

Übung 2: Entscheidung unter Risiko & Risikomaße

Aufgabe 1

Betrachtet wird ein rationaler und risikoaverser Versicherungsnachfrager, der sich gegen ein Risiko versichern möchte, dessen Schadenhöhe L exponentialverteilt ist mit Parameter $\lambda = 0.01$, d. h. es gilt

$$f_L(l) = 0.01e^{-0.01 \cdot l}$$
.

Der Versicherer berechnet seine Prämien gemäß dem proportionalen Prämienprinzip $P=(1+\beta)\mathbb{E}[I(L)]$ mit dem Gewinn- und Kostenzuschlag $\beta=20\%$. Ermitteln Sie den für den Versicherungsnachfrager optimalen Versicherungsschutz, wenn die Prämie P=12 \oplus betragen soll.

Aufgabe 2

Betrachtet wird ein Versicherungsnehmer mit der Nutzenfunktion

$$u(x) = k \ln(x)$$
 für $x > 0$ und $k > 0$

und dem Anfangsvermögen $v_0 > 1$, der dem Risiko gegenübersteht, einen auf dem Intervall [0,1] gleichverteilten Versicherungsschaden X zu erleiden, d.h. es gilt

$$f_X(x) = \begin{cases} 1 & \text{für } x \in [0, 1] \\ 0 & \text{sonst} \end{cases}.$$

Ermitteln Sie die Prämienhöhe π , welche der Versicherungsnehmer maximal für Versicherungsschutz zu bezahlen bereit ist.

Hinweis: Verwenden Sie partielle Integration.

Aufgabe 3

Ermitteln Sie für das Risiko X mit der Wahrscheinlichkeitsfunktion

$$\mathbb{P}(X=c) = \begin{cases} 0.80 & \text{für } c = 0 \\ 0.12 & \text{für } c = 50 \\ 0.04 & \text{für } c = 80 \\ 0.02 & \text{für } c = 90 \\ 0.02 & \text{für } c = 100 \end{cases}$$

anhand einer Skizze für die Verteilungsfunktion $F_X(x)$ den Value-at-Risk zu den Sicherheitsniveaus q = 0.95; 0.96; 0.98 und 0.99.

Aufgabe 4

Es sei $c \in (0,1)$ und X ein Risiko mit der Verteilungsfunktion

$$F_X(x) = \begin{cases} 0 & \text{für } x < 0 \\ cx & \text{für } x \in [0, 1) \\ 1 & \text{für } x \ge 1 \end{cases}$$

- a) Bestimmen Sie den Value-at-Risk $\operatorname{VaR}_q(X)$ zum Sicherheitsniveau $q \in (0,1)$.
- b) Bestimmen Sie den Expected-Shortfall $\mathrm{ES}_q(X)$ zum Sicherheitsniveau $q \in (0,c)$.

Aufgabe 5

Es sei X ein exponentialverteiltes Risiko mit dem Parameter $\lambda > 0$, d. h. X besitzt die Dichtefunktion

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{für } x > 0\\ 0 & \text{sonst} \end{cases}.$$

Berechnen Sie

- a) analytisch den Value-at-Risk und den Expected-Shortfall von X zum Sicherheitsniveau $q \in (0,1)$ sowie
- b) mittels Excel (oder eines alternativen Tabellenkalkulationsprogramms) die Werte des Value-at-Risks und des Expected-Shortfalls für die Parameterwerte $\lambda=\frac{1}{10},\frac{1}{2},1,2,5$ und Sicherheitsniveaus q=0,95;0,99;0,995. Was ist zu beobachten?

<u>Hinweis:</u> Es gilt

$$\int \ln(1-u) \, du = -(1-u) \ln(1-u) + (1-u) + C \quad \text{mit } C \in \mathbb{R}.$$

Aufgabe 6

Das Risiko X sein $\mathrm{LN}(\mu, \sigma^2)$ -verteilt, d. h. X besitzt die Dichtefunktion

$$f_X(x) = \begin{cases} \frac{1}{\sqrt{2\pi}\sigma x} e^{-\frac{(\ln(x) - \mu)^2}{2\sigma^2}} & \text{für } x > 0\\ 0 & \text{sonst} \end{cases}.$$

Berechnen Sie den Value-at-Risk und den Expected-Shortfall von X zum Sicherheitsniveau $q \in (0,1)$.