*) Im R-Paket evir ist der Datensatz spto87 enthalten. Er enthält die täglichen logarithmierten Renditen (daily log returns) $ln(R_i/R_{i+1})$ des S&P 500 Aktienindex im Zeitraum von 05.01.1960 bis 16.10.1987 (6985 Beobachtungen).
 - a) Erzeugen Sie für die Zeitreihe mit den täglichen logarithmierten Renditen des S&P 500 Aktienindex vom 05.01.1960 bis 16.10.1987 und für die 28 jährlichen Maxima jeweils eine Abbildung.
 - b) Passen Sie mittels der Block-Maxima-Methode eine verallgemeinerte Extremwertverteilung an die 28 jährlichen Maxima M_{r1}, \dots, M_{r28} an.

- c) Bestimmen Sie die Wiederkehrwerte (Return Levels) zu den Übergangswahrscheinlichkeiten $p=0.1,\,0.05$ und 0.01.
- 33) Weisen Sie nach, dass der Erwartungswert einer Zufallsvariablen $X \sim \widetilde{F}_{\xi}(x; \mu, \sigma)$ genau dann existiert, wenn $\xi < 1$ gilt, und dann gegeben ist durch

$$\mathbb{E}[X] = \mu + \frac{\sigma}{1 - \xi}.$$

- 34) Berechnen Sie für eine verallgemeinerte Pareto-Verteilung $\widetilde{F}_{\xi}(x;\mu,\sigma)$ mit Shape-Parameter $\xi<1$ das Verhältnis der beiden Risikomaße $\mathrm{ES}_q(X)$ und $\mathrm{VaR}_q(X)$ für $q\to 1$ und interpretieren Sie das Ergebnis.
- 35*) Im R-Paket evir ist der Datensatz bmw enthalten. Er enthält die täglichen logarithmierten Renditen (daily log returns) $\ln(R_i/R_{i+1})$ der BMW-Aktie im Zeitraum von 02.01.1973 bis 23.07.1996 (6146 Beobachtungen).
 - a) Erzeugen Sie für die Zeitreihe mit den täglichen logarithmierten Renditen der BMW-Aktie vom 02.01.1973 bis 23.07.1996 und für die 283 monatlichen Maxima jeweils eine Abbildung.
 - b) Passen Sie mittels der Block-Maxima-Methode eine verallgemeinerte Extremwertverteilung an die 283 monatlichen Maxima M_{r1}, \dots, M_{r283} an. Beurteilen Sie die Anpassungsgüte mit Hilfe eines QQ-Plots.
 - c) Bestimmen Sie die Wiederkehrwerte (Return Levels) zu den Übergangswahrscheinlichkeiten p = 0, 1, 0, 05 und 0, 01.

- d) Bestimmen Sie mit Hilfe eines Mean-excess-Plot einen geeigneten Schwellenwert u für die Anpassung einer verallgemeinerten Pareto-Verteilung und passen Sie für diesen Schwellenwert eine verallgemeinerte Pareto-Verteilung an. Untersuchen Sie anschließend die Sensitivität der ML-Schätzung für den Shape-Parameter ξ bzgl. der Wahl des Schwellenwerts u.
- e) Untersuchen Sie die Anpassungsgüte der in Aufgabenteil d) angepassten verallgemeinerten Pareto-Verteilung.
- f) Bestimmen Sie für die angepasste verallgemeinerte Pareto-Verteilung Schätzungen für den Value-at-Risk und den Expected-Shortfall zu den Sicherheitsniveaus q = 0.9; 0.95; 0.99; 0.999; 0.9999. Untersuchen Sie anschließend die Sensitivität der Schätzung $VaR_{0.99}(X)$ bzgl. des Schwellenwerts u.
- 36) Es sei $X \sim U[-1, 1]$ und $Y := X^2$. D.h. X besitzt die Dichte

$$f_X(x) = \begin{cases} \frac{1}{2} & \text{für } -1 \le x \le 1\\ 0 & \text{sonst} \end{cases}.$$

- Weisen Sie nach, dass X und Y unkorreliert sind.
- b) Zeigen Sie, dass X und Y nicht stochastisch unabhängig sind (Hinweis: Zeigen Sie, dass X und Y ment steelkaster. Berechnen Sie hierzu die Wahrscheinlichkeiten $\mathbb{P}(X \le -1/4, Y \le 1/4)$, $\mathbb{P}(X < -1/4) \text{ und } \mathbb{P}(Y < 1/4)).$

- 37) Betrachtet wird der Zufallsvektor $(X,Y)^T$ mit $X \sim N(0,1)$ und $\mathbb{P}(Y=X) = \mathbb{P}(Y=-X) = \frac{1}{2}$.
 - a) Geben Sie die gemeinsame Dichte von $(X,Y)^T$ und die Dichte von Y an.
 - Untersuchen Sie X und Y auf stochastische Unabhängigkeit und Unkorreliertheit.
- 38*) Gegeben sei der Zufallsvektor $(X_1, X_2)^T \sim N(\mathbf{0}, \mathbf{E})$, die Zufallsvariable $Y_1 \sim N(0, 1)$ und die Zufallsvariable $Y_2 = VY_1$ mit der von Y_1 stochastisch unabhängigen Zufallsvariablen V mit $\mathbb{P}(V = -1) = \mathbb{P}(V = 1) = \frac{1}{2}$.
 - a) Zeigen Sie, dass $Y_2 \sim N(0,1)$ gilt, und berechnen Sie $\rho(Y_1,Y_2)$.
 - b) Bestimmen Sie $\operatorname{VaR}_q(X_1+X_2)$ für Sicherheitsniveaus $q\in(0,1)$ und stellen Sie $\operatorname{VaR}_q(Y_1+Y_2)$ in Abhängigkeit von $\operatorname{VaR}_{2q-1}(X_1)$ dar.
 - c) Interpretieren Sie das Ergebnis kurz.
 - 39) Es gelte $X \sim \text{Exp}(\lambda)$ und $Y := X^2$.
 - a) Bestimmen Sie den linearen Korrelationskoeffizienten von Pearson $\rho(X,Y)$.
 - b) Berechnen Sie den unteren und oberen Tailabhängigkeitskoeffizienten $\lambda_l(X,Y)$ bzw. $\lambda_u(X,Y)$.
 - $\lambda_l(X,Y)$ bzw. $\lambda_{tt}(X,Y)$. c) Interpretieren Sie kurz die Ergebnisse aus den Aufgabenteilen a) und b)

Die folgende Tabelle enthält 10 Wertepaare mit Renditen der BMW- und Siemensaktie:

i	Xi (BMW-Aktie)	Y _i (Siemensaktie)
1	0,0030	-0,0051
2	0,0224	0,0072
3	-0,0059	-0,0055
4	0,0206	0,0017
5	-0,0058	0,0160
6	-0,0118	-0,0013
7	0,0064	0,0219
8	0,0039	0,0016
9	-0,0015	-0,0156
10	-0,0238	-0,0222

- Berechnen Sie den empirischen linearen Korrelationskoeffizienten r(X,Y).
- b) Bestimmen Sie den Rangkorrelationskoeffizienten von Kendall $r_{\tau}(X, Y)$.
- c) Ermitteln Sie den Rangkorrelationskoeffizienten von Spearman $r_S(X,Y)$.
- 41) Zeigen Sie für eine bivariate Clayton-Copula gilt:
 - a) $\lim_{\theta \to 0} C^{Cl}_{\theta}(u, v) = \Pi(u, v)$ und $\lim_{\theta \to \infty} C^{Cl}_{\theta}(u, v) = M(u, v)$
 - b) $\lambda_l(X,Y) = 2^{-1/\theta}$ und $\lambda_u(X,Y) = 0$

42) Die gemeinsame Dichtefunktion zweier Risiken X und Y sei gegeben durch

$$f(x,y) = \begin{cases} xe^{-x(y+1)} & \text{für } x, y \ge 0\\ 0 & \text{sonst} \end{cases}.$$

- Berechnen Sie die gemeinsame Verteilungsfunktion des Zufallsvektors $(X,Y)^T$.
- b) Ermitteln Sie die Randverteilungsfunktionen von X und Y und geben Sie an, ob die Risiken X und Y stochastisch unabhängig sind.
- c) Bestimmen Sie die Quantilfunktionen (verallgemeinerte inverse Verteilungsfunktionen) von X und Y und damit anschließend die Copula des Zufallsvektors $(X,Y)^T$.
- 43) Die Zufallsvariablen U und V seien stochastisch unabhängig und es gelte $U, V \sim U[0, 1]$. Ferner sei

$$X := (\max\{U, V\})^2$$
 und $Y := (\max\{1 - U, 1 - V\})^2$.

- a) Zeigen Sie, dass $X, Y \sim U[0, 1]$ gilt.
- b) Weisen Sie nach, dass die Verteilungsfunktion des Zufallsvektors $(X, Y)^T$ eine Copula ist, deren Dichte durch

$$c(u,v) = \frac{1}{2\sqrt{uv}} \qquad \text{für } u,v \in (0,1]$$

44*) Betrachtet wird die bivariate Clayton-Copula

$$C_{\theta}^{CI}(u,v) = \left(u^{-\theta} + v^{-\theta} - 1\right)^{-1/\theta} \quad \text{mit } \theta > 0.$$

- a) Weisen Sie nach, dass die Clayton-Copula $C_{\theta}^{Cl}(u,v)$ mit $\theta > 0$ zur Familie der (zweidimensionalen) archimedischen Copulas gehört und dabei den Generator $\phi(t) = \frac{1}{\theta}(t^{-\theta} 1)$ besitzt.
- b) Es gelte $X \sim \text{Weibull}(1/2, 2)$ und $\Gamma(3, 1/2)$. Bestimmen Sie

$$\mathbb{P}(X \leq \mathbb{E}[X], Y \leq \mathbb{E}[Y])$$

für den Fall, dass der Zufallsvektor $(X,Y)^T$ eine Clayton-Copula $C_{\theta}^{Cl}(u,v)$ mit dem Parameter $\theta=10$ besitzt.

- c) Bestimmen Sie die Dichte von $C_{\theta}^{Cl}(u, v)$.
- d) Es gelte nun $X \sim \operatorname{Exp}(\lambda_1)$ und $Y \sim \operatorname{Exp}(\lambda_2)$ mit $\lambda_1, \lambda_2 > 0$ und der Zufallsvektor $(X,Y)^T$ besitze die Copula $C^{Cl}_{\theta}(u,v)$. Vom Zufallsvektor $(X,Y)^T$ liegen ferner die folgenden Beobachtungen vor:

i	1	2	3	4	5	6	7	8
X_i	2,5	2,6	1,3	2,7	1,4	2,9	4,5	5,3
								7,8

Passen Sie die Copula $C_{\theta}^{Cl}(u, v)$ mittels der ML-Methode an die Daten an und berechnen Sie eine Schätzung für $\mathbb{P}(X \leq 3, Y \leq 4)$.

45) Betrachtet wird ein Versicherungsportfolio mit den folgenden der Größe nach geordneten Schadenhöhen und den damit korrespondierenden Schadensregulierungskosten (allocated loss adjustment expenses (ALAE)):

i	X_i (Schadenhöhe)	Y_i (ALAE)
1	1500	301
2	2500	415
3	4500	395
4	5750	34474
5	7100	10593
6	9000	406
7	11750	2530
8	14000	175
9	15000	2072
10	19833	212
11	33033	7845
12	62500	12251

- a) Bestimmen Sie $r_{\tau}(X, Y)$.
- b) Passen Sie mit Hilfe von $r_{\tau}(X,Y)$ eine Gumbel-Copula

$$C_{\theta}^{Gu}(u,v) = \exp\left(-\left((-\ln(u))^{\theta} + (-\ln(v))^{\theta}\right)^{1/\theta}\right)$$

mit $\theta \ge 1$

an die obigen Daten an.

46*) Es wird ein Versicherungsportfolio aus Haftpflicht- und Feuerpolicen betrachtet. Die Schadenhöhen *X* und *Y* (in Millionen CHF) der beiden Teilportfolios bestehend aus Haftpflicht- bzw. Feuerpolicen seien jeweils lognormalverteilt mit

$$X \sim \text{LN}(-0.0277; 0.0149)$$
 und $Y \sim \text{LN}(-0.1099; 0.0089)$.

D.h. die Schadenhöhe für das gesamte Versicherungsportfolio beträgt

$$S = X + Y$$
,

wobei jedoch die gemeinsame Verteilung des Zufallsvektors $(X,Y)^T$ unbekannt ist. Es sollen die Beiträge dieser beiden Teilportfolios am Gesamtrisikokapitalbedarf quantifiziert werden, wenn das hierzu verwendete Allokationsverfahren das Conditional-Tail-Expectation-Prinzip zum Sicherheitsniveau q=95% ist (vgl. Abschnitt 7.4). Dabei sollen insbesondere die Auswirkungen der Verwendung der Copulas $C_{0,2}^{Ga}(u,v), C_{4;0,2}^t(u,v), C_4^{Gu}(u,v)$ und $C_4^{Cl}(u,v)$ auf die Höhe des resultierenden Risikokapitals für das gesamte Versicherungsportfolio und die beiden Teilportfolios untersucht werden.

Ermitteln Sie jeweils für die vier verschiedenen Copulas mit Hilfe 5000 simulierter Beobachtungen von $(X,Y)^T$ eine Monte-Carlo-Schätzung für das Risikokapital für die beiden Teilportfolios und das gesamte Versicherungsportfolio, d.h. Schätzungen für die drei Werte $RK(X) = \mathbb{E}[X|S > VaR_{0.95}(S)]$, $RK(Y) = \mathbb{E}[Y|S > VaR_{0.95}(S)]$ und $RK(S) = \mathbb{E}[S|S > VaR_{0.95}(S)]$.

