

Übung 1: Entscheidung unter Risiko

Aufgabe 1 (Sankt-Petersburg-Paradoxon)

Die Zufallsvariable N gibt die Anzahl der benötigten Versuche an, bis beim Werfen einer fairen Münze zum ersten Mal "Kopf" auftritt.

- a) Ermitteln Sie die Wahrscheinlichkeitsfunktion f_N von N.
- b) Berechnen Sie $\mathbb{E}[N]$ und Var(N).
- c) Bestimmen Sie den Erwartungsnutzen von $X = 2^N$, wenn die Nutzenfunktion $u(x) = \ln(x)$ zugrunde gelegt wird.

Aufgabe 2

Einem Entscheidungsträger mit der Nutzenfunktion

$$u(x) = -\frac{x^2}{100,000} + 2x$$

werden zwei Alternativen angeboten. Bei der ersten Alternative a_1 beträgt der Gewinn $20.000 \in$ oder $40.000 \in$ jeweils mit einer Wahrscheinlichkeit von 50%. Bei der zweiten Alternative a_2 kommt jeweils mit einer Wahrscheinlichkeit von 50% ein Gewinn von $x \in$ oder $0 \in$ zur Auszahlung. Wie hoch muss bei der zweiten Alternative der Gewinn x sein, damit der Entscheidungsträger zwischen den beiden Alternativen indifferent ist?

Aufgabe 3

Betrachtet wird ein Entscheidungsträger, der das Anfangskapital K>0 investieren möchte und die Nutzenfunktion

$$u(x) = \sqrt{x}$$
 für $x > 0$

besitzt. Zur Auswahl stehen ihm zwei verschiedene Anlagealternativen a_1 und a_2 , welche am Ende des Anlagezeitraums zum Endkapital KX_1 bzw. KX_2 führen, wobei X_1 und X_2 zwei mit den Parametern μ_1 und σ_1 bzw. μ_2 und σ_2 lognormal-verteilte Zufallsvariablen sind, d. h. X_1 und X_2 besitzen die Dichte

$$f_{X_i}(x) = \begin{cases} \frac{1}{\sqrt{2\pi}\sigma_i x} e^{-\frac{\left(\ln(x) - \mu_i\right)^2}{2\sigma_i^2}} & \text{für } x > 0\\ 0 & \text{sonst} \end{cases}$$

für i = 1, 2.

- a) Weisen Sie nach, dass die Entscheidung zwischen den Anlagealternativen a_1 und a_2 von der Höhe des Anfangskapitals K > 0 unabhängig ist.
- b) Es gelte $\mu_1=0.09$, $\sigma_1=0.02$ und $\mu_2=0.08$. Für welche Werte von σ_2 wird der Entscheidungsträger die Anlagealternative a_2 wählen?

Hinweis: Es gilt

$$\mathbb{E}[X_i^{1/2}] = \exp\left(\frac{1}{2}\mu_i + \frac{1}{8}\sigma_i^2\right).$$

c) Es sei nun angenommen, für die beiden Anlagealternativen a_1 und a_2 gilt

$$\mathbb{E}[KX_1] = \mathbb{E}[KX_2]$$
 und $Var(KX_1) < Var(KX_2)$.

Zeigen Sie, dass der Entscheidungsträger die Anlagealternative a_1 wählt, und interpretieren Sie dieses Ergebnis.

Hinweis: Es gilt

$$\mathbb{E}[X_i] = \exp\left(\mu_i + \frac{1}{2}\sigma_i^2\right) \quad \text{und} \quad \operatorname{Var}(X_i) = \mathbb{E}[X_i]^2 \left(e^{\sigma_i^2} - 1\right).$$

Aufgabe 4

Es sei

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$

der beobachtete Schadendurchschnitt in einem Portfolio bestehend aus Privathaftpflichtversicherungsverträgen. Die Einzelschadenhöhen Y_1, \ldots, Y_n seien unabhängig und identisch-verteilt mit $\mathbb{E}[Y_i] = \mu$, $\operatorname{Var}(Y_i) = \sigma^2$ und dem Variationskoeffizienten

$$Vko(Y_i) := \frac{\sigma}{\mu} = 4.$$

Wie groß muss die Schadenanzahl n sein, damit mit einer Wahrscheinlichkeit von 95% der beobachtete Schadendurchschnitt \overline{Y} um weniger als $\delta = 10\%, 5\%, 3\%, 1\%$ von μ abweicht. Benutzen Sie zur (approximativen) Bestimmung von n den zentralen Grenzwertsatz.

Aufgabe 5

Zwei Entscheidungsträgern E_1 und E_2 wird ein Spiel X angeboten, das mit einer Wahrscheinlichkeit von 64% eine Auszahlung von $10 \in \mathbb{C}$ und im anderen Fall keine Auszahlung liefert. Die beiden Entscheidungsträger E_1 und E_2 besitzen die Nutzenfunktionen

$$u_1(x) = 2x^2 + 5$$
 bzw. $u_2(x) = 4x^2 + 12$ für $x \ge 0$.

- a) Bestimmen Sie die Sicherheitsäquivalente $s_1(X)$ und $s_2(X)$ dieses Spiels für die Entscheidungsträger E_1 und E_2 .
- b) Erläutern Sie das Verhältnis der beiden Sicherheitsäquivalente $s_1(X)$ und $s_2(X)$.

Aufgabe 6

Ein Versicherer mit dem Vermögen $v_0 = 100$ (in Mio. \in) und der Nutzenfunktion

$$u(x) = \ln(x)$$
 für $x > 0$

hat ein Risiko X mit der Wahrscheinlichkeitsfunktion

$$f_X(x) = \begin{cases} \frac{1}{2} & \text{für } x = 0\\ \frac{1}{2} & \text{für } x = 51\\ 0 & \text{sonst} \end{cases}$$

versichert.

- a) Welchen Betrag π_1 ist der Versicherer maximal bereit zu zahlen, damit ein Rückversicherer das Risiko zu 100% übernimmt?
- b) Wie hoch muss die Prämie π_2 mindestens sein, damit ein Rückversicherer mit dem Vermögen $v_0 = 650$ (in Mio. $\ensuremath{\in}$) und derselben Nutzenfunktion $u = \ln(x)$ das Risiko zu 100% übernimmt?