Sommersemester 2020



# Übung 1: Grundlagen der Zeitreihenanalyse

### Aufgabe 1

Betrachtet wird der stochastische Prozess  $(X_t)_{t\in\mathbb{Z}}$  mit

$$X_t = U_1 \sin(2\pi\delta t) + U_2 \cos(2\pi\delta t),$$

wobei  $U_1$  und  $U_2$  stochastisch unabhängig sind mit

$$\mathbb{E}[U_1] = \mathbb{E}[U_2] = 0$$
 und  $\operatorname{Var}(U_1) = \operatorname{Var}(U_2) = \sigma^2$ .

Zeigen Sie, dass der stochastische Prozess  $(X_t)_{t\in\mathbb{Z}}$  schwach stationär ist.

<u>Hinweis:</u> Verwenden Sie das Additionstheorem  $\sin(\alpha)\sin(\beta) + \cos(\alpha)\cos(\beta) = \cos(\alpha - \beta)$ .

### Aufgabe 2

Weisen Sie nach, dass der stochastische Prozess  $(X_t)_{t\in\mathbb{Z}}$  mit

$$X_t = \sin(2\pi U t)$$

und einer auf dem Intervall (0,1) gleichverteilten Zufallsvariablen U schwach stationär ist.

<u>Hinweis:</u> Verwenden Sie das Additionstheorem  $\sin(\alpha)\sin(\beta) = \frac{1}{2}(\cos(\alpha - \beta) - \cos(\alpha + \beta)).$ 

#### Aufgabe 3

Betrachtet wird der stochastische Prozess  $(X_t)_{t\in\mathbb{Z}}$  mit

$$X_t = \varepsilon_t \varepsilon_{t-1}$$

und  $\varepsilon_t \sim \text{IID}(0, \sigma^2)$ . Bestimmen Sie die Mittelwert- und Autokovarianzfunktion von  $(X_t)_{t \in \mathbb{Z}}$  und geben Sie an, ob  $(X_t)_{t \in \mathbb{Z}}$  schwach stationär ist.

#### Aufgabe 4

Gegeben sei der stochastische Prozess  $(X_t)_{t\in\mathbb{Z}}$  mit

$$X_t = (-1)^t Y,$$

wobei Y eine Zufallsvariable ist. Geben Sie notwendige und hinreichende Bedingungen für Y an, so dass der Prozess  $(X_t)_{t\in\mathbb{Z}}$  schwach stationär ist.

#### Aufgabe 5

Es seien  $(X_t)_{t\in\mathbb{Z}}$  und  $(Y_t)_{t\in\mathbb{Z}}$  zwei schwach stationäre und unkorrelierte Prozesse. Zeigen Sie, dass dann auch der stochastische Prozess  $(Z_t)_{t\in\mathbb{Z}}$  mit  $Z_t:=X_t+Y_t$  schwach stationär ist.

#### Aufgabe 6

Gegeben sei der stochastische Prozess  $(X_t)_{t\in\mathbb{Z}}$  mit

$$X_t = \varepsilon_t - \theta \varepsilon_{t-1}$$

sowie  $\theta \in \mathbb{R}$  und  $\varepsilon_t \sim \text{IID}(0, \sigma^2)$ . Durch  $M_{\varepsilon_t}(s) := \mathbb{E}[e^{s\varepsilon_t}]$  sei die momenterzeugende Funktion der Zufallsvariablen  $\varepsilon_t$  für  $t \in \mathbb{Z}$  gegeben.

a) Drücken Sie die momenterzeugende Funktion

$$M_{(X_1,\ldots,X_n)}(s_1,\ldots,s_n) = \mathbb{E}\left[\exp\left(\sum_{t=1}^n s_t X_t\right)\right]$$

des Zufallsvektors  $(X_1,\ldots,X_n)^T$  mit Hilfe von  $M_\varepsilon(s)$  aus.

b) Zeigen Sie mit Hilfe des Ergebnisses des Aufgabenteils a), dass  $(X_t)_{t\in\mathbb{Z}}$  ein stark stationärer stochastischer Prozess ist.



# Übung 2: Klassische Komponentenmodelle

### Aufgabe 1

Die Zeitreihe  $(x_t)_{t\in\mathbb{T}}$  sei gegeben durch

Es wird das additive Komponentenmodell ohne Saison zugrunde gelegt.

- a) Berechnen Sie eine Regressionsgerade als Schätzung für die glatte Komponente  $(g_t)_{t\in\mathbb{T}}$  der Zeitreihe und stellen Sie diese zusammen mit der Zeitreihe  $(x_t)_{t\in\mathbb{T}}$  graphisch dar.
- b) Geben Sie die trendbereinigte Zeitreihe an.
- c) Berechnen Sie mit Hilfe des Ergebnisses aus Aufgabenteil a) eine Prognose für den Zeitreihenwert zum Zeitpunkt t=10.
- d) Berechnen Sie mit Hilfe des einfachen gleitenden 3er-Durchschnitts eine Schätzung für die glatte Komponente  $(g_t)_{t\in\mathbb{T}}$ .

#### Aufgabe 2

Die folgende Tabelle enthält die vierteljährlichen Bauinvestitionen in Ostdeutschland  $(x_{t,l})_{t\in\mathbb{T}}$  in Mrd. Euro für die Jahre 1991 bis 2002 zu Preisen von 1995:

| Quartal | t  | $x_{t,l}$ |
|---------|----|-----------|---------|----|-----------|---------|----|-----------|---------|----|-----------|
| 1991/1  | 1  | 7,44      | 1992/1  | 5  | 11,05     | 1993/1  | 9  | 12,73     | 1994/1  | 13 | 16,25     |
| 1991/2  | 2  | 8,92      | 1992/2  | 6  | 12,99     | 1993/2  | 10 | 15,67     | 1994/2  | 14 | $19,\!55$ |
| 1991/3  | 3  | 9,40      | 1992/3  | 7  | 13,29     | 1993/3  | 11 | 16,30     | 1994/3  | 15 | 19,93     |
| 1991/4  | 4  | 8,87      | 1992/4  | 8  | 12,22     | 1993/4  | 12 | 14,61     | 1994/4  | 16 | 18,00     |
| Quartal | t  | $x_{t,l}$ |
| 1995/1  | 17 | 17,53     | 1996/1  | 21 | 14,86     | 1997/1  | 25 | 15,14     | 1998/1  | 29 | 15,05     |
| 1995/2  | 18 | 20,14     | 1996/2  | 22 | 20,34     | 1997/2  | 26 | 19,51     | 1998/2  | 30 | 17,01     |
| 1995/3  | 19 | 20,29     | 1996/3  | 23 | 21,18     | 1997/3  | 27 | 19,73     | 1998/3  | 31 | 18,01     |
| 1995/4  | 20 | 17,54     | 1996/4  | 24 | 18,21     | 1997/4  | 28 | 16,91     | 1998/4  | 32 | 15,61     |
| Quartal | t  | $x_{t,l}$ |
| 1999/1  | 33 | 13,64     | 2000/1  | 37 | 13,23     | 2001/1  | 41 | 11,29     | 2002/1  | 45 | 10,11     |
| 1999/2  | 34 | 16,16     | 2000/2  | 38 | 14,57     | 2001/2  | 42 | 12,74     | 2002/2  | 46 |           |
| 1999/3  | 35 | 17,10     | 2000/3  | 39 | 14,99     | 2001/3  | 43 | 13,29     | 2002/3  | 47 |           |
| 1999/4  | 36 | 15,05     | 2000/4  | 40 | 12,89     | 2001/4  | 44 | 11,53     | 2002/4  | 48 |           |

Im Folgenden wird das additive Komponentenmodell ohne Saison zugrunde gelegt.

a) Berechnen Sie mittels Regressionsanalyse eine Schätzung für die glatte Komponente  $(g_{t,l})_{t\in\mathbb{T}}$  der Zeitreihe  $(x_{t,l})_{t\in\mathbb{T}}$ . Verwenden Sie hierbei als Regressionsfunktion eine quadratische Funktion

$$f(t; \boldsymbol{\beta}) = \beta_0 + \beta_1 t + \beta_2 t^2.$$

Stellen Sie ferner die Zeitreihe  $(x_{t,l})_{t\in\mathbb{T}}$  und die Schätzung für die glatte Komponente  $(\widehat{g}_{t,l})_{t\in\mathbb{T}}$  gemeinsam in einer Abbildung dar.

Hinweis: Verwenden Sie die folgenden Summenformeln:

$$\begin{split} \sum_{t=1}^{T} t &= \frac{T(T+1)}{2} \\ \sum_{t=1}^{T} t^2 &= \frac{T(T+1)(2T+1)}{6} \\ \sum_{t=1}^{T} t^3 &= \frac{T^2(T+1)^2}{4} \\ \sum_{t=1}^{T} t^4 &= \frac{T(T+1)(2T+1)(3T^2+3T-1)}{30} \end{split}$$

b) Berechnen Sie mit Hilfe des Ergebnisses aus Aufgabenteil a) Prognosen für die vierteljährlichen Bauinvestitionen in den nächsten 3 Quartalen.

#### Aufgabe 3

Für den stochastischen Prozess  $(X_t)_{t\in\mathbb{Z}}$  gelte

$$X_t = \beta_1 + \beta_2 t + \varepsilon_t$$
 für  $t \in \mathbb{Z}$ 

mit  $\beta_1, \beta_2 \in \mathbb{R}$  und  $\varepsilon_t \sim WN(0, \sigma^2)$ .

- a) Untersuchen Sie, ob  $(X_t)_{t\in\mathbb{Z}}$  mittelwert-, varianz- und kovarianzstationär sowie schwach stationär ist.
- b) Zeigen Sie, dass  $(\Delta X_t)_{t\in\mathbb{Z}}$  mit  $\Delta X_t = X_t X_{t-1}$  schwach stationär ist.
- c) Ermitteln Sie für den einfachen gleitenden (2r+1)-Durchschnitt  $(Y_t)_{t\in\mathbb{Z}}$  mit

$$Y_t = \frac{1}{2r+1} \sum_{u=-r}^{r} X_{t-u}$$

den Erwartungswert  $\mathbb{E}[Y_t]$ .

d) Bestimmen Sie die Autokovarianzfunktion  $\gamma(h)$  von  $(Y_t)_{t\in\mathbb{Z}}$ .

### Aufgabe 4

In der folgenden Tabelle sind die Vierteljahresumsätze  $(x_{t,l})_{t\in\mathbb{T}}$  eines Spirituosenherstellers für die Jahre 2011 bis 2018 zusammengefasst.

| Quartal | t  | $x_{t,l}$ |
|---------|----|-----------|---------|----|-----------|---------|----|-----------|---------|----|-----------|
| 2011/1  | 1  | 54,8      | 2012/1  | 5  | 53,6      | 2013/1  | 9  | 56,8      | 2014/1  | 13 | 58,2      |
| 2011/2  | 2  | 42,6      | 2012/2  | 6  | 44,4      | 2013/2  | 10 | 48,6      | 2014/2  | 14 | 52,6      |
| 2011/3  | 3  | 57,4      | 2012/3  | 7  | 59,6      | 2013/3  | 11 | 60,2      | 2014/3  | 15 | 61,0      |
| 2011/4  | 4  | 60,0      | 2012/4  | 8  | 64,8      | 2013/4  | 12 | 68,4      | 2014/4  | 16 | 69,2      |
| Quartal | t  | $x_{t,l}$ |
| 2015/1  | 17 | 60,4      | 2016/1  | 21 | 64,2      | 2017/1  | 25 | 63,8      | 2018/1  | 29 | 66,0      |
| 2015/2  | 18 | 52,8      | 2016/2  | 22 | 54,6      | 2017/2  | 26 | 54,0      | 2018/2  | 30 | 56,0      |
| 2015/3  | 19 | 64,0      | 2016/3  | 23 | 62,2      | 2017/3  | 27 | 66,4      | 2018/3  | 31 | 64,8      |
| 2015/4  | 20 | 68,2      | 2016/4  | 24 | 71,0      | 2017/4  | 28 | 72,8      | 2018/4  | 32 | 74,0      |

Im Folgenden wird das additive Komponentenmodell mit konstanter Saisonfigur unterstellt.

- a) Stellen Sie die Zeitreihe  $(x_{t,l})_{t\in\mathbb{T}}$  graphisch dar.
- b) Ermitteln Sie mittels des einfachen gleitenden 5-er Durchschnitts

Smooth(
$$x_t$$
) =  $\frac{1}{8}x_{t-2} + \frac{1}{4}x_{t-1} + \frac{1}{4}x_t + \frac{1}{4}x_{t+1} + \frac{1}{8}x_{t+2}$ 

eine Schätzung  $(\widehat{g}_{t,l})_{t\in\mathbb{T}}$  für die glatte Komponente  $(g_{t,l})_{t\in\mathbb{T}}$  der Zeitreihe  $(x_{t,l})_{t\in\mathbb{T}}$  und stellen Sie diese Schätzung zusammen mit der Zeitreihe graphisch dar.

- c) Zeichnen Sie die trendbereinigte Zeitreihe  $(x_{t,l} \widehat{g}_{t,l})_{t \in \mathbb{T}}$  und bestimmen Sie mit Hilfe des Phasendurchschnittsverfahrens eine Schätzung  $(\widehat{s}_{t,l})_{t \in \mathbb{T}}$  für die Saisonkomponente  $(s_{t,l})_{t \in \mathbb{T}}$ . Stellen Sie die geschätzte Saisonkomponente und die saisonbereinigte Zeitreihe  $(x_{t,l} \widehat{s}_{t,l})_{t \in \mathbb{T}}$  graphisch dar und interpretieren Sie das Ergebnis kurz.
- d) Untersuchen Sie mit Hilfe von R die Güte des angepassten additiven Komponentenmodells mit Saison anhand der Residuen  $(\widehat{\varepsilon}_t)_{t\in\mathbb{T}}$ . Verwenden Sie hierzu einen Plot der Residuen  $(\widehat{\varepsilon}_t)_{t\in\mathbb{T}}$ , die empirische Autokorrelationsfunktion  $\widehat{\rho}(h)$ , einen QQ-Plot, einen Shapiro-Wilk-Test und einen Jarque-Bera-Test. Kommentieren Sie ferner Ihre Ergebnisse.

#### Aufgabe 5

Es werden wieder die Vierteljahresumsätze  $(x_{t,l})_{t\in\mathbb{T}}$  eines Spirituosenherstellers für die Jahre 2011 bis 2018 aus Aufgabe 4 betrachtet und das additive Komponentenmodell mit konstanter Saisonfigur unterstellt.

- a) Passen Sie an die Zeitreihenwerte  $(x_{t,l})_{t\in\mathbb{T}}$  eine geeignete Regressionsfunktion mit Saisondummies an. Stellen Sie ferner die Zeitreihe  $(x_{t,l})_{t\in\mathbb{T}}$  zusammen mit der angepassten Regressionsfunktion graphisch dar.
- b) Ermitteln Sie Schätzungen für die normierten Saisonkoeffizienten (normierte Phasendurchschnitte).
- c) Berechnen Sie Prognosen für die nächsten vier Quartale.

In der folgenden Tabelle sind die Tagespreise  $(x_t)_{t\in\mathbb{T}}$  für eine Feinunze Gold in US\$ vom 28.07.2011 bis 24.08.2011 zusammengefasst.

| Tag        | t  | \$      | Tag        | t  | \$      |
|------------|----|---------|------------|----|---------|
| 28.07.2011 | 1  | 1588,00 | 11.08.2011 | 11 | 1754,00 |
| 29.07.2011 | 2  | 1626,10 | 12.08.2011 | 12 | 1745,40 |
| 01.08.2011 | 3  | 1619,05 | 15.08.2011 | 13 | 1764,60 |
| 02.08.2011 | 4  | 1658,40 | 16.08.2011 | 14 | 1786,00 |
| 03.08.2011 | 5  | 1658,00 | 17.08.2011 | 15 | 1791,30 |
| 04.08.2011 | 6  | 1650,10 | 18.08.2011 | 16 | 1825,10 |
| 05.08.2011 | 7  | 1661,00 | 19.08.2011 | 17 | 1848,60 |
| 08.08.2011 | 8  | 1720,10 | 20.08.2011 | 18 | 1895,60 |
| 09.08.2011 | 9  | 1732,60 | 23.08.2011 | 19 | 1824,40 |
| 10.08.2011 | 10 | 1792,80 | 24.08.2011 | 20 | 1806,50 |

- a) Bestimmen Sie mittels exponentieller Glättung eine Schätzung für die glatte Komponente  $(g_t)_{t\in\mathbb{T}}$  der Zeitreihe  $(x_t)_{t\in\mathbb{T}}$ . Verwenden Sie hierzu den Startwert  $\widehat{g}_1=x_1$  und die Glättungsparameter  $\alpha=0,15$  bzw.  $\alpha=0,4$ . Stellen Sie die beiden Schätzungen für die glatte Komponente  $(\widehat{g}_t)_{t\in\mathbb{T}}$  zusammen mit der Zeitreihe  $(x_t)_{t\in\mathbb{T}}$  graphisch dar und kommentieren Sie das Ergebnis.
- b) Bestimmen Sie mittels Verfahren von Holt eine Schätzung für die glatte Komponente  $(g_t)_{t\in\mathbb{T}}$  der Zeitreihe  $(x_t)_{t\in\mathbb{T}}$ . Verwenden Sie hierzu die Startwerte  $\widehat{m}_1 = x_1$  und  $\widehat{b}_1 = 0$  sowie die Glättungsparameter  $\alpha = 0,3$  und  $\beta = 0,5$ . Stellen Sie die Schätzung für die glatte Komponente  $(\widehat{g}_t)_{t\in\mathbb{T}}$  zusammen mit der Zeitreihe  $(x_t)_{t\in\mathbb{T}}$  graphisch dar.
- c) Berechnen Sie eine Prognose für die Zeitpunkte t = 25 und t = 30.

### Aufgabe 7

Es wird eine Zeitreihe  $(x_{t,l})_{t\in\mathbb{T}}$  bestehend aus Monatswerten betrachtet. Zum Zeitpunkt T=49 seien der Zeitreihenwert  $x_{49,1}=40,0$ , die Schätzungen

$$\widehat{m}_{48} = 67.4$$
 bzw.  $\widehat{b}_{48} = 0.779$ 

für das Niveau und die Niveauveränderung sowie die Schätzungen

$$\begin{split} \widehat{s}_{37,1} &= 0.756, \quad \widehat{s}_{38,2} = 0.458, \quad \widehat{s}_{39,3} = 0.855, \quad \widehat{s}_{40,4} = 1.157 \\ \widehat{s}_{41,5} &= 1.539, \quad \widehat{s}_{42,6} = 1.556, \quad \widehat{s}_{43,7} = 1.561, \quad \widehat{s}_{44,8} = 1.525 \\ \widehat{s}_{45,9} &= 1.293, \quad \widehat{s}_{46,10} = 0.882, \quad \widehat{s}_{47,11} = 0.795, \quad \widehat{s}_{48,12} = 0.672 \end{split}$$

für die Saisonkomponenten bekannt. Die Glättungsparameter seien gegeben durch  $\alpha=0.05$ ,  $\beta=0.05$  und  $\gamma=0.35$ . Berechnen Sie aus diesen Angaben Prognosen für die Zeitpunkte t=50 und t=54. Gehen Sie dabei davon aus, dass die Saisonkomponente multiplikativ mit der glatten Komponente verknüpft ist.



# Übung 3: MA-Prozesse

#### Aufgabe 1

Weisen Sie nach, dass die absolute Summierbarkeit einer unendlichen Reihe stets die quadratische Summierbarkeit der unendlichen Reihe impliziert. D.h. es gilt

$$\sum_{j=0}^{\infty} |\eta_j| < \infty \quad \Longrightarrow \quad \sum_{j=0}^{\infty} \eta_j^2 < \infty.$$

Geben Sie ein Beispiel dafür an, dass die Umkehrung der obigen Aussage nicht gilt.

### Aufgabe 2

Geben Sie an, um was für einen stochastischen Prozess es sich bei  $(X_t)_{t\in\mathbb{Z}}$  mit

$$X_t = \varepsilon_t + 0.7\varepsilon_{t-1} - 0.3\varepsilon_{t-2} + 0.2\varepsilon_{t-3}$$

und  $\varepsilon_t \sim WN(0,50)$  handelt. Bestimmen Sie ferner die Autokovarianzfunktion  $\gamma(h)$  von  $(X_t)_{t \in \mathbb{Z}}$ .

#### Aufgabe 3

Ermitteln Sie für welche Werte  $\theta \in \mathbb{R}$  die Autokorrelation  $\rho(\pm 1)$  des MA(1)-Prozesses  $(X_t)_{t \in \mathbb{Z}}$  mit

$$X_t = \varepsilon_t + \theta \varepsilon_{t-1}$$

sein Maximum bzw. Minimum annimmt. Zeigen Sie ferner, dass

$$|\rho(\pm 1)| \le \frac{1}{2}$$

für alle  $\theta \in \mathbb{R}$  gilt.

#### Aufgabe 4

Bestimmen Sie für welche Wertepaare  $(\theta_1, \theta_2) \in \mathbb{R}^2$  ein MA(2)-Prozess  $(X_t)_{t \in \mathbb{Z}}$  mit

$$X_t = \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2}$$

invertierbar ist.

#### Aufgabe 5

Betrachtet wird der MA(1)-Prozess  $(X_t)_{t\in\mathbb{Z}}$  mit

$$X_t = \varepsilon_t - \theta \varepsilon_{t-1}$$

und  $\varepsilon_t \sim WN(0, \sigma^2)$ .

- a) Geben Sie die Autokovarianz- und Autokorrelationsfunktion  $\gamma(h)$  bzw.  $\rho(h)$  von  $(X_t)_{t\in\mathbb{Z}}$  an.
- b) Für welche Werte von  $\theta$  gilt  $\rho(1) = 0.4$  und welcher dieser Werte ist zu bevorzugen?
- c) Anstelle eines MA(1)-Modells genüge der stochastische Prozess  $(X_t)_{t\in\mathbb{Z}}$  nun dem MA( $\infty$ )-Modell

$$X_t = \varepsilon_t + \sum_{j=1}^{\infty} c \, \varepsilon_{t-j},$$

wobei  $c \in \mathbb{R}$  eine Konstante ist. Weisen Sie nach, dass der stochastische Prozess  $(X_t)_{t \in \mathbb{Z}}$  nicht schwach stationär ist.

- d) Betrachtet wird wieder der stochastische Prozess  $(X_t)_{t\in\mathbb{Z}}$  aus Aufgabenteil c). Zeigen Sie, dass der aus  $(X_t)_{t\in\mathbb{Z}}$  durch Differenzenbildung resultierende stochastische Prozess  $(Y_t)_{t\in\mathbb{Z}}$  mit  $Y_t = \Delta X_t$  ein schwach stationärer MA(1)-Prozess ist.
- e) Bestimmen Sie die Autokorrelationsfunktion des stochastischen Prozesses  $(Y_t)_{t\in\mathbb{Z}}$  aus Aufgabenteil d).



# Übung 4: AR-Prozesse

### Aufgabe 1

Ermitteln Sie für den schwach stationären AR(1)-Prozess  $(X_t)_{t\in\mathbb{Z}}$  mit

$$X_t = 0.8X_{t-1} + \varepsilon_t$$

und  $\varepsilon_t \sim \text{WN}(0, \sigma^2)$  die Varianz des nicht zentrierten 4-er Durchschnitts  $(Y_t)_{t \in \mathbb{Z}}$  mit

$$Y_t = \frac{1}{4}X_{t-2} + \frac{1}{4}X_{t-1} + \frac{1}{4}X_t + \frac{1}{4}X_{t+1}.$$

#### Aufgabe 2

Bestimmen Sie für den AR(2)-Prozess  $(X_t)_{t\in\mathbb{Z}}$  mit

$$X_t = -0.9X_{t-2} + \varepsilon_t$$

und  $\varepsilon_t \sim \text{WN}(0, \sigma^2)$  das zugehörige Autoregressive Polynom  $\Phi_2(z)$  sowie dessen Nullstellen in Polardarstellung. Stellen Sie die Autokorrelationsfunktion  $\rho(h)$  als Funktion dieser Nullstellen dar und interpretieren Sie das Ergebnis.

#### Aufgabe 3

Betrachtet wird der stochastische Prozess  $(X_t)_{t\in\mathbb{Z}}$  mit

$$X_{t} = -2X_{t-1} - \frac{5}{4}X_{t-2} + \varepsilon_{t}$$

und  $\varepsilon_t \sim WN(0, \sigma^2)$ .

- a) Geben Sie an, um was für einen Prozess es sich bei  $(X_t)_{t\in\mathbb{Z}}$  handelt. Geben Sie ferner den zugehörigen Autoregressiven-Operator sowie Moving-Average-Operator an. Stellen Sie  $(X_t)_{t\in\mathbb{Z}}$  mit Hilfe dieser beiden Operatoren dar.
- b) Untersuchen Sie den Prozess auf Parameterredundanz, schwache Stationarität, Kausalität und Invertierbarkeit.

#### Aufgabe 4

Ermitteln Sie mit Hilfe der Methode der unbestimmten Koeffizienten die  $MA(\infty)$ -Darstellung des kausalen AR(2)-Prozesses  $(X_t)_{t\in\mathbb{Z}}$  mit

$$X_t = 1.3X_{t-1} - 0.4X_{t-2} + \varepsilon_t$$

und  $\varepsilon_t \sim WN(0, \sigma^2)$ .

Hinweis: Verwenden Sie, dass die Differenzengleichung 2. Ordnung

$$a\psi_{j-1} - b\psi_j + \psi_{j+1} = 0$$
 für  $j \in \mathbb{N}$ 

die Lösung

$$\psi_j = c_1 \left(\frac{1}{z_1}\right)^j + c_2 \left(\frac{1}{z_2}\right)^j$$
 für  $j \in \mathbb{N}$ 

besitzt, wobei  $z_1$  und  $z_2$  die Nullstellen des Polynoms  $\Phi_2(z) = 1 - bz + az^2$  sind und  $c_1 + c_2 = 1$  gilt.

### Aufgabe 5

Bestimmen Sie mit Hilfe der Cramerschen Regel die partielle Autokorrelationsfunktion  $\alpha(h)$  eines kausalen AR(2)-Prozesses  $(X_t)_{t\in\mathbb{Z}}$  mit

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \varepsilon_t$$

und  $\varepsilon_t \sim WN(0, \sigma^2)$  in Abhängigkeit von den Koeffizienten  $\phi_1$  und  $\phi_2$ .



# Übung 5: ARMA-, ARIMA- und SARIMA-Prozesse

## Aufgabe 1

Multiplizieren Sie die beiden folgenden Lag-Polynome aus und benennen Sie die zugehörigen Prozesse minimaler Ordnung:

a) 
$$(1 - 0.2 L)(1 - 0.6 L)X_t = (1 + 0.5 L)\varepsilon_t$$

b) 
$$(1 - 0.7 L)(1 - 0.4 L^{12})(1 - L)X_t = (1 + 0.5 L)(1 - 0.4 L^{12})\varepsilon_t$$

#### Aufgabe 2

Im Folgenden gelte  $\varepsilon_t \sim WN(0, \sigma^2)$ . Benennen Sie die untenstehenden stochastischen Prozesse:

a) 
$$X_t = \varepsilon_t + 2\varepsilon_{t-1}$$

b) 
$$X_t = \frac{13}{10}X_{t-1} + \varepsilon_t$$

c) 
$$X_t = \frac{13}{10}X_{t-1} - \frac{2}{5}X_{t-2} + \varepsilon_t$$

d) 
$$X_t = \frac{13}{10}X_{t-1} - \frac{2}{5}X_{t-2} + \varepsilon_t - \frac{3}{10}\varepsilon_{t-1}$$

e) 
$$X_t = \frac{1}{5}X_{t-1} + \frac{4}{5}X_{t-2} + \varepsilon_t$$

f) 
$$X_t = \frac{1}{5}X_{t-1} + \frac{4}{5}X_{t-2} + \varepsilon_t - \frac{3}{2}\varepsilon_{t-1} + \frac{1}{2}\varepsilon_{t-2}$$

Untersuchen Sie die Prozesse jeweils auf Parameterredundanz, schwache Stationarität, Kausalität und Invertierbarkeit.

## Aufgabe 3

Betrachtet wird ein kausaler ARMA(2,1)-Prozess  $(X_t)_{t\in\mathbb{Z}}$  mit

$$X_t = 1.3X_{t-1} - 0.4X_{t-2} + \varepsilon_t - 0.2\varepsilon_{t-1}$$

und  $\varepsilon_t \sim WN(0, \sigma^2)$ .

a) Berechnen Sie mittels der Methode der unbestimmten Koeffizienten die  $\mathrm{MA}(\infty)$ -Darstellung von  $(X_t)_{t\in\mathbb{Z}}$ .

<u>Hinweis:</u> Verwenden Sie, dass die Differenzengleichung 2. Ordnung

$$a\psi_{i-1} - b\psi_i + \psi_{i+1} = 0$$
 für  $j \in \mathbb{N}$ 

die Lösung

$$\psi_j = c_1 \left(\frac{1}{z_1}\right)^j + c_2 \left(\frac{1}{z_2}\right)^j$$
 für  $j \in \mathbb{N}$ 

besitzt, wobei  $z_1$  und  $z_2$  die Nullstellen des Polynoms  $\Phi_2(z) = 1 - bz + az^2$  sind und  $c_1 + c_2 = 1$  gilt.

b) Berechnen Sie mit Hilfe des Ergebnisses aus Aufgabenteil a) die Autokovarianzfunktion von  $(X_t)_{t\in\mathbb{Z}}$ .

### Aufgabe 4

Betrachtet wird der stochastische Prozess  $(Y_t)_{t\in\mathbb{Z}}$  mit

$$Y_t = X_t + \varepsilon_t$$

und  $\varepsilon_t \sim \text{WN}(0, \sigma_{\varepsilon}^2)$  sowie dem schwach stationären ARMA(p, q)-Prozess  $(X_t)_{t \in \mathbb{Z}}$  mit

$$\Phi_p(\mathbf{L})X_t = \Theta_q(\mathbf{L})\widetilde{\varepsilon}_t$$

und  $\widetilde{\varepsilon}_t \sim \mathrm{WN}(0, \sigma_{\widetilde{\varepsilon}}^2)$ . Ferner gelte  $\mathrm{Cov}(\varepsilon_s, \widetilde{\varepsilon}_t) = 0$  für alle  $s, t \in \mathbb{Z}$ .

- a) Zeigen Sie, dass  $(Y_t)_{t\in\mathbb{Z}}$  ein schwach stationärer Prozess ist und bestimmen Sie seine Autokovarianzfunktion  $\gamma_Y(h)$  in Abhängigkeit von  $\sigma_{\varepsilon}^2$  und der Autokovarianzfunktion  $\gamma_X(h)$  von  $(X_t)_{t\in\mathbb{Z}}$ .
- b) Weisen Sie nach, dass der stochastische Prozess  $(U_t)_{t\in\mathbb{Z}}$ mit

$$U_t = \Phi_p(\mathbf{L})Y_t$$

ein r-korrelierter Prozess mit  $r := \max\{p, q\}$  und damit ein MA(r)-Prozess ist. Was lässt sich daraus für den Prozess  $(Y_t)_{t \in \mathbb{Z}}$  folgern?

#### Aufgabe 5

Es sei der stochastische Prozess  $(X_t)_{t\in\mathbb{Z}}$  mit

$$X_t = 0.4X_{t-1} + 0.45X_{t-2} + \varepsilon_t + \varepsilon_{t-1} + 0.25\varepsilon_{t-2} \tag{1}$$

und  $\varepsilon_t \sim WN(0, \sigma^2)$  gegeben.

- a) Drücken Sie die Gleichung (1) mit Hilfe des Lag-Operators L aus und geben Sie an, um was für einen Prozess es sich bei  $(X_t)_{t\in\mathbb{Z}}$  handelt.
- b) Untersuchen Sie  $(X_t)_{t\in\mathbb{Z}}$  auf Parameterredundanz und geben Sie gegebenenfalls an, um was für einen Prozess es sich nach Beseitigung der Parameterredundanz handelt.
- c) Untersuchen Sie den Prozess  $(X_t)_{t\in\mathbb{Z}}$  auf schwache Stationarität, Kausalität und Invertierbarkeit.
- d) Geben Sie die  $MA(\infty)$ -Darstellung des Prozesses  $(X_t)_{t\in\mathbb{Z}}$  an, falls er kausal ist.
- e) Geben Sie die  $AR(\infty)$ -Darstellung des Prozesses  $(X_t)_{t\in\mathbb{Z}}$  an, falls er invertierbar ist.

#### Aufgabe 6

Betrachtet wird der IMA(1,1)-Prozess  $(X_t)_{t\in\mathbb{Z}}$  mit

$$X_t = X_{t-1} + \varepsilon_t - \theta \varepsilon_{t-1}$$

sowie  $|\theta| < 1$  und  $\varepsilon_t \sim WN(0, \sigma^2)$ . Zeigen Sie, dass dieser Prozess die Darstellung

$$X_t = \sum_{j=1}^{\infty} (1 - \theta)\theta^{j-1} X_{t-j} + \varepsilon_t$$

besitzt.

#### Aufgabe 7

Im Folgenden gelte  $\varepsilon_t \sim WN(0, \sigma^2)$ . Benennen Sie die drei untenstehenden stochastischen Prozesse und geben Sie jeweils an, ob der Prozess schwach stationär ist:

a) 
$$(1 - L)^2 (1 - L^{12}) X_t = (1 - 0.34L + 0.486L^2) (1 - 0.485L^{12} + 0.042L^{24}) \varepsilon_t$$

b) 
$$(1 - 0.2L)(1 - 0.32L^4 - 0.20L^8)(1 - L^4)X_t = \varepsilon_t$$

c) 
$$(1 - L^{12})(1 - L)X_t = (1 + \widetilde{\theta}L^{12})(1 + \theta L)\varepsilon_t$$

### Aufgabe 8

Betrachtet wird der SARIMA $(0,0,1)\times(1,0,0)_{12}$ -Prozess  $(X_t)_{t\in\mathbb{Z}}$  mit

$$(1 - \widetilde{\phi} \mathbf{L}^{12}) X_t = (1 + \theta \mathbf{L}) \varepsilon_t$$

sowie  $|\widetilde{\phi}| < 1$ ,  $|\theta| < 1$  und  $\varepsilon_t \sim WN(0, \sigma^2)$ .

- a) Erläutern Sie, ob der SARIMA-Prozess  $(X_t)_{t\in\mathbb{Z}}$  kausal, invertierbar und/oder schwach stationär ist.
- b) Geben Sie den Prozess  $(X_t)_{t\in\mathbb{Z}}$  in der ARMA-Parameterisierung an.
- c) Bestimmen Sie die Autokovarianz- und Autokorrelationsfunktion von  $(X_t)_{t\in\mathbb{Z}}$ .



# Übung 6: Schätzung von ARMA-Prozessen

### Aufgabe 1

Für einen schwach stationären stochastischen Prozess  $(X_t)_{t\in\mathbb{Z}}$  wurde der Pfad (die Zeitreihe)

| t | $X_t$ |
|---|-------|
| 1 | 4     |
| 2 | 14    |
| 3 | 10    |
| 4 | 16    |
| 5 | 6     |
| 6 | 14    |
| 7 | 10    |
| 8 | 14    |
|   |       |

beobachtet.

- a) Bestimmen Sie die empirische Autokovarianz- und Autokorrelationsfunktion  $\widehat{\gamma}(h)$  bzw.  $\widehat{\rho}(h)$  für die Lags  $h=0,\ldots,7$ .
- b) Bestimmen Sie die empirische partielle Autokorrelationsfunktion  $\widehat{\alpha}(h)$  für die Lags h=0,1,2,3.

#### Aufgabe 2

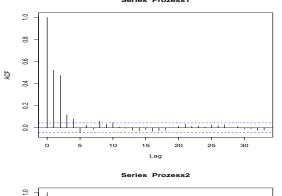
Benennen Sie die folgenden vier stochastischen Prozesse. Ordnen Sie ferner die stochastischen Prozesse den empirischen Autokorrelationsfunktionen und empirischen partiellen Autokorrelationsfunktionen zu und begründen Sie ihre Zuordnung kurz.

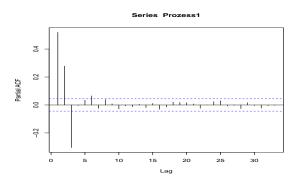
a) 
$$X_t = \frac{3}{4}X_{t-1} + \frac{1}{5}X_{t-3} + \varepsilon_t$$

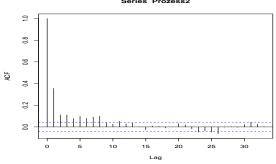
b) 
$$X_t = \varepsilon_t + \frac{1}{4}\varepsilon_{t-1} + \frac{1}{2}\varepsilon_{t-2} - \frac{1}{5}\varepsilon_{t-3}$$

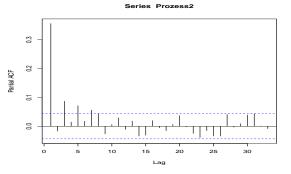
c) 
$$X_t = \frac{9}{20}X_{t-1} + \frac{2}{5}X_{t-2} - \frac{3}{10}X_{t-3} + \varepsilon_t$$

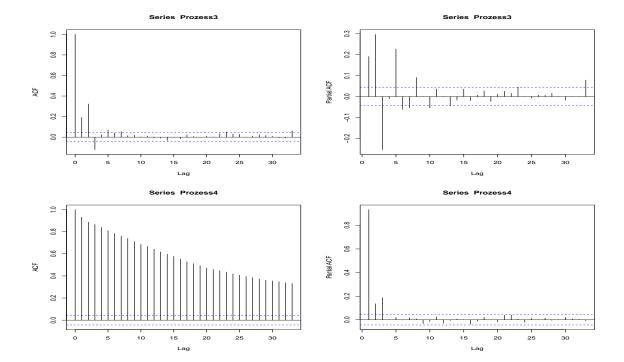
d) 
$$X_t = \frac{4}{5}X_{t-1} + \frac{1}{20}X_{t-2} + \varepsilon_t - \frac{9}{20}\varepsilon_{t-1} - \frac{1}{4}\varepsilon_{t-2}$$











a) Für den kausalen AR(2)-Prozess  $(X_t)_{t\in\mathbb{Z}}$  mit

$$X_t = \mu + \phi_1 X_{t-1} + \phi_2 X_{t-2} + \varepsilon_t$$

und  $\varepsilon_t \sim WN(0, \sigma^2)$  wurden anhand von T = 100 Beobachtungen die Schätzungen  $\widehat{\rho}(1) = 0.8$  und  $\widehat{\rho}(2) = 0.5$  sowie

$$\overline{X}_T = \frac{1}{T} \sum_{t=1}^{100} X_t = 2$$

ermittelt. Bestimmen Sie hiermit die Momentenschätzungen für die Parameter  $\phi_1,\phi_2$  und  $\mu$ .

b) Es wird nun der AR(1)-Prozess  $(X_t)_{t\in\mathbb{Z}}$  mit

$$X_t = \mu + \phi X_{t-1} + \varepsilon_t$$

und  $\varepsilon_t \sim \text{WN}(0, \sigma^2)$  betrachtet. Mittels der Momentenmethode wurde für  $\phi$  die Schätzung  $\widehat{\phi} = 0.7$  ermittelt. Berechnen Sie die benötigte Anzahl T an Beobachtungen, für welche das 95%-Konfidenzintervall von  $\widehat{\phi}$  nicht größer als  $\widehat{\phi} \pm 0.1$  ist.

#### Aufgabe 4

Es wird der AR(2)-Prozess  $(X_t)_{t\in\mathbb{Z}}$  mit

$$X_t = \phi X_{t-1} + \phi^2 X_{t-2} + \varepsilon_t$$

und  $\varepsilon_t \sim WN(0, \sigma^2)$  betrachtet.

- a) Ermitteln Sie für welche Werte von  $\phi$  der Prozess  $(X_t)_{t\in\mathbb{Z}}$  kausal ist.
- b) Anhand von T=200 Beobachtungen wurden die Schätzungen

$$\widehat{\gamma}(0) = 6.06, \quad \widehat{\rho}(1) = 0.687, \quad \widehat{\rho}(2) = 0.610$$

berechnet. Berechnen Sie damit die Yule-Walker-Schätzer für  $\phi$  und  $\sigma^2$ .

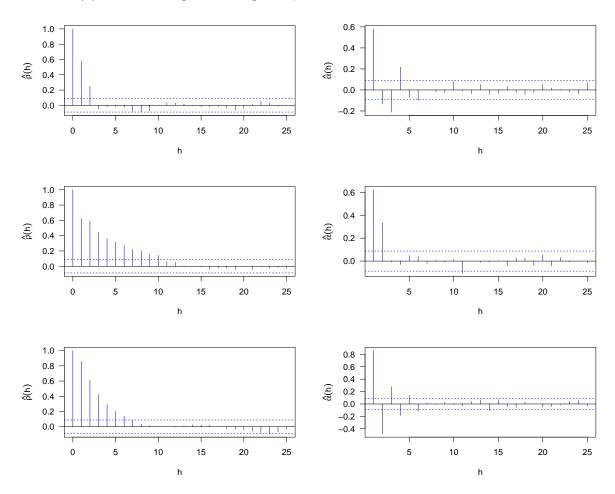
#### Aufgabe 5

Es sei angenommen, dass die beobachteten Zeitreihenwerte von einem kausalen AR(1)-Prozess  $(X_t)_{t\in\mathbb{Z}}$  mit

$$X_t = \phi X_{t-1} + \varepsilon_t$$

und  $\varepsilon_t \sim \text{IID}(0, \sigma^2)$  erzeugt wurden. Erläutern Sie, was für die asymptotische Varianz des resultierenden ML-Schätzers  $\hat{\phi}$  gilt, wenn anstelle eines kausalen AR(1)-Prozesses ein kausaler und invertierbarer ARMA(1,1)-Prozesse an die Daten angepasst wird, also Overfitting stattfindet.

a) Ermitteln Sie anhand der folgenden drei Paare bestehend aus empirischer Autokorrelationsfunktion  $\widehat{\rho}(h)$  und empirischer partieller Autokorrelationsfunktion  $\widehat{\alpha}(h)$  geeignete Werte für die Ordnungsparameter p und q des jeweils zugrundeliegenden datengenerierenden ARMA(p,q)-Prozesses  $(X_t)_{t\in\mathbb{Z}}$ . (Beachte: R plottet  $\widehat{\alpha}(h)$  standardmäßig erst ab Lag h=1).



- b) Ermitteln Sie anhand des folgenden R-Outputs geeignete Werte für die Ordnungsparameter p und q des zugrundeliegenden datengenerierenden ARMA(p,q)-Prozesses  $(X_t)_{t\in\mathbb{Z}}$ .
- c) Die folgende Tabelle enthält die AIC-Werte von 16 angepassten ARMA(p,q)-Prozessen mit  $p,q \in \{0,1,2,3\}$ . Geben Sie geeignete Werte für die Ordnungsparameter p und q des zugrundeliegenden datengenerierenden ARMA(p,q)-Prozesses  $(X_t)_{t \in \mathbb{Z}}$  an.

| p | q | $l\left(\widehat{oldsymbol{\phi}}_p,\widehat{oldsymbol{	heta}}_q,\widehat{\sigma}^2;\mathbf{x}_T ight)$ | AIC     |
|---|---|---------------------------------------------------------------------------------------------------------|---------|
| 0 | 0 | -4637,23                                                                                                | 9278,46 |
| 0 | 1 | -3633,71                                                                                                | 7273,42 |
| 0 | 2 | -3240,87                                                                                                | 6489,75 |
| 0 | 3 | -3062,80                                                                                                | 6135,60 |
| 1 | 0 | -3090,99                                                                                                | 6187,98 |
| 1 | 1 | -2916,48                                                                                                | 5840,95 |
| 1 | 2 | -2916,33                                                                                                | 5842,66 |
| 1 | 3 | -2916,32                                                                                                | 5844,65 |
| 2 | 0 | -2957,24                                                                                                | 5922,48 |
| 2 | 1 | -2916,33                                                                                                | 5842,66 |
| 2 | 2 | -2916,06                                                                                                | 5844,11 |
| 2 | 3 | -2916,03                                                                                                | 5846,06 |
| 3 | 0 | -2923,41                                                                                                | 5856,82 |
| 3 | 1 | -2916,33                                                                                                | 5844,66 |
| 3 | 2 | -2915,59                                                                                                | 5845,17 |
| 3 | 3 | -2915,42                                                                                                | 5846,83 |

```
z test of coefficients:
2
             Estimate Std. Error z value Pr(>|z|)
                      0.32222 4.5245 6.054e-06 ***
0.26030 -1.9994 0.04557 *
3
             1.45788
    ar1
4
             -0.52045
    ar2
             -0.17612
                       0.32013 -0.5502
                                      0.58222
    ma1
                      0.15206 -2.2180 0.02655 *
6
             -0.33728
    ma2
8
    z test of coefficients:
9
             Estimate Std. Error z value Pr(>|z|)
                                       <2e-16 ***
10
    ar1
              0.773643
                      0.050541 15.3071
11
    ar2
              0.025439
                       0.047640 0.5340
                                       0.5933
                                       <2e-16 ***
12
    ma1
              0.509678
                      0.044803 11.3761
13
   z test of coefficients:
14
             15
16
    ar1
17
    ma1
18
19
    z test of coefficients:
20
              Estimate Std. Error z value Pr(>|z|)
21
              ar1
22
23
    Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

# Übung 7: Prognose von ARMA-Prozessen

## Aufgabe 1

Es seien X und  $\varepsilon$  stochastisch unabhängige N(0,1)-verteilte Zufallsvariablen. Ferner sei

$$Y = X^2 + \varepsilon.$$

- a) Berechnen Sie den Minimum Mean Square Error Predictor  $\widehat{Y}^{\text{opt}}$  von Y auf Basis der Beobachtung X. Ermitteln Sie ferner den Mean Square Error of Prediction (MSEP) von  $\widehat{Y}^{\text{opt}}$ .
- b) Zur Prognose von Y werden nun ausschließlich affin-lineare Prädiktoren der Form  $\widehat{Y} = a + bX$  mit  $a, b \in \mathbb{R}$  betrachtet. Berechnen Sie den besten affin-linearen Prädiktor  $\widehat{Y}^{\text{lin}}$  und seinen MSEP. Kommentieren Sie das Ergebnis kurz.

<u>Hinweis:</u> Für eine N(0, 1)-verteilte Zufallsvariable X gilt  $\mathbb{E}[X^4] = 3$ .

### Aufgabe 2

Betrachtet wird der MA(3)-Prozess  $(X_t)_{t\in\mathbb{Z}}$  mit

$$X_t = \varepsilon_t + 0.7\varepsilon_{t-1} - 0.3\varepsilon_{t-2} + 0.2\varepsilon_{t-3}$$

und  $\varepsilon_t \sim \text{WN}(0,50)$ . Bestimmen Sie den besten affin-linearen Prädiktor  $\widehat{X}_{T+h|T}^{\text{lin}}$  mit dem Prognoseursprung T=2 und dem Prognosehorizont h=2.

#### Aufgabe 3

Es sei  $(X_t)_{t\in\mathbb{Z}}$  ein schwach stationärer Prozess mit  $\mu=\mathbb{E}[X_t]=0$  für  $t\in\mathbb{Z}$ . Ermitteln Sie für die beiden folgenden Fälle den besten affin-linearen Prädiktor  $\widehat{X}_t^{\text{lin}}$  für  $X_t$  auf Basis der beiden Beobachtungen  $X_{t-1}$  und  $X_{t+1}$  sowie seinen Mean Square Error of Prediction (MSEP).

a) Bei  $(X_t)_{t\in\mathbb{Z}}$  handelt es sich um einen kausalen AR(1)-Prozess mit

$$X_t = \phi X_{t-1} + \varepsilon_t$$

und  $\varepsilon_t \sim WN(0, \sigma^2)$ .

b) Bei  $(X_t)_{t\in\mathbb{Z}}$  handelt es sich um einen invertierbaren MA(1)-Prozess mit

$$X_t = \varepsilon_t + \theta \varepsilon_{t-1}$$

und  $\varepsilon_t \sim WN(0, \sigma^2)$ .

## Aufgabe 4

Betrachtet wird der kausale AR(2)-Prozess  $(X_t)_{t\in\mathbb{Z}}$  mit

$$X_t = 1,3X_{t-1} - 0,4X_{t-2} + \varepsilon_t$$

und  $\varepsilon_t \sim \mathrm{WN}(0,2)$ . Bestimmen Sie den besten affin-linearen Prädiktor  $\widehat{X}_{T+h|T}^{\mathrm{lin}}$  mit Prognoseursprung T>2 für die Prognosehorizonte h=1,2,3.

## Aufgabe 5

Für eine schwach stationäre Zeitreihe  $(X_t)_{t\in\mathbb{Z}}$  mit  $\mathbb{E}[X_t]=0$  soll zum Zeitpunkt T die Zufallsvariable  $X_{T+h}$  für  $h\in\mathbb{N}$  prognostiziert werden.

a) Als Prädiktor für  $X_{T+h}$  soll  $aX_T$  für ein geeignetes  $a \in \mathbb{R}$  verwendet werden. Zeigen Sie, dass der Mean Square Error of Prediction (MSEP)

$$MSEP(a) = \mathbb{E}\left[ (X_{T+h} - aX_T)^2 \right]$$

für  $a = \rho(h)$  minimiert wird.

b) Zeigen Sie, dass gilt

$$\min_{a \in \mathbb{R}} MSEP(a) = \gamma(0) \left( 1 - \rho^2(h) \right).$$

Es sei  $(X_t)_{t\in\mathbb{Z}}$  ein invertierbarer MA(1)-Prozess mit

$$X_t = \varepsilon_t + \theta \varepsilon_{t-1}$$

und  $\varepsilon_t \sim \text{IID}(0, \sigma^2)$ .

- a) Bestimmen Sie den Ein-Schritt-Prädiktor (Minimum Mean Square Error Predictor)  $\widetilde{X}_{T+1|T}^{\text{opt}}$  bei Vorliegen der unendlichen Vergangenheit. Berechnen Sie ferner den MSEP von  $\widetilde{X}_{T+1|T}^{\text{opt}}$ .
- b) Zeigen Sie, dass für den MSEP des trunkierten Ein-Schritt-Prädiktors  $\widetilde{X}_{T+1|T}^{\text{opt}*}$  gilt:

$$\mathbb{E}\left[\left(X_{T+1} - \widetilde{X}_{T+1|T}^{\text{opt}*}\right)^2\right] = \sigma^2(1 + \theta^{2+2T})$$

Vergleichen Sie das Ergebnis mit dem Resultat aus Aufgabenteil a).

Sommersemester 2020

# Übung 8: ARCH- und GARCH-Prozesse

## Aufgabe 1

Es sei  $(X_t)_{t\in\mathbb{Z}}$  ein schwach stationärer ARCH(p)-Prozess mit  $\mathbb{E}[\sigma_t^4] = c < \infty$  und  $\mathbb{E}[\varepsilon_t^4] = d < \infty$ . Zeigen Sie, dass es sich dann bei  $(\eta_t)_{t\in\mathbb{Z}}$  mit

$$\eta_t := X_t^2 - \sigma_t^2$$

um ein weißes Rauschen handelt.

#### Aufgabe 2

Betrachtet wird ein schwach stationärer ARCH(1)-Prozess  $(X_t)_{t\in\mathbb{Z}}$  mit

$$X_t = \sigma_t \varepsilon_t$$
 und  $\sigma_t^2 = \alpha_0 + \alpha_1 X_{t-1}^2$ .

a) Zeigen Sie, dass die quadrierten Zufallsvariablen  $X_t^2$  für alle  $t \in \mathbb{Z}$  die Darstellung

$$X_t^2 = \alpha_0 \sum_{j=0}^{\infty} \alpha_1^j \varepsilon_t^2 \cdot \dots \cdot \varepsilon_{t-j}^2$$
 (1)

besitzen und interpretieren Sie diese Darstellung.

b) Berechnen Sie mit Hilfe von (1) das zweite Moment  $\mathbb{E}[X_t^2]$ .

#### Aufgabe 3

Betrachtet wird ein schwach stationärer GARCH(1,1)-Prozess  $(X_t)_{t\in\mathbb{Z}}$  mit

$$X_t = \sigma_t \varepsilon_t$$
 und  $\sigma_t^2 = \alpha_0 + \alpha_1 X_{t-1}^2 + \beta_1 \sigma_{t-1}^2$ 

und  $\mathbb{E}[X_t^4] < \infty$  für  $t \in \mathbb{Z}$ .

- a) Stellen Sie den quadrierten Prozess  $(X_t^2)_{t\in\mathbb{Z}}$  als ARMA(1, 1)-Prozess dar.
- b) Erläutern Sie, ob dieser GARCH-Prozess eine  $ARCH(\infty)$ -Darstellung besitzt, und ermitteln Sie diese Darstellung gegebenenfalls.
- c) Es gelte nun zusätzlich  $\varepsilon_t \sim \text{IIN}(0,1)$ . Weisen Sie nach, dass die Kurtosis  $K(X_t)$  genau dann existiert, wenn  $3\alpha_1^2 + 2\alpha_1\beta_1 + \beta_1^2 < 1$  gilt. Zeigen Sie ferner, dass diese dann gegeben ist durch

$$K(X_t) = 3 + \frac{6\alpha_1^2}{1 - \beta_1^2 - 2\alpha_1\beta_1 - 3\alpha_1^2} > 3.$$

<u>Hinweis:</u> Für  $Y \sim N(0,1)$  gilt  $\mathbb{E}[Y^4] = 3$ .

d) Bestimmen Sie die bedingte Volatilität  $\mathbb{E}[\sigma_{t+h}^2|\mathcal{F}_t]$  für alle  $t\in\mathbb{Z}$  und  $h\in\mathbb{N}$  und weisen Sie nach, dass sie für  $h\to\infty$  mit der unbedingten Volatilität  $\mathbb{E}[\sigma_{t+h}^2]$  übereinstimmt.

#### Aufgabe 4

Betrachtet wird ein schwach stationärer GARCH(3, 2)-Prozess  $(X_t)_{t\in\mathbb{Z}}$  mit

$$X_t = \sigma_t \varepsilon_t$$
 und  $\sigma_t^2 = \alpha_0 + \sum_{j=1}^3 \alpha_j X_{t-j}^2 + \sum_{j=1}^2 \beta_j \sigma_{t-j}^2$ 

sowie

$$\varepsilon_t \sim \mathrm{IID}(0,1)$$
 und  $\mathbb{E}[X_t^4] < \infty$  für  $t \in \mathbb{Z}$ .

Ermitteln Sie die ARMA(3,2)-Darstellung des quadrierten Prozesses  $(X_t^2)_{t\in\mathbb{Z}}$ .

Betrachtet wird ein IGARCH(1,1)-Prozess  $(X_t)_{t\in\mathbb{Z}}$  mit

$$X_t = \sigma_t \varepsilon_t$$
 und  $\sigma_t^2 = \alpha_0 + \alpha_1 X_{t-1}^2 + \beta_1 \sigma_{t-1}^2$ 

sowie

$$\alpha_1 + \beta_1 = 1$$
 und  $\varepsilon_t \sim \text{IID}(0,1)$  für  $t \in \mathbb{Z}$ .

Zeigen Sie, dass

$$\mathbb{E}[\sigma_{t+h}^2 | \mathcal{F}_{t-1}] = h\alpha_0 + \sigma_t^2 \qquad \text{für } h \in \mathbb{N}_0$$

gilt, und interpretieren Sie dieses Ergebnis.

### Aufgabe 6

Betrachtet wird ein schwach stationärer ARCH(1)-Prozess  $(X_t)_{t\in\mathbb{Z}}$  mit

$$X_t = \sigma_t \varepsilon_t$$
 und  $\sigma_t^2 = \alpha_0 + \alpha_1 X_{t-1}^2$ 

sowie  $\alpha_0 \ge 0$  und  $0 < \alpha_1 < 1$ . Ferner sei das weiße Rauschen  $\varepsilon_t \sim \text{IID}(0,1)$  stetig gleichverteilt auf dem Intervall  $[-\sqrt{3},\sqrt{3}]$ .

- a) Es gelte zusätzlich  $\mathbb{E}[X_t^4] < \infty$  für alle  $t \in \mathbb{Z}$ . Berechnen Sie die Schiefe und die Kurtosis der Zufallsvariablen  $X_t$ .
  - <u>Hinweis:</u> Für eine auf dem Intervall  $[-\sqrt{3}, \sqrt{3}]$  stetig gleichverteilte Zufallsvariable Y gilt  $Var(Y) = \mathbb{E}[Y^2] = 1$  und  $\mathbb{E}[Y^4] = \frac{9}{5}$ .
- b) Geben Sie an, für welche Werte von  $\alpha_1$  die Kurtosis der Zufallsvariablen  $X_t$  existiert.
- c) Bestimmen Sie für welche Werte von  $\alpha_1$  der ARCH(1)-Prozess  $(X_t)_{t\in\mathbb{Z}}$  sogar stark stationär ist. Interpretieren Sie ferner das Ergebnis.

<u>Hinweis:</u> Es gilt  $\int \ln(x) dx = x \ln(x) - x$  und  $\lim_{x \to 0} x \ln(x) = 0$ .

### Aufgabe 7

Weisen Sie mittels vollständiger Induktion nach, dass sich bei einem schwach stationären GARCH(1, 1)-Prozess  $(X_t)_{t\in\mathbb{Z}}$  die rekursive Prognoseformel

$$\widehat{\sigma}_{T+1}^2 = \widehat{\alpha}_0 + \widehat{\alpha}_1 X_T^2 + \widehat{\beta}_1 \widehat{\sigma}_T^2 \qquad \text{bzw.} \qquad \widehat{\sigma}_{T+h}^2 = \widehat{\alpha}_0 + (\widehat{\alpha}_1 + \widehat{\beta}_1) \widehat{\sigma}_{T+h-1}^2 \quad \text{für } h > 1$$

in der expliziten Form

$$\widehat{\sigma}_{T+h}^2 = \widehat{\sigma}^2 + (\alpha_1 + \beta_1)^{h-1} (\widehat{\sigma}_{T+1}^2 - \widehat{\sigma}^2) \qquad \text{mit} \qquad \widehat{\sigma}^2 := \frac{\widehat{\alpha}_0}{1 - \widehat{\alpha}_1 - \widehat{\beta}_1} \quad \text{für } h \ge 1$$

darstellen lässt.

# Übung 9: Multivariate Zeitreihenanalyse

### Aufgabe 1

Es sei  $(X_t)_{t\in\mathbb{Z}}$  ein kausaler AR(1)-Prozess mit

$$X_t = \phi X_{t-1} + \varepsilon_t$$

und  $\varepsilon_t \sim \mathrm{WN}(0, \sigma^2)$ . Bestimmen Sie die Kreuzkovarianzfunktion  $\gamma_{X\varepsilon}(h)$  und die Kreuzkorrelationsfunktion  $\rho_{X\varepsilon}(h)$  des schwach stationären bivariaten Prozesses  $(\mathbf{X}_t)_{t\in\mathbb{Z}}$  mit

$$\mathbf{X}_t = \begin{pmatrix} X_t \\ \varepsilon_t \end{pmatrix}.$$

Interpretieren Sie ferner die Kreuzkorrelation  $\rho_{X\varepsilon}(0)$ .

<u>Hinweis:</u> Verwenden Sie  $\gamma_X(0) = \frac{\sigma^2}{1-\phi^2}$  und die MA( $\infty$ )-Darstellung  $X_t = \sum_{j=0}^{\infty} \phi^j \varepsilon_{t-j}$  des AR(1)-Prozesses  $(X_t)_{t \in \mathbb{Z}}$ .

#### Aufgabe 2

Es sei  $(\mathbf{X}_t)_{t\in\mathbb{Z}}$  ein schwach stationärer bivariater Prozess mit

$$\mathbf{X}_t = \begin{pmatrix} X_t \\ Y_t \end{pmatrix}$$
 und  $Y_t = \beta X_t + \varepsilon_t$ 

sowie  $\varepsilon_t \sim \mathrm{WN}(0, \sigma^2)$ . Ferner seien  $(\varepsilon_t)_{t \in \mathbb{Z}}$  und  $(X_t)_{t \in \mathbb{Z}}$  unkorreliert. Ermitteln Sie die Kovarianzfunktion  $\Gamma(h)$  des bivariaten Prozesses  $(\mathbf{X}_t)_{t \in \mathbb{Z}}$ .

### Aufgabe 3

Es sei  $(\mathbf{X}_t)_{t\in\mathbb{Z}}$  ein multivariater stochastischer Prozess mit

$$\mathbf{X}_t = \sum_{j=0}^{\infty} \mathbf{\Phi}^j \mathbf{arepsilon}_{t-j}$$

und  $\varepsilon_t \sim \text{WN}(\mathbf{0}, \mathbf{\Sigma})$ . Ferner sei angenommen, dass die Eigenwerte  $\lambda_1, \dots, \lambda_n$  der  $n \times n$ -Matrix  $\mathbf{\Phi}$  betragsmäßig kleiner als 1 sind.

a) Zeigen Sie, dass es sich bei  $(\mathbf{X}_t)_{t\in\mathbb{Z}}$  um einen wohldefinierten multivariaten linearen Prozess handelt. Unterstellen Sie hierbei, dass die Matrix  $\mathbf{\Phi}$  diagonalisierbar ist. D.h. dass es eine invertierbare Matrix  $\mathbf{X} \in \mathbb{R}^{n \times n}$  gibt, so dass  $\mathbf{\Phi} = \mathbf{X}\mathbf{D}\mathbf{X}^{-1}$  gilt, wobei  $\mathbf{D}$  eine Diagonalmatrix mit den Eigenwerten  $\lambda_1, \ldots, \lambda_n$  von  $\mathbf{\Phi}$  auf der Hauptdiagonalen ist.

<u>Hinweis:</u> Die Aussage ist auch allgemein gültig, d.h. wenn  $\Phi$  nicht diagonalisierbar ist. Im allgemeinen Fall muss jedoch die Jordansche Normalform einer quadratischen Matrix verwendet werden, was den Nachweis der Aussage aufwendiger gestaltet.

b) Weisen Sie nach, dass der Prozess  $(\mathbf{X}_t)_{t\in\mathbb{Z}}$  eine schwach stationäre Lösung der linearen Differenzengleichung

$$\mathbf{X}_t = \mathbf{\Phi} \mathbf{X}_{t-1} + \boldsymbol{\varepsilon}_t \qquad \text{für } t \in \mathbb{Z}$$

ist.

c) Geben Sie die Mittelwertfunktion  $\mu_t$  und die Kovarianzfunktion  $\Gamma(h)$  von  $(\mathbf{X}_t)_{t\in\mathbb{Z}}$  an. Erläutern Sie, wie mit Hilfe dieses Ergebnisses bei bekannter Varianz-Kovarianzmatrix  $\Gamma(0)$  und bekannter Matrix  $\Phi$  die Kovarianzfunktion  $\Gamma(h)$  für  $h \in \mathbb{Z} \setminus \{0\}$  berechnet werden kann. Bestimmen Sie ferner eine Bestimmungsgleichung für die Varianz-Kovarianzmatrix  $\Gamma(0)$  für den Fall, dass die Matrizen  $\Phi$  und  $\Sigma$  bekannt sind.

Betrachtet wird ein kausaler bivariater VAR(2)-Prozess  $(\mathbf{X}_t)_{t\in\mathbb{Z}}$  mit

$$\mathbf{X}_{t} = \mathbf{\Phi}_{1} \mathbf{X}_{t-1} + \mathbf{\Phi}_{2} \mathbf{X}_{t-2} + \boldsymbol{\varepsilon}_{t} \tag{1}$$

und  $\varepsilon_t \sim WN(\mathbf{0}, \Sigma)$ .

- a) Ermitteln Sie die ersten vier Matrizen  $\Psi_0, \Psi_1, \Psi_2$  und  $\Psi_3$  der VMA( $\infty$ )-Darstellung von  $(\mathbf{X}_t)_{t \in \mathbb{Z}}$ .
- b) Bestimmen Sie für  $(\mathbf{X}_t)_{t\in\mathbb{Z}}$  die Yule-Walker-Gleichungen (vgl. hierzu Abschnitt 3.4).
- c) Für die beiden Matrizen  $\boldsymbol{\Phi}_1$  und  $\boldsymbol{\Phi}_2$  in (1) gelte nun

$$\Phi_1 = \begin{pmatrix} 0.8 & -0.5 \\ 0.1 & -0.5 \end{pmatrix}$$
 bzw.  $\Phi_2 = \begin{pmatrix} -0.3 & -0.3 \\ -0.2 & 0.3 \end{pmatrix}$ 

und die Varianz-Kovarianzmatrix des (multivariaten) weißen Rauschens  $(\varepsilon_t)_{t\in\mathbb{Z}}$  sei gegeben durch

$$\Sigma = \begin{pmatrix} 1,0 & 0,4 \\ 0,4 & 2,0 \end{pmatrix}.$$

Überprüfen Sie, ob der bivariate VAR(2)-Prozess bei Wahl dieser Matrizen weiterhin kausal ist bzgl.  $(\varepsilon_t)_{t\in\mathbb{Z}}$ . Falls ja, berechnen Sie die ersten vier Matrizen  $\Psi_0, \Psi_1, \Psi_2$  und  $\Psi_3$  der VMA( $\infty$ )-Darstellung von  $(\mathbf{X}_t)_{t\in\mathbb{Z}}$ .

d) Ermitteln Sie die besten affin-linearen Prädiktoren  $\widehat{\mathbf{X}}^{\text{lin}}_{T+1|T}$  und  $\widehat{\mathbf{X}}^{\text{lin}}_{T+2|T}$ .

#### Aufgabe 5

Betrachtet wird der bivariate VARMA(1,1)-Prozess  $(\mathbf{X}_t)_{t\in\mathbb{Z}}$  mit

$$\mathbf{X}_{t} = \mathbf{\Phi} \mathbf{X}_{t-1} + \boldsymbol{\varepsilon}_{t} + \mathbf{\Theta} \boldsymbol{\varepsilon}_{t-1} \tag{2}$$

und  $\boldsymbol{\varepsilon}_t \sim \mathrm{WN}(\mathbf{0}, \boldsymbol{\Sigma})$ . Für die Matrizen  $\boldsymbol{\Phi}$  und  $\boldsymbol{\Theta}$  gelte ferner

$$\Phi = \begin{pmatrix} 0 & \alpha + \beta \\ 0 & 0 \end{pmatrix}$$
 und  $\Theta = \begin{pmatrix} 0 & -\beta \\ 0 & 0 \end{pmatrix}$ .

- a) Zeigen Sie, dass  $(\mathbf{E} \mathbf{\Phi} \mathbf{L})^{-1} = (\mathbf{E} + \mathbf{\Phi} \mathbf{L})$  gilt.
- b) Weisen Sie mit Hilfe des Ergebnisses aus Aufgabenteil a) nach, dass der VARMA(1,1)-Prozess  $(\mathbf{X}_t)_{t\in\mathbb{Z}}$  eine Darstellung als VMA(1)-Prozess besitzt. Interpretieren Sie das Ergebnis kurz.
- c) Untersuchen Sie, ob der VARMA(1,1)-Prozess  $(\mathbf{X}_t)_{t\in\mathbb{Z}}$  kausal und invertierbar ist.