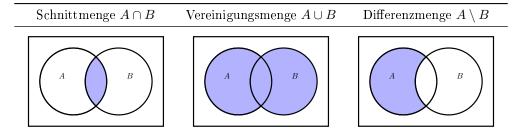


Formelsammlung

Mengenlehre

Für beliebige Mengen A, B gilt:



Abbildungen

 $f:D\to\mathbb{R}$ mit $D\subseteq\mathbb{R}^n$

Konvex
$$(\lambda \in (0,1))$$
 | $f(\lambda x_1 + (1-\lambda)x_2) \le \lambda f(x_1) + (1-\lambda)f(x_2) \ \forall x_1, x_2 \in D \text{ mit } x_1 \ne x_2$
Konkav $(\lambda \in (0,1))$ | $f(\lambda x_1 + (1-\lambda)x_2) \ge \lambda f(x_1) + (1-\lambda)f(x_2) \ \forall x_1, x_2 \in D \text{ mit } x_1 \ne x_2$

Konvexe Menge

 $M \subseteq \mathbb{R}^n$ heißt konvex, wenn aus $\mathbf{a}_1, \mathbf{a}_2 \in M$ und $\lambda \in [0,1] \Rightarrow \lambda \mathbf{a}_1 + (1-\lambda)\mathbf{a}_2 \in M \ \forall \lambda \in [0,1]$ gilt.

Vektoren $(\mathbf{x}, \mathbf{y} \in \mathbb{R}^n)$

Skalarprodukt	Norm	${f Abstand}$	Winkel
$\langle \mathbf{x}, \mathbf{y} \rangle := \sum_{i=1}^{n} x_i y_i$	$ \mathbf{x} := \sqrt{\sum_{i=1}^n x_i^2}$	$ \mathbf{x} - \mathbf{y} := \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$	$\angle(\mathbf{x}, \mathbf{y}) := \arccos\left(\frac{\langle \mathbf{x}, \mathbf{y} \rangle}{ \mathbf{x} \cdot \mathbf{y} }\right)$

Eigenschaften

des euklidischen Skalarprodukts, $\lambda \in \mathbb{R}$	$ \begin{vmatrix} \langle \mathbf{x}, \mathbf{x} \rangle \ge 0 \\ \langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle \\ \langle \mathbf{x}, \lambda \mathbf{y} \rangle = \langle \lambda \mathbf{x}, \mathbf{y} \rangle = \lambda \langle \mathbf{x}, \mathbf{y} \rangle \end{vmatrix} $	$\langle \mathbf{x}, \mathbf{x} \rangle = 0 \Leftrightarrow \mathbf{x} = 0$ $\langle \mathbf{x}, \mathbf{y} + \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$ $\langle \mathbf{x}, \mathbf{y} \rangle^2 \le \langle \mathbf{x}, \mathbf{x} \rangle \cdot \langle \mathbf{y}, \mathbf{y} \rangle$
der euklidischen Norm, $\lambda \in \mathbb{R}$		$\ \mathbf{x}\ = 0 \Leftrightarrow \mathbf{x} = 0$ $\ \mathbf{x} + \mathbf{y}\ \le \ \mathbf{x}\ + \ \mathbf{y}\ $
Orthogonalität $\mathbf{x} \perp \mathbf{y}$	$\langle \mathbf{x}, \mathbf{y} \rangle = 0$	
Orthonormalität	$ \langle \mathbf{x}, \mathbf{y} \rangle = 0 \land \mathbf{x} = \mathbf{y} = 1$	

Lineare Abbildungen

Es sei U eine nichtleere Teilmenge des \mathbb{R}^n .

Linearer Unterraum	
${\bf Vektor addition}$	$\mathbf{x} + \mathbf{y} \in U$ für alle $\mathbf{x}, \mathbf{y} \in U$
skalare Multiplikation	$\lambda \mathbf{x} \in U$ für alle $\mathbf{x} \in U, \lambda \in \mathbb{R}$
Lineare Abbildung $f: U \to V$, $U \subseteq \mathbb{R}^n, V \subseteq \mathbb{R}^m$ lineare Unterräume	
Additivität	$f(\mathbf{x} + \mathbf{y}) = f(\mathbf{x}) + f(\mathbf{y})$ für alle $\mathbf{x}, \mathbf{y} \in U$
Homogenität	$f(\lambda \mathbf{x}) = \lambda f(\mathbf{x})$ für alle $\mathbf{x} \in U, \lambda \in \mathbb{R}$

	einer linearen Abbildung $f:U \to V$	einer $m \times n$ -Matrix A
\mathbf{Kern}	$\operatorname{Kern}(\mathbf{f}) := \{ \mathbf{x} \in U : f(x) = 0 \}$	$\operatorname{Kern}(\mathbf{A}) := \{\mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = 0\}$
Bild	Bild(f):= $\{\mathbf{y} \in V : \text{ es gibt ein } \mathbf{x} \in U \text{ mit } \mathbf{y} = f(x)\}$	$\operatorname{Bild}(\mathbf{A}) := \{ \mathbf{y} \in \mathbb{R}^m : \text{ es gibt ein } \mathbf{x} \in \mathbb{R}^n \text{ mit } \mathbf{y} = \mathbf{A}\mathbf{x} \}$
Rang		$\mathrm{rang}(\mathbf{A}) := \dim(\mathrm{Bild}(\mathbf{A}))$

Zusammenhänge

$$\operatorname{rang}(\mathbf{A}) = \operatorname{rang}(\mathbf{A}^T) \qquad \operatorname{rang}(\mathbf{A}) \leq \min\{m, n\}$$

$$\operatorname{dim}(\operatorname{Kern}(f) + \operatorname{dim}(\operatorname{Bild}(f)) = \operatorname{dim}(U) \qquad \operatorname{dim}(\operatorname{Kern}(\mathbf{A})) + \operatorname{rang}(\mathbf{A}) = n$$

$$\operatorname{Kern}(\mathbf{A}) = \{\mathbf{0}\} \Longleftrightarrow \operatorname{rang}(\mathbf{A}) = n$$

Matrizen

Es sei **A** eine quadratische $n \times n$ -Matrix.

Inverse Matrix	$\mathbf{A}\mathbf{A}^{-1} = \mathbf{E}$
Symmetrische Matrix	$oxed{\mathbf{A} = \mathbf{A}^T}$
Orthogonale Matrix	$\mathbf{A}\mathbf{A}^T = \mathbf{A}^T\mathbf{A} = \mathbf{E}$
Spur	$ \operatorname{spur}(\mathbf{A}) := \sum_{i=1}^{n} a_{ii} $

Eigenschaften

der Spur	$ \begin{vmatrix} \operatorname{spur}(\mathbf{E}_n) = n \\ \operatorname{spur}(\mathbf{A}) = \operatorname{spur}(\mathbf{A}^T) \end{vmatrix} $	$\operatorname{spur}(\lambda \mathbf{A} + \mu \mathbf{B}) = \lambda \operatorname{spur}(\mathbf{A}) + \mu \operatorname{spur}(\mathbf{B}) \operatorname{f\"{u}r} \mathbf{A}, \mathbf{B} \in M(n, n), \lambda, \mu \in \mathbb{R}$ $\operatorname{spur}(\mathbf{A}\mathbf{B}) = \operatorname{spur}(\mathbf{B}\mathbf{A}) \operatorname{f\"{u}r} \mathbf{A} \in M(m, n) \text{ und } \mathbf{B} \in M(n, m)$
inverser Matrizen $(\mathbf{A}^{-1})^{-1} = \mathbf{A}$ $(\mathbf{A}^{T})^{-1} = (\mathbf{A}^{-1})^{T}$ $(\mathbf{A}\mathbf{B})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$ $(r\mathbf{A})^{-1} = \frac{1}{r}\mathbf{A}^{-1}$		

Berechnungsformeln für invertierbare Matrizen

$$2 \times 2\text{-Matrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \quad \mathbf{A}^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

$$\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})} \begin{pmatrix} \mathbf{A}_{11}^* & \mathbf{A}_{21}^* & \cdots & \mathbf{A}_{n1}^* \\ \mathbf{A}_{12}^* & \mathbf{A}_{22}^* & \cdots & \mathbf{A}_{n2}^* \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{A}_{1n}^* & \mathbf{A}_{2n}^* & \cdots & \mathbf{A}_{nn}^* \end{pmatrix},$$
 wobei
$$\mathbf{A}_{ij}^* := (-1)^{i+j} \det(\mathbf{A}_{ij}) \text{ die Kofaktoren der Matrix } \mathbf{A} \text{ sind.}$$

Determinanten

Es seien **A**, **B** quadratische $n \times n$ -Matrizen.

Eigenschaften von Determinanten

$\det(\mathbf{AB}) = \det(\mathbf{A})\det(\mathbf{B})$	A invertierbar $\Rightarrow \det(\mathbf{A}^{-1}) = \frac{1}{\det(\mathbf{A})}$
$\det(r\mathbf{A}) = r^n \det(\mathbf{A})$	$\mathbf{A} \text{ orthogonal } \Rightarrow \det(\mathbf{A}) = 1$
$\det(\mathbf{A}) = \det(\mathbf{A}^T)$	

Be rechnungs formeln

ngsrormen
$$n \times n \text{-Matrix} \qquad \det(\mathbf{A}) := \begin{cases} a_{11} & \text{für } n = 1 \\ \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det(\mathbf{A}_{1j}) & \text{für } n > 1 \end{cases}$$

$$2 \times 2 \text{-Matrix} \qquad \det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11} a_{22} - a_{12} a_{21}$$

$$\det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = a_{11} a_{22} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{13} a_{22} a_{31} - a_{11} a_{23} a_{32} - a_{12} a_{21} a_{33}$$

$$\det(\mathbf{A}) = \prod_{i=1}^{n} a_{ii}$$

$$\det(\mathbf{A}) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det(\mathbf{A}_{ij}) \quad \text{Entwicklung nach Zeile } i$$

$$\det(\mathbf{A}) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det(\mathbf{A}_{ij}) \quad \text{Entwicklung nach Spalte } j$$

Lineare Gleichungssysteme

Für die Lösungsmenge $\mathbb{L} = \{x \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = \mathbf{b}\}\ \text{von } \mathbf{A}\mathbf{x} = \mathbf{b}\ \text{der Ordnung } m \times n \text{ gilt:}$

keine Lösung	genau eine Lösung	unendlich viele Lösungen
$rang(\mathbf{A}) < rang(\mathbf{A}, \mathbf{b})$	$rang(\mathbf{A}) = rang(\mathbf{A}, \mathbf{b})$ und $rang(\mathbf{A}) = n$	$rang(\mathbf{A}) = rang(\mathbf{A}, \mathbf{b})$ und $rang(\mathbf{A}) < n$

Cramersche Regel

Es sei **A** eine invertierbare $n \times n$ -Matrix.

Mit
$$A_{(j)} := \begin{pmatrix} a_{11} & \cdots & b_1 & \cdots & a_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & b_n & \cdots & a_{nn} \end{pmatrix}$$
 ist die eindeutige Lösung $\mathbf{x} = (x_1, \dots, x_n)^T$ von $\mathbf{A}\mathbf{x} = \mathbf{b}$ gegeben durch:
$$x_j = \frac{\det(\mathbf{A}_{(j)})}{\det(\mathbf{A})} \text{ für } j = 1, \dots, n$$

Eigenwerttheorie

Für eine $n \times n$ -Matrix **A** heißt eine Zahlt $\lambda \in \mathbb{R}$, für die das lineare Gleichungssystem

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$$

eine Lösung $\mathbf{x} \in \mathbb{R}^n \setminus \{0\}$ besitzt, reeller Eigenwert von \mathbf{A} und der Vektor \mathbf{x} wird als reeller Eigenvektor von \mathbf{A} zum Eigenwert λ bezeichnet.

Eigenschaften

$$\lambda \text{ ist Eigenwert von } \mathbf{A} \Longleftrightarrow \det(\mathbf{A} - \lambda \mathbf{E}) = \det \begin{pmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{pmatrix} = 0$$

 $\lambda_1, \ldots, \lambda_n$ seien Eigenwerte von **A**, dann gilt:

$$\lambda_1^m, \ldots, \lambda_n^m$$
 sind Eigenwerte von \mathbf{A}^m

A invertierbar
$$\Leftrightarrow \lambda_i \neq 0$$
 für alle $i = 1, \ldots, n$

A invertierbar
$$\Rightarrow \frac{1}{\lambda_1}, \dots, \frac{1}{\lambda_n}$$
 Eigenwerte von \mathbf{A}^{-1}

$$\mathbf{A}$$
 und \mathbf{A}^T besitzen die gleichen Eigenwerte

A orthogonal
$$\Rightarrow |\lambda_i| = 1$$
 für alle $i = 1, \dots, n$

Folgen und Reihen

Definitionen

Bezeichnung	Definition	
Folge $(a_n)_{n\in\mathbb{N}_0}$	$a: D \longrightarrow \mathbb{R}, n \mapsto a_n := a(n) \text{ mit } D \subseteq \mathbb{N}_0$	
n -te Partialsumme von $(a_n)_{n\in\mathbb{N}_0}$	$s_n = \sum_{k=0}^n a_k$	
Reihe	$(s_n)_{n\in\mathbb{N}_0}$	

Wichtige Folgen & Reihen

Bezeichnung	Explizite Folgendarstellung	Partialsumme
Arithmetische Folge mit $a_{n+1} - a_n = d \forall n \in \mathbb{N}_0$	$a_{n+1} = a_0 + (n+1)d$	$s_n = \sum_{k=0}^{n} (a_0 + kd) = (n+1)\left(a_0 + \frac{nd}{2}\right)$
Geometrische Folge mit $\frac{a_{n+1}}{a_n} = q \forall n \in \mathbb{N}_0 \; ; q \in \mathbb{R} \setminus \{0\}$	$a_{n+1} = q^{n+1}a_0$	$s_n = a_0 \sum_{k=0}^n q^k = \begin{cases} a_0 \frac{1 - q^{n+1}}{1 - q} & q \neq 1\\ a_0(n+1) & q = 1 \end{cases}$

Eigenschaften einer Folge a_n mit $a, c \in \mathbb{R}$

Beschränkt	$ a_n \le c$	$\forall n \in \mathbb{N}_0$
Nach unten beschränkt	$a_n \ge c$	$\forall n \in \mathbb{N}_0$
Nach oben beschränkt	$a_n \le c$	$\forall n \in \mathbb{N}_0$
Monoton wachsend	$a_n \le a_{n+1}$	$\forall n \in \mathbb{N}_0$
Monoton fallend	$a_n \ge a_{n+1}$	$\forall n \in \mathbb{N}_0$
Konvergent mit Grenzwert a	$\forall \varepsilon > 0 \exists n_0 \in \mathbb{N}_0 :$	$ a_n - a < \varepsilon \qquad \forall n \ge n_0$

Rechenregeln für konvergente Folgen mit $\lim_{n \to \infty} a_n = a, \lim_{n \to \infty} b_n = b$ und $c \in \mathbb{R}$

•
$$\lim_{n \to \infty} (a_n \pm b_n) = \lim_{n \to \infty} a_n \pm \lim_{n \to \infty} b_n = a \pm b$$

•
$$\lim_{n \to \infty} a_n^c = \left(\lim_{n \to \infty} a_n\right)^c = a^c$$
, falls $a_n > 0, a > 0$
• $\lim_{n \to \infty} ca_n = c \lim_{n \to \infty} a_n = ca$

•
$$\lim_{n \to \infty} c^{a_n} = c^{\left(\lim_{n \to \infty} a_n\right)} = c^a$$
, falls $c > 0$

•
$$\lim_{n \to \infty} (a_n b_n) = \lim_{n \to \infty} a_n \lim_{n \to \infty} b_n = ab$$

•
$$\lim_{n \to \infty} ca_n = c \lim_{n \to \infty} a_n = ca$$

•
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} = \frac{a}{b}$$
, falls $b_n \neq 0, b \neq 0$

Differenzierbarkeit im \mathbb{R}^n

Häufungspunkt und Grenzwert

Bezeichnung	Definition
Häufungspunkt $\mathbf{x}_0 \in \mathbb{R}^n$	$\mathbf{x}_0 \in \mathbb{R}^n$ heißt Häufungspunkt der Menge $D \subseteq \mathbb{R}^n$, wenn zu jedem $\varepsilon > 0$ unendlich viele $\mathbf{x} \in D$ mit $ \mathbf{x} - \mathbf{x}_0 < \varepsilon$ existieren.
Isolierter Punkt $\mathbf{x}_0 \in \mathbb{R}^n$	Ist \mathbf{x}_0 kein Häufungspunkt der Menge, aber gilt $\mathbf{x}_0 \in D$, dann wird \mathbf{x}_0 als isolierter Punkt bezeichnet.
Grenzwert $c \in \mathbb{R}$	Ist \mathbf{x}_0 ein Häufungspunkt, dann sagt man, dass die Funktion f für $\mathbf{x} \to \mathbf{x}_0$ gegen den Grenzwert $c \in \mathbb{R}$ konvergiert, wenn für jede Folge $(\mathbf{x}_k)_{k \in \mathbb{N}} \subseteq D$ mit $\mathbf{x}_k \neq x_0$ für alle $k \in \mathbb{N}$ und $\lim_{k \to \infty} \mathbf{x}_k = \mathbf{x}_0$ stets $\lim_{k \to \infty} f(\mathbf{x}_k) = c$ gilt.

Kurvendiskussion in \mathbb{R}

Sei $f: D \subseteq \mathbb{R} \to \mathbb{R}$ eine reellwertige, geeignet oft differenzierbare Funktion, d.h. der Grenzwert $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$ (**Differentialquotient**) existiert, sowie $\varepsilon > 0$. Dann gilt:

Bezeichnung	Definition	Bedingungen
Supremum c von f	c ist die kleinste obere Schranke von f	
Infimum c von f	c ist die größte untere Schranke von f	
globale Minimalstelle x_0	$x_0 \in D \text{ mit } f(x_0) \le f(x) \forall x \in D$	$f'(x_0) = 0 \ \land \ f''(x) > 0$
globale Maximalstelle x_0	$x_0 \in D \text{ mit } f(x_0) \ge f(x) \forall x \in D$	$f'(x_0) = 0 \ \land \ f''(x) < 0$
lokale Minimalstelle x_0	$x_0 \in D \text{ mit } f(x_0) \le f(x)$ $\forall x \in D \cap \{x \in \mathbb{R}^n : x - x_0 < \varepsilon\}$	$f'(x_0) = 0 \ \land \ f''(x_0) > 0$
lokale Maximalstelle x_0	$x_0 \in D \text{ mit } f(x_0) \ge f(x)$ $\forall x \in D \cap \{x \in \mathbb{R}^n : x - x_0 < \varepsilon\}$	$f'(x_0) = 0 \ \land \ f''(x_0) < 0$
Wendestelle x_0 konvex / konkav	$\exists \varepsilon > 0 \text{ mit } f \in [x_0 - \varepsilon, x_0] \text{ streng konvex}$ und $f \in [x_0, x_0 - \varepsilon] \text{ streng konkav}$	$f''(x_0) = 0 \ \land \ f'''(x_0) < 0$
Wendestelle x_0 konkav / konvex	$\exists \varepsilon > 0 \text{ mit } f \in [x_0 - \varepsilon, x_0] \text{ streng konkav}$ und $f \in [x_0, x_0 - \varepsilon] \text{ streng konvex}$	$f''(x_0) = 0 \land f'''(x_0) > 0$
Sattelstelle x_0		$f'(x_0) = 0 \land f''(x_0) = 0$ $\land f'''(x_0) \neq 0$

Eigenschaften reeller Funktionen

Seien $f:D_f\subseteq\mathbb{R}^n\to\mathbb{R}$ und $g:D_g\subseteq\mathbb{R}^n\to\mathbb{R}$ zwei reelle Funktionen und $\alpha\in\mathbb{R}$, dann gilt:

Bedingung	Eigenschaft
falls f stetig bzw. differenzierbar an der Stelle $\mathbf{x_0}$	$f+g,f-g,fg$ und αf stetig bzw. differenzierbar an der Stelle $\mathbf{x_0}$
falls zusätzlich $g(\mathbf{x_0}) \neq 0$	$\frac{f}{g}$ stetig bzw. differenzierbar an der Stelle $\mathbf{x_0}$
falls zusätzlich $g(D_g)\subseteq D_f$ und g an der Stelle $\mathbf{x_0}\in D_g$ und f an der Stelle $\mathbf{y_0}=g(\mathbf{x_0})$ stetig bzw. differenzierbar	$f\circ g:D_g\subseteq\mathbb{R}^n\to\mathbb{R}$ an der Stelle $\mathbf{x_0}$ stetig bzw. differenzierbar
falls f streng monoton auf D_f	$f^{-1}: f(D_f) \to \mathbb{R}$ stetig

Rechenregeln für differenzierbare Funktionen

Seien $f:D\subseteq\mathbb{R}^n\to\mathbb{R}$ und $g:D\subseteq\mathbb{R}^n\to\mathbb{R}$ zwei reelle Funktionen, die an der Stelle $\mathbf{x_0}$ differenzierbar sind, und $\alpha\in\mathbb{R}$.

•
$$(f+g)'(\mathbf{x_0}) = f'(\mathbf{x_0}) + g'(\mathbf{x_0})$$

•
$$(\alpha f)'(\mathbf{x_0}) = \alpha f'(\mathbf{x_0})$$

•
$$(f-g)'(\mathbf{x_0}) = f'(\mathbf{x_0}) - g'(\mathbf{x_0})$$

$$\bullet \ \left(\frac{f}{g}\right)'(\mathbf{x_0}) = \frac{f'(\mathbf{x_0})g(\mathbf{x_0}) - f(\mathbf{x_0})g'(\mathbf{x_0})}{g^2(\mathbf{x_0})}$$

$$\bullet \ (fg)'(\mathbf{x_0}) = f'(\mathbf{x_0})g(\mathbf{x_0}) + f(\mathbf{x_0})g'(\mathbf{x_0})$$

•
$$(f \circ g)'(\mathbf{x_0}) = f'(g(\mathbf{x_0}))g'(\mathbf{x_0})$$

Regeln von L'Hôspital

Die reellen Funktionen $f, g:(a,b)\to\mathbb{R}$ seien differenzierbar mit $g'(x)\neq 0 \ \forall x\in(a,b)$ und der Grenzwert $\lim_{x\uparrow b}\frac{f'(x)}{g'(x)}$ existiere im eigentlichen oder uneigentlichen Sinne. Dann gilt:

Bedingung	$\lim_{x \uparrow b} f(x) = \lim_{x \uparrow b} g(x) = 0$	Bedingung	$\lim_{x \uparrow b} f(x) = \pm \infty \lim_{x \uparrow b} g(x) = \pm \infty$
Erste Regel	$\lim_{x \uparrow b} \frac{f(x)}{g(x)} = \lim_{x \uparrow b} \frac{f'(x)}{g'(x)}$	Zweite Regel	$\lim_{x \uparrow b} \frac{f(x)}{g(x)} = \lim_{x \uparrow b} \frac{f'(x)}{g'(x)}$

Partielle Differentiation

Es sei $f:D\subseteq\mathbb{R}^n\to\mathbb{R}$ eine reellwertige Funktion auf einer offenen Menge D, die geeignet oft partiell differenzierbar ist.

Bezeichnung	Definition
Partielle Differentiation	f heißt an der Stelle \mathbf{x} bzgl. der i -ten Variablen x_i partiell differenzierbar, wenn der Grenzwert $\lim_{\Delta x \to 0} \frac{f(\mathbf{x} + \Delta x \cdot \mathbf{e}_i) - f(\mathbf{x})}{\Delta x} =: \frac{\partial f(\mathbf{x})}{\partial x_i}$ existiert.
Gradient an der Stelle ${f x}$	$f(\mathbf{x}) = \left(\frac{\partial f(\mathbf{x})}{\partial x_1}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_n}\right)^T$
Stationäre Stelle $\mathbf{x_0}$	$f(\mathbf{x_0}) = 0$
Hesse-Matrix an der Stelle ${f x}$	$\mathbf{H}_{f}(\mathbf{x}) = \begin{pmatrix} \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1}^{2}} & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f(\mathbf{x})}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f(\mathbf{x})}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{n}^{2}} \end{pmatrix}$
Tangentialhyperebene	$t(\mathbf{x}) = f(\mathbf{x_0}) + f(\mathbf{x_0})^T(\mathbf{x} - \mathbf{x_0})$

Optimierung

Es sei $f:D\subseteq\mathbb{R}^n\to\mathbb{R}$ eine partiell differenzierbare Funktion, $g_1,\ldots,g_k:D\subseteq\mathbb{R}^n\to\mathbb{R}$ stetig partiell differenzierbare Funktionen und λ der Lagrange-Multiplikator.

Optimierung ohne Nebenbedingung	$f(\mathbf{x_0}) = 0 \land \mathbf{H_f}(\mathbf{x_0}) / \mathbf{H_f}(\mathbf{x}) \text{ negativ definit}$ $\Rightarrow \text{lokales / globales Maximum bei } \mathbf{x_0}$ $f(\mathbf{x_0}) = 0 \land \mathbf{H_f}(\mathbf{x_0}) / \mathbf{H_f}(\mathbf{x}) \text{ positiv definit}$ $\Rightarrow \text{lokales / globales Minimum bei } \mathbf{x_0}$	
Lagrange Funktion	$L(\lambda_1,\ldots,\lambda_k,\mathbf{x}) := f(\mathbf{x}) + \sum_{p=1}^k \lambda_p g_p(\mathbf{x})$	
Jacobi-Matrix	$\mathbf{J}_{g}(\mathbf{x_{0}}) = \begin{pmatrix} \frac{\partial g_{1}(\mathbf{x_{0}})}{\partial x_{1}} & \cdots & \frac{\partial g_{1}(\mathbf{x_{0}})}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_{k}(\mathbf{x_{0}})}{\partial x_{1}} & \cdots & \frac{\partial g_{k}(\mathbf{x_{0}})}{\partial x_{n}} \end{pmatrix}$	

Integration

Es sei die Riemann-integriebare Funktion $f:[a;b]\to\mathbb{R}$ gegeben. Dann gilt:

Bezeichnung	Definition
Stammfunktion $F:[a;b] \to \mathbb{R}$	$F'(x) = f(x) \qquad \forall x \in [a; b]$
Bestimmtes Riemann-Integral	$\int_{a}^{b} f(x) \mathrm{d}x = F(b) - F(a)$
Unbestimmtes Riemann-Integral	$\int f(x) dx = F(x) + C \text{mit } C \in \mathbb{R}$
Uneigentliches Riemann-Integral 1. Art mit $f:[a;\infty) \to \mathbb{R}$	$\int_{a}^{\infty} f(x) dx := \lim_{b \to \infty} \int_{a}^{b} f(x) dx$
Uneigentliches Riemann-Integral 2. Art mit $f:[a;b)\to\mathbb{R}$ mit $ f(x) \to\infty$ für $x\uparrow b$	$\int_{a}^{b} f(x) dx := \lim_{t \uparrow b} \int_{a}^{t} f(x) dx$

Rechenregeln für Integrale mit $\alpha, \beta \in \mathbb{R}, a \leq c \leq b$

$$\int_{a}^{b} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx \quad \left| \int_{a}^{b} \alpha f(x) dx = \int_{a}^{c} \alpha f(x) dx + \int_{c}^{b} \alpha f(x) dx \right|$$

$$\int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx \quad \left| \int f(g(t))g'(t) = \int f(x) dx \right| \text{ mit } x = g(t)$$

Ableitungen und Stammfunktionen elementarer Funktionen

f(x) = F'(x)	$F(x) + C = \int f(x) \mathrm{d}x$	Bemerkungen
\overline{a}	ax + C	
x^c	$\frac{1}{c+1}x^{c+1} + C$	\mathbb{R} für $c \in \mathbb{N}_0$
	C I	$\mathbb{R}\setminus\{0\}$ für $c\in\{-2,-3,\ldots\}$
		\mathbb{R}_+ für $c > 0$
		$\mathbb{R}_+ \setminus \{0\} \text{ für } c < 0 \text{ mit } c \neq -1$
$\frac{1}{x}$	$\ln x + C$	$x \neq 0$
e^x	$e^x + C$	
e^{rx}	$\frac{1}{r}e^{rx} + C$	$r \neq 0$
a^x	$\frac{1}{\ln(a)}a^x + C$	$a > 0, a \neq 1$
$x^x(1+\ln(x))$	$x^x + C$	x > 0
ln(x)	$x(\ln(x) - 1) + C$	x > 0
$\log_a(x)$	$\frac{x}{\ln(a)}(\ln(x) - 1) + C$	a > 0, x > 0
$\sin(x)$	$-\cos(x) + C$	
$\cos(x)$	$\sin(x) + C$	
tan(x)	$-\ln \cos(x) + C$	$x \neq (2k+1)\frac{\pi}{2}, k \in \mathbb{Z}$
$\cot(x)$	$\ln \sin(x) + C$	$x \neq k\pi, k \in \mathbb{Z}$
$\frac{1}{\sin^2(x)}$	$-\cot(x) + C$	$x \neq k\pi, k \in \mathbb{Z}$
$\frac{1}{\cos^2(x)}$	$\tan(x) + C$	$x \neq (2k+1)\frac{\pi}{2}, k \in \mathbb{Z}$
$\frac{1}{\sqrt{1-x^2}}$	$\arcsin(x) + C$	x < 1
$\frac{1}{1+x^2}$	$\arctan(x) + C$	