Quantitatives Risikomanagement 1 WS 2025

Univ.-Prof. Dr. Michael Merz Universität Hamburg

Kapitel 5
Kollektives Modell

Abschnitt 5.1 Einleitung

5.1 Einleitung

In Abschnitt 4.1 wurde erläutert, dass es sich bei Gesamtschadenmodelle um stochastische Modelle für den Gesamtschaden eines Portfolios/Kollektivs von Einzelrisiken in einem festen Zeitintervall handelt, bei denen die Gesamtschadenhöhe (oder der Gesamtverlust) des betrachteten Portfolios/Kollektivs durch eine zufällige Summe von Zufallsvariablen der Form

$$S = Y_1 + Y_2 + \ldots + Y_N = \sum_{i=1}^{N} Y_i$$
 (1)

gegeben ist. Dabei ist N eine diskrete Zufallsvariable, welche die Schadenanzahl beschreibt und Y_1, \ldots, Y_N sind i.d.R. absolutstetige Zufallsvariablen, welche die Einzelschadenhöhen darstellen.

Da sich die Verteilung von S aus den Verteilungen von N und Y_i ergibt, wird. die Verteilung von S als zusammengesetzte Gesamtschadenverteilung (compound aggregate loss distribution) bezeichnet.

©2025 M. Merz

5.1 Einleitung

Nachdem im letzten Kapitel die bedeutendsten Schadenanzahl- und Schadenhöhenverteilungen und ihre wichtigsten Eigenschaften vorgestellt wurden, beschäftigt sich dieses Kapitel damit, wie darauf aufbauend die zusammengesetzte Gesamtschadenverteilung von S ermittelt werden kann und welche Eigenschaften diese Verteilung besitzt.

Der folgenden Betrachtung wird stets das kollektive Modell der Risikotheorie zugrundgelegt. Es ist mit Abstand das bedeutendste Gesamtschadenmodell, da die darin getroffenen Annahmen an die Schadenanzahlverteilung von N und an die Einzelschadenhöhenverteilung von Y_i eine relative einfache numerische Berechnung der zusammengesetzten Gesamtschadenverteilung von S erlauben sowie eine analytische Untersuchung der wichtigsten Eigenschaften dieser Verteilung ermöglichen. Wie sich zeigen wird, kann unter zusätzlichen Annahmen an die Verteilungen von N und Y_i die zusammengesetzte Gesamtschadenverteilung von S sogar analytisch berechnet werden.

Das kollektive Modell kommt daher in vielen Bereichen zum Einsatz, wie z.B. bei der Quantifizierung von versicherungstechnischen Risiken, operationellen Risiken und Kreditrisiken sowie in der Risikoteilung.

Abschnitt 5.2 Modellannahmen und Faltungsformeln

5.2 Modellannahmen und Faltungsformeln

Die kollektive Risikotheorie wurde 1903 durch die Dissertation

"Approximations

of the Probability Function/Reinsurance of Collective Risks"

des schwedischen Aktuars FILIP LUNDBERG (1876–1965) begründet.

Definition (Kollektives Modell der Risikotheorie)

Der Gesamtschaden S für ein Kollektiv aus Einzelrisiken sei gegeben durch

$$S = Y_1 + Y_2 + \ldots + Y_N = \sum_{i=1}^{N} Y_i.$$

Dabei gelte weiter:

- a) Die Schadenzahl N ist eine diskrete \mathcal{N} -wertige Zufallsvariable mit $\mathcal{N} \subseteq \mathbb{N}_0$.
- b) Die Einzelschadenhöhen $Y_1, Y_2,...$ sind stochastisch unabhängige und identisch-verteilte Zufallsvariablen mit $F_Y(0) = 0$.
- c) N und Y_1, Y_2, \dots sind stochastisch unabhängig.

Durch $F_S(s) = \mathbb{P}(S \le s)$ ist die zusammengesetzte Gesamtschadenverteilung und durch $f_S(s)$ die Dichte/Wahrscheinlichkeitsfunktion von S gegeben.

Kapitel 4

5.2 Modellannahmen und Faltungsformeln

Bemerkungen:

- Im kollektiven Modell wird angenommen, dass N und Yi stochastisch unabhängig sind. Diese Annahme ist in der Praxis nicht immer erfüllt. Z.B. führen schlechte Wetterverhältnisse in der Kfz-Versicherung zu vielen Kleinschäden und auf dem Land kommt es eher zu weniger, aber dafür größeren Schäden als in der Stadt.
- Bei $Y_1, Y_2, ...$ handelt es sich um Einzelschadenhöhen, was sich in der Annahme $F_Y(0) = \mathbb{P}(Y \le 0) = 0$, also $Y_i > 0$ \mathbb{P} -f.s. ausdrückt.
- Es gilt $S \ge 0$ \mathbb{P} -f.s. Im Falle keines Schadens, d.h. für N = 0, gilt S = 0 \mathbb{P} -f.s.
- Sind Y_i absolutstetige Zufallsvariablen, dann ist die (bedingte) Zufallsvariable S|S>0, ebenfalls absolutstetig und im Falle von $0 \in \mathcal{N}$ besitzt F_S an der Stelle S=0 die Punktmasse $\mathbb{P}(N=0)$. D.h. im Falle absolutstetiger Einzelschadenhöhen Y_i und $0 \in \mathcal{N}$ ist F_S eine gemischte Verteilungsfunktion, die sich an der Stelle S=0 wie die Verteilungsfunktion einer diskreten Zufallsvariable mit der Punktmasse

$$F_S(0) = f_S(0) = \mathbb{P}(S=0) = \mathbb{P}(N=0)$$

verhält und an den übrigen Stellen S>0 wie die Verteilungsfunktion einer absolutstetigen Zufallsvariable.

5.2 Modellannahmen und Faltungsformeln

Die sog. Faltungsformel (Convolution-formula) für die zusammengesetzte Gesamtschadenverteilung F_S lautet:

Satz (Faltungsformel für die zusammengesetzte Gesamtschadenverteilung F_S)

Im kollektiven Modell der Risikotheorie gilt für die zusammengesetzte Gesamtschadenverteilung

$$F_S(s) = \mathbb{P}(S \le s) = \begin{cases} \sum_{n \in \mathcal{N}} F_Y^{*n}(s) \cdot \mathbb{P}(N=n) & \text{für } s \ge 0\\ 0 & \text{sonst} \end{cases}, \tag{2}$$

wobei

$$F_Y^{\star n}(s) := \mathbb{P}\left(\sum_{i=1}^n Y_i \le s\right)$$
 für $n \in \mathbb{N}_0$

die n-te Faltung von F_Y bezeichnet.

Beweis: Das Ereignis $\{S \le s\}$ besitzt die disjunkte Zerlegung $\{S \le s\} = \bigcup_{n \in \mathcal{N}} \{S \le s \text{ und } N = n\}$. Damit erhält man:

$$F_{S}(s) = \mathbb{P}(S \leq s) = \mathbb{P}\left(\bigcup_{n \in \mathcal{N}} \{S \leq s \text{ und } N = n\}\right) = \sum_{n \in \mathcal{N}} \mathbb{P}(S \leq s \text{ und } N = n)$$

$$= \sum_{n \in \mathcal{N}} \mathbb{P}(S \leq s | N = n) \cdot \mathbb{P}(N = n)$$

$$= \sum_{n \in \mathcal{N}} \mathbb{P}\left(\sum_{i=1}^{n} Y_{i} \leq s\right) \cdot \mathbb{P}(N = n) = \sum_{n \in \mathcal{N}} F_{Y}^{sn}(s) \cdot \mathbb{P}(N = n).$$
Gerz

• Universität Hamburg

• Quantitatives Risikomanagement 1

• Kapitel 4

5.2 Modellannahmen und Faltungsformeln

Für n = 0 gilt offensichtlich:

$$F_Y^{\star 0}(s) = \mathbb{P}(0 \le s) = \begin{cases} 1 & \text{für } s \ge 0 \\ 0 & \text{für } s < 0 \end{cases}$$

Mit der Faltungsformel (2) und der Rekursionsbeziehung für die k-te Faltung

$$F_Y^{\star k}(s) = \int_0^s F_Y^{\star (k-1)}(s-y)dF_Y(y)$$

$$= \begin{cases} \int_0^s F_Y^{\star (k-1)}(s-y)f_Y(y)dy & \text{falls } Y \text{ absolutstetig} \\ \int_0^s F_Y^{\star (k-1)}(s-y)f_Y(y) & \text{falls } Y \text{ diskret} \end{cases}$$
(4)

für $k \in \mathbb{N}$ kann die zusammengesetzte Gesamtschadenverteilung F_S numerisch berechnet werden. Dabei reduziert sich (4) für k = 1 zu $F_v^{\star 1}(s) = F_Y(v)$.

Falls sich die Faltungen F_V^{*n} für alle $n \in \mathcal{N}$ in geschlossener Form darstellen lassen, kann F_S mit der Faltungsformel (2) prinzipiell auch analytisch berechnet werden. Dies ist jedoch für die meisten Einzelschadenhöhenverteilungen F_Y , wie z.B. Paretound Lognormalverteilung, nicht der Fall. Aber selbst dann, wenn sich die Faltungen $F_Y^{\star n}$ in geschlossener Form darstellen lassen, müssen bei Anwendung der Faltungsformel (2) noch unendlich viele Faltungen $F_Y^{\star n}$ ermittelt werden, falls $|\mathcal{N}| = \infty$ gilt.

5.2 Modellannahmen und Faltungsformeln

Mit (4) und

$$f_Y^{\star 1}(s) = f_Y(s)$$
 für alle $s \in \mathbb{R}$

erhält man für die Dichte/Wahrscheinlichkeitsfunktion der k-ten Faltung die Rekursionsbeziehung

$$f_Y^{\star k}(s) = \int_0^s f_Y^{\star (k-1)}(s-y)dF_Y(y)$$

$$= \begin{cases} \int_0^s f_Y^{\star (k-1)}(s-y)f_Y(y)dy & \text{falls } Y \text{ absolutstetig} \\ \int_0^s \int_Y^{\star (k-1)}(s-y)f_Y(y) & \text{falls } Y \text{ diskret} \end{cases}$$
(5)

für k = 2, 3, ... Damit erhält man für die Dichte/Wahrscheinlichkeitsfunktion des Gesamtschadens S die Faltungsformel

$$f_S(s) = \begin{cases} \sum_{n \in \mathcal{N}} f_Y^{\star n}(s) \cdot \mathbb{P}(N=n) & \text{für } s \ge 0\\ 0 & \text{sonst} \end{cases}$$
 (6)

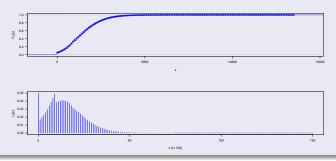
5.2 Modellannahmen und Faltungsformeln

Beispiel (Berechnung von F_S und f_S mittels Faltungsformeln)

Der Gesamtschaden

$$S = \sum_{i=1}^{N} Y_i$$

besitze eine $\Pi(3)$ -verteilte Schadenanzahl N und auf der Menge $\{100, 200, \dots, 900\}$ gleichverteilte Einzelschadenhöhen Y_i . Werden die Wahrscheinlichkeiten $\mathbb{P}(N=n)$ für $n \geq 16$ gleich 0 gesetzt, erhält man mit den Faltungsformeln (2) und (6):



5.2 Modellannahmen und Faltungsformeln

Beispiel (Fortsetzung)

R-Code:

```
# Berechnung der zusammengesetzten Gesamtschadenverteilung mittels Faltungsformel
# Erzeugung eines Vektors mit den Wahrscheinlichhkeiten einer Poisson(3)-verteilten Schadenanzahl N
p.n<-dpois(c(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),lambda=3)
# Berechnung der zusammengesetzten Gesamtschadenverteilung F.S mittels Faltungsformel
library(actuar)
F.S<-aggregateDist("convolution", model.freq = p.n,
                    model.sev = c(0, rep(1/9, 9)), lambda = 3, x.scale = 100)
# Wichtige Kenngrößen von F.S
summary(F.S)
# Erzeugung von f.S aus F.S
f.S<-c(F.S(0),diff(F.S(100*0:150)))
f.S
# Erzeugung eines Plots mit F.S und f.S
par(mfrow=c(2,1))
plot(F.S, col=4, las=1, xlab="s", ylab=expression(F[S](s)), main="", sub="")
s<-sea(0,150)
plot(s, f.S, col=4, las=1, type="h", xlab="s (in 100)", ylab=expression(f[S](s)))
```


5.2 Modellannahmen und Faltungsformeln

Das folgende Beispiel ist einer der wenigen Fälle, in dem sich F_S analytisch berechnen lässt.

Beispiel (Exakte Berechnung von F_S für $Y \sim \text{Exp}(\mu)$ und $N \sim \text{ZT-Geo}(p)$)

Die Einzelschadenhöhen Y_1, Y_2, \dots seien unabhängig und $Exp(\mu)$ -verteilt. Die Schadenanzahl N besitze ferner eine zero-truncated geometrische Verteilung mit

$$\mathbb{P}(N=n) = q^{n-1}p \qquad \text{für } n \in \mathbb{N}$$

sowie $p \in (0,1)$ und q = 1 - p (vgl. Abschnitt 4.6). Dann ist

$$\sum_{i=1}^{n} Y_i$$

Gamma-verteilt mit den beiden Parametern n und μ (vgl. Abschnitt 4.7). D.h. es gilt

$$F_Y^{\star n}(s) = \begin{cases} \int_0^s \frac{\mu^n}{\Gamma(n)} x^{n-1} e^{-\mu x} dx & \text{für } s \ge 0\\ 0 & \text{sonst} \end{cases}.$$

5.2 Modellannahmen und Faltungsformeln

Beispiel (Fortsetzung)

Wegen $\mathcal{N} = \mathbb{N}$ erhält man damit und der Faltungsformel (2) für $s \ge 0$:

$$F_S(s) = \sum_{n=1}^{\infty} \left(\int_0^s \frac{\mu^n}{\Gamma(n)} x^{n-1} e^{-\mu x} dx \right) q^{n-1} p$$

$$= \int_0^s \mu p e^{-\mu x} \sum_{n=1}^{\infty} \frac{1}{(n-1)!} (\mu q x)^{n-1} dx$$

$$= \int_0^s \mu p e^{-\mu x} e^{\mu q x} dx$$

$$= \int_0^s \mu p e^{-\mu p x} dx$$

D.h. es gilt

$$F_{S}(s) = \begin{cases} 1 - e^{-\mu ps} & \text{für } s \ge 0 \\ 0 & \text{sonst} \end{cases}.$$

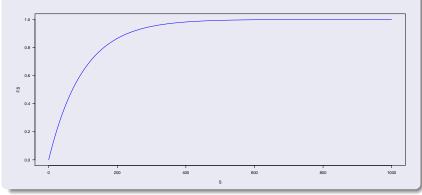
Die zusammengesetzte Gesamtschadenverteilung F_S ist somit eine Exponentialverteilung mit dem Parameter $\mu p < \mu$ (vgl. Abschnitt 4.7).

©2025 M. Merz • Universität Hamburg • Quantitatives Risikomanagement 1 • Kapitel 4 • 14

5.2 Modellannahmen und Faltungsformeln

Beispiel (Fortsetzung)

Die folgende Abbildung zeigt die zusammengesetzte Gesamtschadenverteilung F_S im Falle von $Y \sim \text{Exp}(1/5)$ und $N \sim \text{ZT-Geo}(1/20)$. D.h. sie zeigt die Verteilungsfunktion einer Exponentialverteilung mit dem Parameter $\mu p = 1/100$.



5.2 Modellannahmen und Faltungsformeln

Beispiel (Fortsetzung)

```
R-Code:
```

```
###
## Zusammengesetzte Gesamtschadenverteilung als Exponentialverteilung mit Parameter 1/100
###

# Erzeugung einer Exponentialverteilung mit Parameter 1/100 von s=0 bis 1000 mit Schrittweite 0.1
sc-seq(0, 1000, by=0.1)
F.Sc-pexp(s,1/100)

# Erzeugung eines Plots mit der Verteilungsfunktion
plot(s, F.S, type="1", lwd=2,col=4, las=1)
```

Aufgrund der geschilderten Probleme werden F_S und f_S i.d.R. nicht mittels der Faltungsformeln (2) bzw. (6) ermittelt, sondern mit Hilfe einer der folgenden vier Ansätze berechnet oder approximiert:

- a) Approximation von F_S mittels Monte-Carlo-Simulation (siehe nächstes Beispiel).
- b) Numerische Berechnung von f_S mittels Panjer-Algorithmus (siehe Abschnitt 5.5).
- Numerische Berechnung von f_S mittels Fast-Fourier-Transformation (siehe Abschnitt 5.7).
- d) Approximation von F_S mittels einer parametrischen Verteilung (siehe Abschnitt 5.8)

5.2 Modellannahmen und Faltungsformeln

Beispiel (Monte-Carlo-Simulation von F_S)

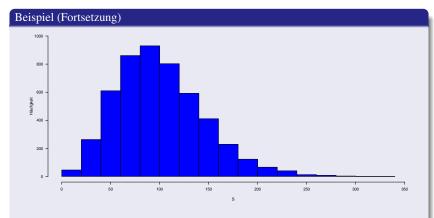
Der folgende R-Code erzeugt mittels Monte-Carlo-Simulation 5000 Realisation des Gesamtschadens

$$S = \sum_{i=1}^{N} Y_i$$

mit $N \sim \Pi(10)$ und $Y_i \sim \text{Exp}(1/10)$.

R-Code:

5.2 Modellannahmen und Faltungsformeln



Die Approximation von f_S bzw. F_S mittels Monte-Carlo-Simulation ist durch den Satz von Glivenko-Cantelli (Hauptsatz der Statistik) gerechtfertigt.

5.2 Modellannahmen und Faltungsformeln

Beispiel (Fortsetzung)

Dieser Satz besagt, dass für eine Folge von unabhängigen und identisch-verteilten Zufallsvariablen $S_i \sim F_S$ die empirische Verteilungsfunktion

$$\widehat{F}_{S}^{n}(s) := \frac{1}{n} \sum_{i=1}^{n} 1_{(-\infty,s]}(S_i)$$

für $n \to \infty$ fast sicher und gleichmäßig gegen $F_S(s)$ konvergiert:

$$\mathbb{P}\left(\lim_{n\to\infty}\sup_{s\in\mathbb{R}}\left|\widehat{F}_{S}^{n}(s)-F_{S}(s)\right|=0\right)=1$$

In der Praxis erfolgt die Approximation von F_S relativ häufig mit einer Monte-Carlo-Simulation. Dieses Vorgehen ist jedoch in den meisten Fällen nicht zu empfehlen, da i.d.R. die Konvergenzgeschwindigkeit von $\widehat{F}_{S}^{n}(s)$ gegen F_{S} sehr langsam ist, so dass nicht oder nur sehr schwer abzuschätzen ist, ab welchem n durch $\widehat{F}_{c}^{n}(s)$ eine "hinreichend gute" Approximation für F_S gegeben ist. Dieser Sachverhalt bedingt eine große Anzahl von Simulationen, vor allem dann, wenn die zusammengesetzte Gesamtschadenverteilung F_S einen ausgeprägten rechten Tail besitzt.

Abschnitt 5.3 Momente der Gesamtschadenhöhe *S*

5.3 Momente der Gesamtschadenhöhe S

Für viele Anwendungen werden Momente der zusammengesetzten Gesamtschadenverteilung F_S benötigt, wie z.B. bei der Approximation von F_S mittels einer parametrischen Verteilung (siehe Abschnitt 5.8) Die beiden Formeln für den Erwartungswert und die Varianz werden nach dem bedeutenden rumänisch-US-amerikanischen Mathematiker und Begründer der statistischen Entscheidungstheorie ABRAHAM WALD (1902–1950) als erste bzw. zweite Formel von Wald bezeichnet, der die Gültigkeit dieser Formeln in WALD (1944) nachgewiesen hat.

Satz (Momente der zusammengesetzten Gesamtschadenverteilung F_S)

Im kollektiven Modell der Risikotheorie gilt (falls die Momente existieren):

- a) $\mathbb{E}[S] = \mathbb{E}[N] \cdot \mathbb{E}[Y]$ (Erste Formel von Wald)
- b) $Var(S) = \mathbb{E}[Y]^2 \cdot Var(N) + Var(Y) \cdot \mathbb{E}[N]$ (Zweite Formel von Wald)
- c) $Vko(S) = \sqrt{Vko(N)^2 + \frac{1}{\mathbb{E}[N]}Vko(Y)^2}$
- d) $M_S(t) = M_N \left(\ln \left(M_Y(t) \right) \right)$ und $C_S(t) = M_N \left(\ln \left(C_Y(t) \right) \right)$ für $t \in \mathbb{R}$

5.3 Momente der Gesamtschadenhöhe S

Beweis: Zu a): Man erhält:

$$\begin{split} \mathbb{E}[S] &= \mathbb{E}\left[\sum_{i=1}^{N} Y_i\right] = \mathbb{E}\left[\mathbb{E}\left[\left.\sum_{i=1}^{N} Y_i \middle| N\right]\right] = \mathbb{E}\left[\mathbb{E}\left[\left.\sum_{i=1}^{\infty} 1_{\{N \geq i\}} Y_i \middle| N\right]\right]\right] \\ &= \mathbb{E}\left[\sum_{i=1}^{\infty} 1_{\{N \geq i\}} \mathbb{E}\left[Y_i \middle| N\right]\right] \\ &= \mathbb{E}\left[\sum_{i=1}^{N} \mathbb{E}\left[Y_i \middle| N\right]\right] \\ &= \mathbb{E}\left[\sum_{i=1}^{N} \mathbb{E}\left[Y_i\right]\right] \\ &= \mathbb{E}[N \mathbb{E}[Y]] = \mathbb{E}[N] \cdot \mathbb{E}[Y] \end{split}$$

Zu b): Es gilt:

$$Var(S) = Var\left(\sum_{i=1}^{N} Y_i\right) = Var\left(\mathbb{E}\left[\left.\sum_{i=1}^{N} Y_i\right| N\right]\right) + \mathbb{E}\left[Var\left(\left.\sum_{i=1}^{N} Y_i\right| N\right)\right]$$

Daraus erhält man analog zu a):

$$\begin{aligned} \operatorname{Var}(S) &= \operatorname{Var}\left(\sum_{i=1}^{N} \mathbb{E}\left[Y_{i}|N\right]\right) + \mathbb{E}\left[\sum_{i=1}^{N} \operatorname{Var}\left(Y_{i}|N\right)\right] \\ &= \operatorname{Var}\left(\sum_{i=1}^{N} \mathbb{E}\left[Y_{i}\right]\right) + \mathbb{E}\left[\sum_{i=1}^{N} \operatorname{Var}\left(Y_{i}\right)\right] \\ &= \operatorname{Var}\left(N\mathbb{E}\left[Y\right]\right) + \mathbb{E}\left[N\operatorname{Var}\left(Y\right)\right] \\ &= \mathbb{E}\left[Y\right]^{2} \cdot \operatorname{Var}(N) + \operatorname{Var}(Y) \cdot \mathbb{E}[N] \end{aligned}$$

5.3 Momente der Gesamtschadenhöhe S

Beweis (Fortsetzung): Zu c): Mit a) und b) folgt:

$$\begin{split} \operatorname{Vko}(S) &= \frac{\sqrt{\operatorname{Var}(S)}}{\mathbb{E}[S]} = \frac{\sqrt{\mathbb{E}[Y]^2 \operatorname{Var}(N) + \operatorname{Var}(Y) \mathbb{E}[N]}}{\mathbb{E}[N] \mathbb{E}[Y]} \\ &= \frac{\sqrt{\mathbb{E}[Y]^2 \mathbb{E}[N]^2 \frac{\operatorname{Var}(N)}{\mathbb{E}[N]^2} + \frac{\operatorname{Var}(Y)}{\mathbb{E}[Y]^2} \mathbb{E}[Y]^2 \mathbb{E}[N]}}{\mathbb{E}[N] \mathbb{E}[Y]} \\ &= \sqrt{\operatorname{Vko}(N)^2 + \frac{1}{\mathbb{E}[N]} \operatorname{Vko}(Y)^2} \end{split}$$

Zu d): Es gilt:

$$\begin{aligned} M_{S}(t) &= \mathbb{E}\left[\exp\left(tS\right)\right] = \mathbb{E}\left[\exp\left(t\sum_{i=1}^{N}Y_{i}\right)\right] = \mathbb{E}\left[\mathbb{E}\left[\exp\left(t\sum_{i=1}^{N}Y_{i}\right)\middle|N\right]\right] \\ &= \mathbb{E}\left[\mathbb{E}\left[\prod_{i=1}^{N}\exp\left(tY_{i}\right)\middle|N\right]\right] \\ &= \mathbb{E}\left[\prod_{i=1}^{N}\mathbb{E}\left[\exp\left(tY_{i}\right)\middle|N\right]\right] \\ &= \mathbb{E}\left[\prod_{i=1}^{N}\mathbb{E}\left[\exp\left(tY_{i}\right)\middle|N\right]\right] \\ &= \mathbb{E}\left[M_{Y}(t)^{N}\right] \\ &= \mathbb{E}\left[\exp\left(\ln\left(M_{Y}(t)\right)N\right)\right] = M_{N}\left(\ln\left(M_{Y}(t)\right)\right) \end{aligned}$$

5.3 Momente der Gesamtschadenhöhe S

Beispiel (Momente von F_S)

Es gelte $N \sim \Pi(100)$ und $Y_i \sim Par(4, 1500)$. Daraus folgt

$$\mathbb{E}[N] = \text{Var}(N) = 100 \quad \text{und} \quad \text{Vko}(N) = \frac{\sqrt{100}}{100} = 0.1$$

sowie

$$\mathbb{E}[Y] = \frac{1500}{4 - 1} = 500, \quad \mathbb{E}[Y^2] = \frac{2 \cdot 1500^2}{(4 - 1)(4 - 2)} = 750000 \quad \text{und}$$

$$\text{Vko}(Y) = \frac{\sqrt{750000 - 500^2}}{500} = \frac{2}{\sqrt{2}} = \sqrt{2}.$$

Daraus erhält man zusammen mit den Aussagen a)-c) des letzten Satzes:

$$\mathbb{E}[S] = 100 \cdot 500 = 50000$$

$$Var(S) = 500^{2} \cdot 100 + (750000 - 500^{2}) \cdot 100 = 75 \cdot 10^{6}$$

$$Vko(S) = \sqrt{0.1^{2} + \frac{1}{100} \left(\frac{2}{\sqrt{2}}\right)^{2}} = 0.1732051$$

5.3 Momente der Gesamtschadenhöhe S

Beispiel (Exakte Berechnung von F_S für $Y \sim \text{Exp}(\mu)$ und $N \sim \text{Geo}(p)$)

Die Einzelschadenhöhen Y_1, Y_2, \dots seien unabhängig und $\text{Exp}(\mu)$ -verteilt. Die Schadenanzahl N besitze ferner eine geometrische Verteilung mit

$$\mathbb{P}(N=n) = q^n p \qquad \text{für } n \in \mathbb{N}_0$$

sowie $p \in (0,1)$ und q = 1 - p. Dann sind die momenterzeugenden Funktionen von N und Y_i gegeben durch

$$M_N(t) = rac{p}{1 - qe^t}$$
 für $t < -\ln(q)$ und $M_Y(t) = rac{\mu}{\mu - t}$ für $t < \mu$

(vgl. Abschnitte 4.4 und 4.7). Zusammen mit der Aussage d) des letzten Satzes erhält man damit

$$M_S(t) = M_N \left(\ln \left(M_Y(t) \right) \right) = \frac{p}{1 - q e^{\ln \left(\frac{\mu}{\mu - t} \right)}} = \frac{p}{1 - q \frac{\mu}{\mu - t}}.$$

Durch Umformung folgt daraus weiter:

©2025 M. Merz •

5.3 Momente der Gesamtschadenhöhe S

Beispiel (Fortsetzung)

$$M_S(t) = \frac{p(\mu - t)}{\mu - t - q\mu}$$

$$= \frac{p(\mu - t)}{p\mu - t} = \frac{p(\mu p - t) + (1 - p)\mu p}{\mu p - t} = p \cdot 1 + (1 - p)\frac{\mu p}{\mu p - t}$$
(7)

Bei $M_S(t)$ handelt es sich somit um eine Konvexkombination aus 1 und $\frac{\mu p}{\mu p-t}$. D.h. den momenterzeugenden Funktionen einer degenerierten Zufallsvariablen $Z \equiv 0$ und einer mit dem Parameter μp exponential-verteilten Zufallsvariablen Z_2 . Folglich besitzt der Gesamtschaden S eine gemischte Verteilung F_S mit einer Punktmasse $p \cdot 1$ an der Stelle S=0 und einer mit 1-p gewichteten Exponentialverteilung $\text{Exp}(\mu p)$ für S > 0. Es gilt somit

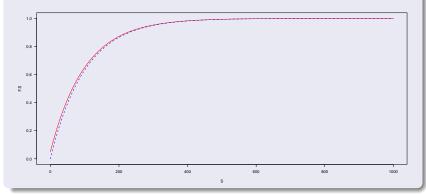
$$F_S(s) = \begin{cases} 0 & \text{für } s < 0 \\ p + (1-p)(1-e^{-\mu ps}) & \text{für } s \ge 0 \end{cases}.$$

Dasselbe Ergebnis kann auch mit Hilfe der Faltungsformel (2) ermittelt werden (vgl. Übungsaufgaben). Wegen Geo(p) = NBin(1, p) handelt es sich bei F_S um eine sog. zusammengesetzte negative Binomialverteilung.

5.3 Momente der Gesamtschadenhöhe S

Beispiel (Fortsetzung)

Die folgende Abbildung zeigt die zusammengesetzte Gesamtschadenverteilung F_S für $Y \sim \text{Exp}(1/5)$ und $N \sim \text{Geo}(1/20)$ (rot) sowie für $Y \sim \text{Exp}(1/5)$ und $N \sim \text{ZT-Geo}(1/20)$ (blau) (vgl. zweites Beispiel in Abschnitt 5.2).



Abschnitt 5.4

Zusammengesetzte Poisson-Verteilung

5.4 Zusammengesetzte Poisson-Verteilung

Die drei am häufigsten verwendeten Verteilungen F_N für die Schadenanzahl N im kollektiven Modell der Risikotheorie sind die Binomial-, die Poisson- und die negative Binomialverteilung. Die resultierenden zusammengesetzten Gesamtschadenverteilungen F_S werden dann unabhängig von der Einzelschadenhöhenverteilung F_Y entsprechend als

- zusammengesetzte Binomialverteilung,
- zusammengesetzte Poisson-Verteilung bzw.
- zusammengesetzte negative Binomialverteilung

bezeichnet.

Aufgrund ihrer guten Aggregations- und Zerlegungseigenschaften ist die zusammengesetzte Poisson-Verteilung von besonders großer Bedeutung. Sie und ihre guten analytischen Eigenschaften sowie ihre besonderen Aggregations- und Zerlegungseigenschaften stehen daher in diesem Abschnitt im Mittelpunkt. Sie wird im Folgenden mit ZPoisson(λ, F_Y) bezeichnet.

5.4 Zusammengesetzte Poisson-Verteilung

Folgerung (Momente der zusammengesetzten Poisson-Verteilung)

Für die zusammengesetzte Poisson-Verteilung ZPoisson (λ, F_Y) gilt (falls die Momente existieren):

- a) $\mathbb{E}[S] = \lambda \mathbb{E}[Y]$
- b) $Var(S) = \lambda \mathbb{E}[Y^2]$
- c) $Vko(S) = \sqrt{\frac{1}{\lambda}} \sqrt{1 + Vko(Y)^2}$
- d) $M_S(t) = \exp(\lambda(M_Y(t) 1))$ und $C_S(t) = \exp(\lambda(C_Y(t) 1))$ für $t \in \mathbb{R}$

Beweis: Die Aussagen a)-d) folgen unmittelbar aus dem Satz in Abschnitt 5.3 sowie

$$\mathbb{E}[N] = \text{Var}(N) = \lambda, \quad \text{Vko}(N) = \sqrt{\frac{1}{\lambda}} \quad \text{und} \quad M_N(t) = \exp(\lambda(e^t - 1)) \quad \text{für } t \in \mathbb{R}$$

(siehe Tabelle in Abschnitt 4.3).

Das folgende Beispiel zeigt, dass eine zusammengesetzte Poisson-Verteilung mit logarithmisch-verteilten Einzelschadenhöhen eine negative Binomialverteilung ist:

5.4 Zusammengesetzte Poisson-Verteilung

Beispiel (Zusammengesetzte Poisson-Verteilung mit $Y \sim \text{Log}(p)$)

Die unabhängigen und identisch verteilten Einzelschadenhöhen Y_i seien Log(p)-verteilt mit $p \in (0,1)$ und die Schadenanzahl N besitze eine $\Pi(\lambda)$ -Verteilung mit $\lambda > 0$. Dann sind die momenterzeugenden Funktionen von Y_i und S gegeben durch

$$M_Y(t) = \frac{\ln(1 - (1 - p)e^t)}{\ln(p)}$$

(vgl. Tabelle in Abschnitt 4.5) bzw.

$$M_S(t) = \exp\left(\lambda \left(M_Y(t) - 1\right)\right)$$
$$= \exp\left(\frac{\lambda}{\ln(p)}\ln\left(1 - (1 - p)e^t\right) - \lambda\right)$$

(vgl. Aussage d) der obigen Folgerung).

©2025 M. Merz

5.4 Zusammengesetzte Poisson-Verteilung

Beispiel (Fortsetzung)

Durch Umformung folgt daraus weiter

$$\begin{split} M_S(t) &= \left(1 - (1-p)e^t\right)^{\frac{\lambda}{\ln(p)}} \left(e^{-\ln(p)}\right)^{\frac{\lambda}{\ln(p)}} \\ &= \left(\frac{e^{\ln(p)}}{1 - (1-p)e^t}\right)^{-\frac{\lambda}{\ln(p)}} \\ &= \left(\frac{p}{1 - (1-p)e^t}\right)^r \quad \text{mit } r = -\frac{\lambda}{\ln(p)} > 0. \end{split}$$

Bei $M_S(t)$ handelt es sich somit um die momenterzeugende Funktion einer (verallgemeinerten) negativen Binomialverteilung (Pólya-Verteilung, vgl. Abschnitt 4.4) mit den Parametern $p \in (0,1)$ und r>0. Folglich ist die zusammengesetzte Gesamtschadenverteilung F_S eine (verallgemeinerte) negative Binomialverteilung mit den Parametern $p \in (0,1)$ und r>0.

©2025 M. Merz • Universität Hamburg • Quantitatives Risikomanagement 1 • Kapitel 4

5.4 Zusammengesetzte Poisson-Verteilung

Die beiden folgenden Sätze besagen, dass die zusammengesetzte Poisson-Verteilung ähnliche Aggregations- und Zerlegungseigenschaften wie die Poisson-Verteilung besitzt, da sie diese von der Poisson-Verteilung quasi "vererbt" bekommt. Aufgrund dieser guten Eigenschaften wird die zusammengesetzte Poisson-Verteilung auch außerhalb der Versicherungsmathematik, z.B. bei der Modellierung von Kreditrisiken und operationellen Risiken, eingesetzt.

Die Aggregationseigenschaft lautet wie folgt:

Satz (Aggregationseigenschaft der zusammengesetzten Poisson-Verteilung)

Die Gesamtschäden S_1, \ldots, S_m mit $S_k \sim \text{ZPoisson}(\lambda_k, F_k)$ für $k = 1, \ldots, m$ seien stochastisch unabhängig. Dann gilt für den aggregierten Gesamtschaden

$$S = \sum_{k=1}^{m} S_k \sim \text{ZPoisson}(\lambda, F)$$

mit

$$\lambda = \sum_{k=1}^{m} \lambda_k$$
 und $F = \sum_{k=1}^{m} \frac{\lambda_k}{\lambda} F_k$.

5.4 Zusammengesetzte Poisson-Verteilung

Beweis: Es gilt $S \ge 0$ \mathbb{P} -f.s. D.h. $M_S(t)$ existiert zumindest für alle $t \le 0$. Mit der stochastischen Unabhängigkeit von S_1, \ldots, S_m und der Aussage d) der letzten Folgerung erhält man:

$$\begin{split} M_S(t) &= \mathbb{E}\left[\exp\left(t\sum_{k=1}^m S_k\right)\right] = \mathbb{E}\left[\prod_{k=1}^m \exp(tS_k)\right] = \prod_{k=1}^m \mathbb{E}[\exp(tS_k)] \\ &= \prod_{k=1}^m \exp\left(\lambda_k(M_k(t)-1)\right) \\ &= \exp\left(\lambda\left[\sum_{k=1}^m \frac{\lambda_k}{\lambda}\left(M_k(t)-1\right)\right]\right) \end{split}$$

Dies ist iedoch die momenterzeugende Funktion einer zusammengesetzten Poisson-Verteilung mit dem Parameter $\lambda = \sum_{k=1}^m \lambda_k$ und einer Einzelschadenhöhenverteilung, deren momenterzeugende Funktion durch $\sum_{t=1}^{m} \frac{\lambda_k}{\lambda} M_k(t)$ gegeben ist. Diese momenterzeugende Funktion durch zeugende Funktion gehört jedoch zu der Mischverteilung

$$F = \sum_{k=1}^{m} \frac{\lambda_k}{\lambda} F_k.$$

Denn für $Y \sim F$ gilt:

$$\begin{split} M_Y(t) &= \int_0^\infty e^{ty} \ dF(y) = \int_0^\infty e^{ty} \ d\left(\sum_{k=1}^m \frac{\lambda_k}{\lambda} F_k(y) \right) \\ &= \sum_{k=1}^m \frac{\lambda_k}{\lambda} \int_0^\infty e^{ty} \ dF_k(y) \\ &= \sum_{k=1}^m \frac{\lambda_k}{\lambda} M_k(t) \end{split}$$

5.4 Zusammengesetzte Poisson-Verteilung

Bemerkungen:

- Dieses Ergebnis und die Darstellung von F_Y ist sehr plausibel.
- Die Aggregationseigenschaft der zusammengesetzten Poisson-Verteilung ist hilfreich, wenn die Risiken mehrerer unabhängiger Portfolios oder mehrerer unabhängiger Jahre aggregiert werden sollen. Dies ist z.B. beim Zusammenlegen von mehreren stochastisch unabhängigen Portfolios der Fall oder bei der Anwendung von geophysikalischen Modellen zur Modellierung von Naturkatastrophen die auf dem kollektiven Modell basieren, der Fall.
- Für die Gültigkeit des Satzes ist es nicht erforderlich, dass die Parameter λ_k und die Einzelschadenhöhenverteilungen F_k in den verschiedenen Kollektiven übereinstimmen.

5.4 Zusammengesetzte Poisson-Verteilung

Beispiel (Aggregationseigenschaft der zusammengesetzten Poisson-Verteilung)

Die Gesamtschäden S_1 und S_2 zweier Portfolios besitzen jeweils eine zusammengesetzte Poisson-Verteilung mit den Parametern $\lambda_1=10$ bzw. $\lambda_2=15$ und den Einzelschadenhöhenverteilungen

$$F_1(y) = 1 - e^{-y}$$
 bzw. $F_2(y) = 1 - e^{-y}(1+y)$

für $y \geq 0$. Dann besitzt auch der aggregierte Gesamtschaden $S = S_1 + S_2$ eine zusammengesetzte Poisson-Verteilung mit dem Parameter $\lambda_1 + \lambda_2 = 25$ und der Einzelschadenhöhenverteilung

$$F(y) = \frac{\lambda_1}{\lambda_1 + \lambda_2} F_1(y) + \frac{\lambda_2}{\lambda_1 + \lambda_2} F_2(y)$$

= $\frac{2}{5} (1 - e^{-y}) + \frac{3}{5} (1 - e^{-y}(1 + y)) = 1 - e^{-y} (1 + \frac{3}{5}y).$

Zur Formulierung der Zerlegungseigenschaft der zusammengesetzten Poisson-Verteilung werden im Folgenden n Portfolios (z.B. Kfz-Haftpflicht, Kfz-Kasko, Sach, allgemeine Haftpflicht) betrachtet, die mit $l = 1, \ldots, n$ durchnummeriert sind.

©2025 M. Merz • Universität Hamburg • Quantitatives Risikomanagement 1 • Kapitel 4

5.4 Zusammengesetzte Poisson-Verteilung

Die Indikatorvariablen $I_i: \Omega \to \{1, ..., n\}$ für i = 1, ..., n mit

$$\mathbb{P}(I_i = l) = p_l > 0 \qquad \text{für} \quad l = 1, \dots, n$$

geben dann jeweils an, zu welchem der n Portfolios der i-te Einzelschaden Y_i gehört.

Satz (Zerlegungseigenschaft der zusammengesetzten Poisson-Verteilung)

Der Gesamtschaden $S = \sum_{i=1}^{N} Y_i$ sei ZPoisson (λ, F) -verteilt und die Zufallsvektoren $(Y_i, I_i)_{i \geq 1}$ seien unabhängig und identisch verteilt sowie unabhängig von N. Ferner sei A_1, \ldots, A_m eine Zerlegung der Menge $\mathbb{R}_+ \times \{1, \ldots, n\}$. Dann sind die Zufallsvariablen

$$S_k = \sum_{i=1}^{N} Y_i \cdot 1_{\{(Y_i, I_i) \in A_k\}}$$
 für $k = 1, ..., m$

unabhängig und $\operatorname{ZPoisson}(\lambda_k, F_k)$ -verteilt mit

$$\lambda_k = \lambda p^{(k)}, \quad p^{(k)} = \mathbb{P}((Y_i, I_i) \in A_k) > 0 \quad \text{und} \quad F_k(y) = \mathbb{P}(Y_i \le y | (Y_i, I_i) \in A_k).$$

5.4 Zusammengesetzte Poisson-Verteilung

Beweis: Es sei $\mathbf{t} = (t_1, \dots, t_m)^T \in \mathbb{R}^m$. Für die (multivariate) momenterzeugende Funktion von $\mathbf{S} = (S_1, \dots, S_m)^T$ gilt

$$\begin{split} M_{\mathbf{S}}(t) &= \mathbb{E}\left[\exp\left(\mathbf{t}^T\mathbf{S}\right)\right] = \mathbb{E}\left[\exp\left(\sum_{k=1}^m t_k S_k\right)\right] = \mathbb{E}\left[\exp\left(\sum_{k=1}^m t_k \sum_{i=1}^N Y_i \cdot \mathbf{1}_{\left\{(Y_i, I_i) \in A_k\right\}}\right)\right] \\ &= \mathbb{E}\left[\mathbb{E}\left[\exp\left(\sum_{k=1}^m t_k \sum_{i=1}^N Y_i \cdot \mathbf{1}_{\left\{(Y_i, I_i) \in A_k\right\}}\right) \middle| N\right]\right] \\ &= \mathbb{E}\left[\prod_{i=1}^N \mathbb{E}\left[\exp\left(\sum_{k=1}^m t_k Y_i \cdot \mathbf{1}_{\left\{(Y_i, I_i) \in A_k\right\}}\right)\middle| N\right]\right] \\ &= \mathbb{E}\left[\prod_{i=1}^N \mathbb{E}\left[\exp\left(\sum_{k=1}^m t_k Y_i \cdot \mathbf{1}_{\left\{(Y_i, I_i) \in A_k\right\}}\right)\right]\right]. \end{split}$$

Für den inneren Erwartungswert erhält man

$$\begin{split} \mathbb{E}\left[\exp\left(\sum_{k=1}^{m}t_{k}Y_{i}\cdot 1_{\left\{(Y_{i},I_{i})\in A_{k}\right\}}\right)\right] &= \sum_{l=1}^{m}\mathbb{E}\left[\exp\left(\sum_{k=1}^{m}t_{k}Y_{i}\cdot 1_{\left\{(Y_{i},I_{i})\in A_{k}\right\}}\right)\cdot 1_{\left\{(Y_{i},I_{i})\in A_{k}\right\}}\right] \\ &= \sum_{l=1}^{m}\mathbb{E}\left[\exp\left(\sum_{k=1}^{m}t_{k}Y_{i}\cdot 1_{\left\{(Y_{i},I_{i})\in A_{k}\right\}}\right)\middle|(Y_{i},I_{i})\in A_{l}\right]\mathbb{P}((Y_{i},I_{i})\in A_{l}) \\ &= \sum_{l=1}^{m}\mathbb{E}\left[\exp(t_{l}Y_{i})\middle|(Y_{i},I_{i})\in A_{l}\right]p^{(l)} \\ &= \sum_{l=1}^{m}p^{(l)}M_{Y_{i}^{(l)}}(t_{l}) \end{split}$$

UH Universität Hamburg per konsciuse i per usen i per usen i per usen i

(8)

5.4 Zusammengesetzte Poisson-Verteilung

Beweis (Fortsetzung): In (8) eingesetzt liefert dies zusammen mit der momenterzeugenden Funktion von $\Pi(\lambda)$ -verteilten und ZPoisson(λ_l, F_l)-verteilten Zufallsvariablen

$$\begin{split} M_{\mathbf{S}}(t) &= \mathbb{E}\left[\left(\sum_{l=1}^{m} p^{(l)} M_{Y_{l}^{(l)}}(t_{l})\right)^{N}\right] = \mathbb{E}\left[\exp\left(N\ln\left(\sum_{l=1}^{m} p^{(l)} M_{Y_{l}^{(l)}}(t_{l})\right)\right)\right] \\ &= M_{N}\left(\ln\left(\sum_{l=1}^{m} p^{(l)} M_{Y_{l}^{(l)}}(t_{l})\right)\right) \\ &= \exp\left(\lambda\left(\sum_{l=1}^{m} p^{(l)} M_{Y_{l}^{(l)}}(t_{l}) - 1\right)\right) \\ &= \exp\left(\lambda\sum_{l=1}^{m} p^{(l)} \left(M_{Y_{l}^{(l)}}(t_{l}) - 1\right)\right) \\ &= \prod_{l=1}^{m} \exp\left(\lambda p^{(l)} \left(M_{Y_{l}^{(l)}}(t_{l}) - 1\right)\right) \\ &= \prod_{l=1}^{m} M_{S_{l}}(t_{l}). \end{split}$$

D.h. $M_{\mathbf{S}}(t)$ ist das Produkt momenterzeugender Funktionen von Zufallsvariablen $S_l \sim \text{ZPoisson}(\lambda_l, F_l)$ für $l = 1, \dots, m$. Daraus folgt unmittelbar die Behauptung.

5.4 Zusammengesetzte Poisson-Verteilung

Bemerkungen:

• Wird nur ein Portfolio betrachtet, d.h. gilt n=1, dann werden die Indikatorvariablen $I_i: \Omega \to \{1, \dots, n\}$ nicht benötigt und A_1, \dots, A_m ist dann nur eine Zerlegung von \mathbb{R}_+ . Für die Einzelschadenhöhen Y_i liefert dies die Darstellung

$$Y_i = Y_i \cdot 1_{\{Y_i \in A_1\}} + \ldots + Y_i \cdot 1_{\{Y_i \in A_m\}}$$
(9)

(siehe nächstes Beispiel).

• Wird dagegen \mathbb{R}_+ nicht zerlegt und gilt m=n, dann erfolgt die Zerlegung von $\mathbb{R}_+ \times \{1, \dots, n\}$ ausschließlich anhand der Zugehörigkeit zu einem der n Portfolios und es gilt

$$\{(Y_i, I_i) \in A_k\} = \{I_i = k\}$$
 für $k = 1, ..., n$.

5.4 Zusammengesetzte Poisson-Verteilung

Beispiel (Zerlegung eines Portfolios in Klein- und Großschäden)

Häufig existiert keine parametrische Verteilungsfunktion F, die zur Modellierung der Verteilung der Einzelschadenhöhen Y_i des Gesamtschadens

$$S = \sum_{i=1}^{N} Y_i$$

über deren kompletten Wertebereich geeignet ist. Aus diesem Grund wird der Wertebereich der Einzelschadenhöhen Y_i oftmals in verschiedene Abschnitte (layers) zerlegt, z.B. in Klein- und Großschadenlayers.

Im Folgenden wird ein Portfolio betrachtet, d.h. es gilt n=1, dessen Gesamtschaden durch

$$S \sim \text{ZPoisson}(\lambda, F)$$

gegeben ist.

5.4 Zusammengesetzte Poisson-Verteilung

Beispiel (Fortsetzung)

Die Zerlegung von \mathbb{R}_+ erfolgt durch einen großen Schwellenwert (Threshold) u>0, so dass $F(u)\in(0,1)$ gilt und somit durch

$$A_1 = [0, u]$$
 und $A_2 = (u, \infty)$

ein Klein- bzw. ein Großschadenlayer definiert ist. Für den Gesamtschaden liefert dies die Zerlegung

$$S = \sum_{i=1}^{N} Y_i = \sum_{i=1}^{N} \left(Y_i \cdot 1_{\{Y_i \in A_1\}} + Y_i \cdot 1_{\{Y_i \in A_2\}} \right)$$
$$= S_{kl} + S_{gr}$$

(vgl. (9)), wobei

$$S_{kl} := \sum_{i=1}^{N} Y_i \cdot 1_{\{Y_i \in A_1\}}$$
 und $S_{gr} := \sum_{i=1}^{N} Y_i \cdot 1_{\{Y_i \in A_2\}}$

der Gesamtschaden im Klein- bzw. im Großschadenlayer ist.

©2025 M. Merz • Universität Hamburg • Quantitatives Risikomanagement 1 • Kapitel 4

5.4 Zusammengesetzte Poisson-Verteilung

Beispiel (Fortsetzung)

Aus dem letzten Satz folgt, dass S_{kl} und S_{gr} stochastisch unabhängig sind, und für die Verteilungsfunktionen von S_{kl} und S_{gr}

$$S_{kl} \sim \text{ZPoisson}(\lambda_{kl}, F_{kl})$$
 bzw. $S_{gr} \sim \text{ZPoisson}(\lambda_{gr}, F_{gr})$

gilt, mit:

©2025 M. Merz

$$\lambda_{kl} = \lambda F(u)$$

$$F_{kl}(y) = \mathbb{P}(Y_i \le y | Y_i \le u)$$

$$\lambda_{gr} = \lambda (1 - F(u))$$

$$F_{gr}(y) = \mathbb{P}(Y_i \le y | Y_i > u)$$

Dies bedeutet insbesondere, dass die Klein- und Großschadenlayer völlig getrennt voneinander modelliert werden können und die zusammengesetzte Gesamtschadenverteilung von $S = S_{kl} + S_{gr}$ durch Faltung der Verteilungfunktionen von S_{kl} und S_{gr} bestimmt werden kann.

Abschnitt 5.5 Panjer-Algorithmus

5.5 Panjer-Algorithmus

Eine der bekanntesten numerischen Methoden zur Berechnung von f_S ist der 1981 von HARRY H. PANJER veröffentlichte Panjer-Algorithmus, der sich eine spezielle Rekursionseigenschaft einiger wichtiger Schadenanzahlverteilungen F_N zunutze macht und dabei eine diskrete Einzelschadenhöhenverteilung F_Y voraussetzt. Unter diesen Annahmen ermöglicht er eine sehr effiziente rekursive Berechnung von f_S .

Definition (Panjer-Klasse)

Eine diskrete Zufallsvariable N mit $p_k = \mathbb{P}(N=k)$ für $k \in \mathbb{N}_0$ besitzt genau dann eine Verteilung aus der Panjer-Klasse, wenn es Konstanten $a,b \in \mathbb{R}$ gibt, so dass gilt:

$$p_k = \left(a + \frac{b}{k}\right) p_{k-1}$$
 für $k = 1, 2, 3, \dots$ (10)

Durch (10) wird die relative Größe zweier hintereinander folgender Wahrscheinlichkeiten p_k und p_{k-1} beschrieben.

5.5 Panjer-Algorithmus

Bemerkungen:

- Die Panjer-Klasse wird auch als (a, b, 0)-Klasse bezeichnet. Die "0" in der Bezeichung gibt an, dass p_0 der Startwert der Rekursion ist. Damit eine wohldefinierte diskrete Verteilung resultiert, muss $p_0 \in (0, 1]$ gelten.
- Die Wahrscheinlichkeit p_0 ergibt sich aus der Rekursionsbeziehung (10), da für eine Wahrscheinlichkeitsfunktion die Randwertbedingung $\sum_{k=0}^{\infty} p_k = 1$ gelten muss. D.h. durch (10) ist die Verteilungsfunktion von N eindeutig festgelegt.
- Für die Praxis ist vor allem die adäquate Modellierung der Wahrscheinlichkeit $\mathbb{P}(N=0)$ von Bedeutung. Denn in vielen Branchen ist die Wahrscheinlichkeit für den Eintritt eines Schadens klein und die Wahrscheinlichkeitsfunktion f_N besitzt deshalb oft an der Stelle N=0 den größten Wert. Umgekehrt sind immer wieder auch Situationen zu beobachten, in denen $\mathbb{P}(N=0)=0$ gilt. Die Sundt-Jewell-Klasse ist eine Verallgemeinerung der Panjer-Klasse, die diesem Umstand Rechnung trägt. Sie wird auch als (a,b,1)-Klasse bezeichnet, wobei die "1" in der Bezeichung angibt, dass der Startwert der Rekursion p_2 ist. Neben den Verteilungen der Panjer-Klasse enthält die Sundt-Jewell-Klasse auch noch die Zero-truncated und die Zero-modified Versionen dieser Verteilungen (vgl. hierzu Abschnitt 4.6).

5.5 Panjer-Algorithmus

Beispiel (Binomial-Verteilung als Verteilung aus der Panjer-Klasse)

Für eine Bin(n,p)-verteilte Zufallsvariable N mit $n \in \mathbb{N}$ und $p \in (0,1)$ gilt

$$p_{k} = \binom{n}{k} p^{k} (1-p)^{n-k} = \frac{n!}{(n-k)!k!} p^{k} (1-p)^{n-k}$$

$$= \frac{p}{1-p} \frac{n - (k-1)}{k} \frac{n!}{(n - (k-1))!(k-1)!} p^{k-1} (1-p)^{n-k+1}$$

$$= \frac{p}{1-p} \frac{n - (k-1)}{k} \binom{n}{k-1} p^{k-1} (1-p)^{n-k+1}$$

$$= \frac{p}{1-p} \left(-1 + \frac{n+1}{k}\right) p_{k-1}$$
(11)

für $k \in \{1, \dots, n\}$. Ferner gilt $p_0 = (1-p)^n > 0$. Mit (11) und k = n+1 folgt weiter $p_{n+1} = 0$ und damit insbesondere $p_k = 0$ für alle k > n. D.h. die Binomial-Verteilung gehört zur Panjer-Klasse mit den Parametern

$$a = -\frac{p}{1-p}$$
 und $b = \frac{p}{1-p}(n+1) = -a(n+1)$.

5.5 Panjer-Algorithmus

Beispiel (Poisson-Verteilung als Verteilung aus der Panjer-Klasse)

Für eine $\Pi(\lambda)$ -verteilte Zufallsvariable N mit $\lambda > 0$ gilt $p_0 = e^{-\lambda} > 0$ und

$$p_{k} = \frac{\lambda^{k}}{k!} e^{-\lambda}$$

$$= \frac{\lambda}{k} \frac{\lambda^{k-1}}{(k-1)!} e^{-\lambda}$$

$$= \frac{\lambda}{k} p_{k-1}$$

für alle $k \in \mathbb{N}$. D.h. die Poisson-Verteilung gehört zur Panjer-Klasse mit den Parametern

$$a = 0$$
 und $b = \lambda$.

5.5 Panjer-Algorithmus

Beispiel (Negative Binomialverteilung als Verteilung aus der Panjer-Klasse)

Für eine NBin(r,p)-verteilte Zufallsvariable N mit r > 0 und $p \in (0,1)$ gilt $p_0 = p^r > 0$ und für $k \in \mathbb{N}$:

$$p_{k} = {k+r-1 \choose k} p^{r} (1-p)^{k}$$

$$= (1-p) \frac{(k+r-1)!}{(r-1)!k!} p^{r} (1-p)^{k-1}$$

$$= (1-p) \frac{k+r-1}{k} \frac{(k+r-2)!}{(r-1)!(k-1)!} p^{r} (1-p)^{k-1}$$

$$= (1-p) \frac{k+r-1}{k} {k+r-2 \choose k-1} p^{r} (1-p)^{k-1}$$

$$= (1-p) \left(1 + \frac{r-1}{k}\right) p_{k-1}$$

$$= \left(1-p + \frac{(1-p)(r-1)}{k}\right) p_{k-1}$$

Kapitel 4

5.5 Panjer-Algorithmus

Beispiel (Fortsetzung)

D.h. die Negative Binomialverteilung gehört zur Panjer-Klasse mit den Parametern

$$a = 1 - p$$
 und $b = (1 - p)(r - 1)$.

Somit gilt insgesamt:

Verteilung	p_0	а	b
Bin(n,p)	$(1-p)^n$	$-\frac{p}{1-p}$	$\frac{p}{1-p}(n+1)$
$\Pi(\lambda)$	$e^{-\lambda}$	0	λ
NBin(r,p)	p^r	1-p	(1-p)(r-1)

Die Gültigkeit des folgenden Charakterisierungssatzes für die Panjer-Klasse wurde 1981 von BJØRN SUNDT und WILLIAM S. JEWELL (1932–2003) nachgewiesen. Er besagt, dass neben diesen drei Schadenanzahlverteilungen nur noch die (als Schadenanzahl nutzlose) degenerierte Verteilung mit $p_0 = 1$ und $p_k = 0$ für $k \in \mathbb{N}$ zur Panjer-Klasse gehört. Diese resultiert für $p_0 = 1$ und a = -b.

5.5 Panjer-Algorithmus

Satz (Charakterisierung der Panjer-Klasse)

Eine Verteilung aus der Panjer-Klasse ist entweder eine degenerierte Verteilung mit der Punktmasse 1 bei 0, eine Binomialverteilung, eine Poisson-Verteilung oder eine negative Binomial-Verteilung.

Beweis: Für den nicht schweren Beweis siehe z.B. SUNDT. B. & VERNIC, R. (2009), Seiten 39-40.

Durch Umformen der Rekursionsformel (10) erhält man

$$k \frac{p_k}{p_{k-1}} = ak + b \qquad \text{für alle } k \in \mathbb{N}.$$
 (12)

Die rechte Seite von (12) ist eine lineare Funktion in k mit der Steigung a, wobei a < 0 für die Binomialverteilung, a = 0 für die Poisson-Verteilung und a > 0 für die negative Binomial-Verteilung gilt. Durch Betrachtung des Streudiagramms

$$\left(k, k \frac{\widehat{p}_k}{\widehat{p}_{k-1}}\right)$$
 mit $\widehat{p}_k := \frac{n_k}{n}$

erhält man somit eine einfache grafische ad-hoc Methode zur Untersuchung, welche der drei nicht degenerierten Verteilungen aus der Panjer-Klasse am besten zur Modellierung der beobachteten Schadenanzahlen n_k geeignet ist.

©2025 M. Merz

Universität Hamburg • Quantitatives Risikomanagement 1 • Kapitel 4

5.5 Panjer-Algorithmus

Beispiel (Auswahl einer Verteilung aus der Panjer-Klasse)

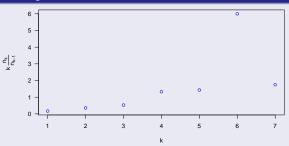
Die folgenden Schadenanzahlen aus der Kfz-Versicherung sind von THYRION (1960):

Anzahl Schäden k	Anzahl Fahrzeuge n _k	$k \frac{n_k}{n_{k-1}}$
pro Jahr		, ı
0	7840	
1	1317	0,17
2	239	0,36
3	42	0,53
4	14	1,33
5	4	1,43
6	4	6,00
7	1	1,75
8+	0	
Total	9461	

Das folgende Streudiagramm zeigt bis auf den Wert für k = 6 einen annähernd linearen Zusammenhang zwischen k und $k \frac{n_k}{n_{k-1}}$. Da der Wert bei k=6 jedoch auf wenigen Beobachtungen basiert, ist er weniger zuverlässig. Es erscheint daher eine Verteilung aus der Panjer-Klasse zur Modellierung der Schadenanzahl angebracht, wobei die leicht positive Steigung für eine Poisson- oder negative Binomialverteilung spricht. Ein Vergleich des Mittelwerts 0,2144 und der empirischen Varianz 0,2889 deutet ebenfalls auf eine Poisson- oder negative Binomialverteilung hin.

5.5 Panjer-Algorithmus

Beispiel (Fortsetzung)



Werden mittels ML-Methode eine Poisson-Verteilung und eine negative Binomial-Verteilung an die Daten angepasst, erhält man:

Verteilung	ML-Schätzungen	 Loglikelihood
$\Pi(\widehat{\lambda})$	$\hat{\lambda} = 0.2143537$	5490,78
$NBin(\widehat{r},\widehat{p})$	$\hat{r} = 0.7015122$	5348,04
	$\hat{p} = 0.7659552$	

Dieses Ergebnis legt eine negative Binomialverteilung nahe.

5.5 Panjer-Algorithmus

Der 1981 von HARRY H. PANJER publizierte Panjer-Algorithmus ist eines der wichtigsten Resultate der Risikotheorie. Neben der effizienten rekursiven Berechnung von f_S wird er z.B. auch in der Ruin-Theorie und bei der Quantifizierung von Kreditund operationellen Risiken eingesetzt.

Satz (Panjer-Algorithmus)

Für den Gesamtschaden

$$S = \sum_{i=1}^{N} Y_i$$

seien die folgenden Annahmen erfüllt:

- a) Die Schadenanzahlverteilung F_N sei aus der Panjer-Klasse.
- b) Die Einzelschadenhöhen Y_i besitzen als Träger eine Teilmenge von $\{0, u, 2u, \dots, mu\}$ mit $m \in \mathbb{N} \cup \{\infty\}, u > 0$ und $af_Y(0) \neq 1$.
- c) N und Y_1, Y_2, \dots sind stochastisch unabhängig.

Dann gilt

5.5 Panjer-Algorithmus

Satz (Fortsetzung)

$$f_S(0) = \begin{cases} p_0 & \text{für } f_Y(0) = 0\\ M_N(\ln(f_Y(0))) & \text{für } f_Y(0) > 0 \end{cases}$$
 (13)

und

$$f_S(lu) = \frac{1}{1 - af_Y(0)} \sum_{k=1}^{l} \left(a + \frac{bk}{l} \right) f_Y(ku) f_S((l-k)u) \quad \text{für alle } l \in \mathbb{N}.$$
 (14)

Beweis: Aus der stochastischen Unabhängigkeit und der Nichtnegativität der Einzelschadenhöhen $Y_i \sim F_Y$ folgt

$$\begin{split} f_Y^{\star n}(0) &= \mathbb{P}\left(\sum_{i=1}^n Y_i = 0\right) = \mathbb{P}\left(\bigcap_{i=1}^n \{Y_i = 0\}\right) \\ &= \prod_{i=1}^n \mathbb{P}(Y_i = 0) = (\mathbb{P}(Y = 0))^n = (f_Y(0))^n \end{split}$$

für alle $n \in \mathcal{N}$. Mit der Faltungsformel (6) folgt daraus weiter:

5.5 Panjer-Algorithmus

Beweis:

$$\begin{split} f_S(0) &= \sum_{n \in \mathcal{N}} f_Y^n(0) \cdot \mathbb{P}(N=n) \\ &= \sum_{n \in \mathcal{N}} (f_Y(0))^n \cdot \mathbb{P}(N=n) \\ &= \begin{cases} \mathbb{P}(N=0) & \text{für } f_Y(0) = 0 \\ \sum_{n \in \mathcal{N}} e^{\ln\left(\left(f_Y(0)\right)^n\right)} \cdot \mathbb{P}(N=n) & \text{für } f_Y(0) > 0 \end{cases} \\ &= \begin{cases} p_0 & \text{für } f_Y(0) = 0 \\ M_N\left(\ln(f_Y(0))\right) & \text{für } f_Y(0) > 0 \end{cases} \end{split}$$

D.h. die Behauptung (13) ist richtig. Es sei nun $S_m := \sum_{i=1}^m Y_i$. Dann erhält man

$$\begin{split} \mathbb{E}\left[a+\frac{bY_1}{lu}\,\middle|\,S_m=lu\right] &= a+\frac{b}{lu}\,\frac{1}{m}m\mathbb{E}\left[Y_1\middle|\,S_m=lu\right] \\ &= a+\frac{b}{lu}\,\frac{1}{m}\sum_{i=1}^m\mathbb{E}\left[Y_i\middle|\,S_m=lu\right] \\ &= a+\frac{b}{lu}\,\frac{1}{m}\,\mathbb{E}\left[S_m\middle|\,S_m=lu\right] \\ &= a+\frac{b}{lu}\,\frac{1}{m}\,lu = a+\frac{b}{m} \end{split}$$

(15)

sowie

5.5 Panjer-Algorithmus

Beweis (Fortsetzung):

$$\begin{split} \mathbb{E}\left[a + \frac{bY_1}{lu} \middle| S_m = lu\right] &= \sum_{k=0}^{l} \left(a + \frac{b \cdot ku}{lu}\right) \cdot \mathbb{P}\left(Y_1 = ku \middle| S_m = lu\right) \\ &= \sum_{k=0}^{l} \left(a + \frac{b \cdot ku}{lu}\right) \cdot \frac{\mathbb{P}\left(Y_1 = ku \land S_m = lu\right)}{\mathbb{P}(S_m = lu)} \\ &= \sum_{k=0}^{l} \left(a + \frac{b \cdot ku}{lu}\right) \cdot \frac{\mathbb{P}\left(Y_1 = ku \land S_m - Y_1 = lu - ku\right)}{\mathbb{P}(S_m = lu)} \\ &= \sum_{k=0}^{l} \left(a + \frac{b \cdot ku}{lu}\right) \cdot \frac{\mathbb{P}\left(Y_1 = ku\right) \cdot \mathbb{P}\left(S_m - Y_1 = (l - k)u\right)}{\mathbb{P}(S_m = lu)} \,. \end{split}$$

Mit (15)-(16) und der Tatsache, dass F_N eine Verteilung aus der Panjer-Klasse ist, folgt für s=lu>0 mit $l\in\mathbb{N}$:

$$\begin{split} f_S(lu) &= \sum_{m \in \mathcal{N} \setminus \{0\}} p_m \cdot \mathbb{P}(S_m = lu) \\ &= \sum_{m \in \mathcal{N} \setminus \{0\}} p_{m-1} \left(a + \frac{b}{m} \right) \cdot \mathbb{P}(S_m = lu) \\ &= \sum_{m \in \mathcal{N} \setminus \{0\}} p_{m-1} \mathbb{E} \left[a + \frac{bY_1}{lu} \middle| S_m = lu \right] \cdot \mathbb{P}(S_m = lu) \\ &= \sum_{m \in \mathcal{N} \setminus \{0\}} p_{m-1} \sum_{k=0}^{l} \left(a + \frac{b \cdot ku}{lu} \right) \cdot \mathbb{P}(Y_1 = ku) \cdot \mathbb{P}(S_m - Y_1 = (l-k)u) \\ &= \sum_{k=0}^{l} \left(a + \frac{b \cdot ku}{lu} \right) \cdot \mathbb{P}(Y_1 = ku) \cdot \sum_{m \in \mathcal{N} \setminus \{0\}} p_{m-1} \cdot \mathbb{P}(S_m - Y_1 = (l-k)u) \\ &= \sum_{k=0}^{l} \left(a + \frac{b \cdot ku}{lu} \right) f_Y(ku) f_S((l-k)u) \end{split}$$

(16)

5.5 Panjer-Algorithmus

Beweis (Fortsetzung): Damit erhält man schließlich die Behauptung (14):

$$\begin{split} f_S(lu) &= af_Y(0)f_S(lu) + \sum_{k=1}^l \left(a + \frac{bk}{l}\right)f_Y(ku)f_S((l-k)u) \\ &= \frac{1}{1 - af_Y(0)} \sum_{k=1}^l \left(a + \frac{bk}{l}\right)f_Y(ku)f_S((l-k)u). \end{split}$$

Bemerkungen:

- Im Gegensatz zum kollektiven Modell (vgl. Abschnitt 5.2) ist $F_Y(0) > 0$ zugelassen.
- Die Verteilungsfunktion F_Y einer Zufallsvariablen Y, deren Träger eine Teilmenge von $\{0, u, 2u, ..., mu\}$ mit $m \in \mathbb{N} \cup \{\infty\}$ und u > 0 ist, wird als arithmetische Verteilung bezeichnet. Der Wert u > 0 wird Spannweite von F_Y genannt und kann als die Geldeinheit interpretiert werden, in der die Einzelschadenhöhen Y_i gemessen werden.

5.5 Panjer-Algorithmus

Bemerkungen (Fortsetzung):

- Mit dem Panjer-Algorithmus können die Wahrscheinlichkeiten $f_S(lu)$ mittels der Wahrscheinlichkeiten $f_S((l-1)u)$, $f_S((l-2)u)$,..., $f_S(0)$ rekursiv berechnet werden. In den meisten praktischen Anwendungen wird hierzu zwar ein Computer benötigt, jedoch müssen im Gegensatz zur Faltungsformel (6) keine Faltungen f_Y^{*n} berechnet werden. Dies stellt einen erheblichen Effizienzgewinn dar.
- Wenn die Voraussetzungen des letzten Satzes erfüllt sind, liefert der Panjer-Algorithmus exakte Werte für die Wahrscheinlichkeiten $f_S(s)$.
- OBdA gelte u = 1 und der Träger von Y sei $\{0, 1, 2, \ldots\} = \mathbb{N}_0$. Die Berechnung der Wahrscheinlichkeiten $f_S(l)$ für $l = 0, \ldots, m$ würde dann bei Verwendung der Faltungsformel (6) eine Anzahl von Rechenoperationen der Größenordnung m^3 erfordern. Für große m ist daher selbst für schnelle Rechner die Berechnung von f_S sehr zeitaufwendig. Zum Beispiel werden im Falle von m = 1000 bereits 10^9 Rechenoperationen benötigt.
- Bei Anwendung des Panjer-Algorithmus wird eine Anzahl von Rechenoperationen der Größenordnung m² benötigt. Für m = 1000 sind dies 10⁶ Rechenoperationen. Verglichen mit der Faltungsformel bedeutet dies eine Reduktion des Rechenaufwands um 99,9%.

5.5 Panjer-Algorithmus

Bemerkungen (Fortsetzung):

- Besitzt der Träger von Y einen endlichen rechten Randwert mu, d.h. gilt $F_Y(mu) = 1$, dann besitzt die Summe in der Rekursionsformel (14) höchstens m Terme ungleich Null. In diesem Fall benötigt der Panjer-Algorithmus eine Anzahl an Rechenoperationen in der Größenordnung von m. Er ist damit sogar schneller als die Fast-Fourier-Transformation, bei der die Anzahl an Rechenoperationen $m \log_2(m)$ beträgt (vgl. Abschnitt 5.7).
- Mit den Wahrscheinlichkeiten $f_S(lu) = \mathbb{P}(S = lu)$ und $F_S(lu) = \mathbb{P}(S < lu)$ können zu einem vorgegeben Signifikanzniveau $q \in (0,1)$ leicht Schätzungen für den Value-at-Risk und den Expected-Shortfall von S berechnet werden:

$$\widehat{\operatorname{VaR}}_q(S) := \inf_{lu \in \mathbb{R}} \{ F_S(lu) \ge q \}$$

bzw.

$$\widehat{\mathrm{ES}}_q(S) := \frac{1}{1 - q} \sum_{lu \ge \widehat{\mathrm{VaR}}_q(S)} lu \cdot f_S(lu)$$

Kapitel 4

5.5 Panjer-Algorithmus

Beispiel (Berechnung von f_S mittels Panjer-Algorithmus für $N \sim \Pi(3)$)

Der Gesamtschaden

$$S = \sum_{i=1}^{N} Y_i$$

besitze eine zusammengesetzte Poisson-Verteilung mit $N \sim \Pi(3)$ und gleichverteilten Einzelschadenhöhen Y_i auf der Menge $\{100, 200, \dots, 900\}$. D.h. es gilt u = 100und $f_Y(0) = 0$. Aus $N \sim \Pi(3)$ folgt a = 0 und $b = \lambda = 3$. Die Panjer-Rekursionsformel (14) vereinfacht sich daher zu

$$f_{S}(100l) = \sum_{k=1}^{l} \left(a + \frac{bk}{l} \right) f_{Y}(100k) f_{S}(100(l-k))$$

$$= \sum_{k=1}^{\min\{l,9\}} \frac{3k}{l} f_{Y}(100k) f_{S}(100(l-k))$$

$$= \frac{1}{3l} \sum_{k=1}^{\min\{l,9\}} k f_{S}((l-k)100) \quad \text{für alle } l \in \mathbb{N}.$$

5.5 Panjer-Algorithmus

Beispiel (Fortsetzung)

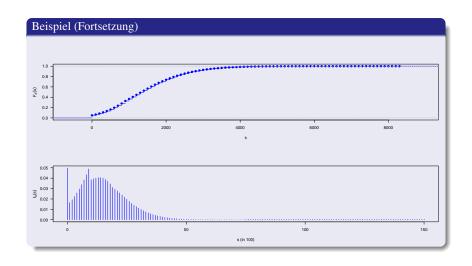
Für l = 0 gilt ferner

$$f_S(0) = p_0 = e^{-3} \approx 0.0498.$$

Mit der Panjer-Rekursionsformel erhält man somit für $l \in \mathbb{N}$ die Werte:

$$\begin{split} f_S(100) &= \frac{1}{3} f_S(0) \approx 0,0166 \\ f_S(200) &= \frac{1}{6} \left(f_S(100) + 2 f_S(0) \right) \approx 0,0194 \\ f_S(300) &= \frac{1}{9} \left(f_S(200) + 2 f_S(100) + 3 f_S(0) \right) \approx 0,0224 \\ f_S(400) &= \frac{1}{12} \left(f_S(300) + 2 f_S(200) + 3 f_S(100) + 4 f_S(0) \right) \approx 0,0258 \\ & \cdot \end{split}$$

5.5 Panjer-Algorithmus



5.5 Panjer-Algorithmus

Beispiel (Fortsetzung)

R-Code:

5.5 Panjer-Algorithmus

Wie das folgende Beispiel zeigt, existiert im Fall einer Geometrisch-verteilten Schadenanzahl N auch eine Rekursionsformel für die zusammengesetzte Gesamtschadenverteilung F_S . Sie ist ein wichtiges Hilfsmittel in der Ruin-Theorie.

Beispiel (Berechnung von F_S mittels Panjer-Algorithmus für $N \sim \text{Geo}(p)$)

Die Schadenanzahl N besitze eine Geo(p)-Verteilung mit $p \in (0,1)$. Wegen Geo(p) = NBin(1,p) bedeutet dies

$$a = q$$
 mit $q = 1 - p$ und $b = 0$.

Die Rekursionsformel (14) vereinfacht sich somit für alle $l \in \mathbb{N}$ zu

$$f_S(lu) = \frac{1}{1 - af_Y(0)} \sum_{k=1}^{l} \left(a + \frac{bk}{l} \right) f_Y(ku) f_S((l-k)u)$$
$$= \frac{q}{1 - af_Y(0)} \sum_{k=1}^{l} f_Y(ku) f_S((l-k)u).$$

5.5 Panjer-Algorithmus

Beispiel (Fortsetzung)

Damit erhält man für F_S die Rekursionsformel

$$F_{S}(nu) = \sum_{l=0}^{n} f_{S}(lu)$$

$$= f_{S}(0) + \sum_{l=1}^{n} \frac{q}{1 - af_{Y}(0)} \sum_{k=1}^{l} f_{Y}(ku) f_{S}((l-k)u)$$

$$= f_{S}(0) + \frac{q}{1 - af_{Y}(0)} \sum_{l=1}^{n} \sum_{k=1}^{l} f_{Y}(ku) f_{S}((l-k)u)$$

$$= f_{S}(0) + \frac{q}{1 - af_{Y}(0)} \sum_{k=1}^{n} f_{Y}(ku) \sum_{l=k}^{n} f_{S}((l-k)u)$$

$$= f_{S}(0) + \frac{q}{1 - af_{Y}(0)} \sum_{k=1}^{n} f_{Y}(ku) F_{S}((n-k)u)$$

für alle $n \in \mathbb{N}$.

5.5 Panjer-Algorithmus

©2025 M. Merz

Beispiel (Aggregation von zwei zusammengesetzten Gesamtschadenverteilungen)

Für die beiden stochastisch unabhängigen Gesamtschäden S_1 und S_2 gelte

$$S_1 \sim \text{ZPoisson}(2, F_Y)$$
 und $S_2 \sim \text{ZNBin}(2, 1/2, F_Y)$,

wobei die Einzelschadenhöhen Y den Wertebereich $\{1,2,3\}$ mit

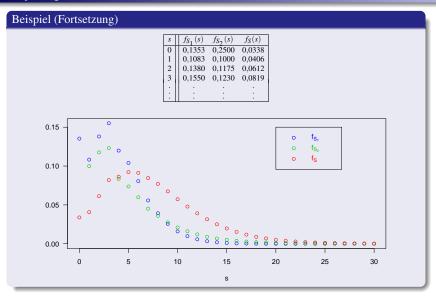
$$f_Y(1) = \frac{2}{5}$$
, $f_Y(2) = \frac{7}{20}$ und $f_Y(3) = \frac{1}{4}$

besitzen. D.h. die beiden Wahrscheinlichkeitsfunktionen f_{S_1} und f_{S_2} können jeweils mit dem Panjer-Algorithmus berechnet werden und daraus kann dann anschließend die Wahrscheinlichkeitsfunktion des aggregierten Gesamtschadens $S=S_1+S_2$ mittels der Faltungsformel

$$f_S(s) = \sum_{s_1=0}^s f_{S_1}(s_1) f_{S_2}(s-s_1) \quad \text{für } s \in \mathbb{N}_0$$

ermittelt werden. Man erhält dann die folgenden Werte (gerundet auf vier Nachkommastellen):

5.5 Panjer-Algorithmus



5.5 Panjer-Algorithmus

Beispiel (Fortsetzung)

R-Code:

```
###
# Aggregation von zwei zusammengesetzten Gesamtschadenverteilungen
library(actuar)
F.S1<-aggregateDist("recursive", model.freq = "poisson",
                      model.sev = c(0,0.4,0.35,0.25), lambda = 2, x.scale = 1)
F.S2<-aggregateDist("recursive", model.freq = "negative binomial",
                      model.sev = c(0.0.4.0.35.0.25), size=2, prob = 0.5, x.scale = 1)
# Erzeugung von f.S1 und f.S2
f.S1<-c(F.S1(0),diff(F.S1(0:30)))
f.S2<-c(F.S2(0),diff(F.S2(0:30)))
# Erzeugung von f.S
f.S<-rep(0,31)
for (s in 1:31)
              f.S[s]<-f.S1[1:s]%*%f.S2[s:1]
# Erzeugung eines Plots mit f.S1, f.S2 und f.S
par(mfrow=c(1,1), cex=2, mar=c(4,3,1,1))
s \leftarrow seq(0,30)
plot(s, f.S1, col=4, las=1, type="p", xlab="s", ylab="")
lines(s, f.S2, col=3, las=1, type="p", xlab="s")
lines(s, f.S, col=2, las=1, type="p", xlab="s")
legend(20,0.15, c(expression(f[S[1]]), expression(f[S[2]]), expression(f[S])), col = c(4, 3, 2),
       pch = c(1,1,1), text.col = c(4,3,2))
```

5.5 Panjer-Algorithmus

Mit Hilfe des Panjer-Algorithmus lässt sich auch eine Rekursionsformel für die Momente $\mathbb{E}[S^r]$ des Gesamtschadens S ermitteln:

Folgerung (Panjer-Algorithmus für Momente von S)

Unter den Annahmen des Panjer-Algorithums gilt für die Momente der zusammengesetzten Gesamtschadenverteilung F_S (falls sie existieren) die Rekursionsformel

$$\mathbb{E}[S^r] = \frac{1}{1-a} \sum_{j=0}^{r-1} \left[a \binom{r}{j} + b \binom{r-1}{j} \right] \mathbb{E}[S^j] \mathbb{E}[Y^{r-j}]$$
 (17)

für alle $r \in \mathbb{N}$.

Beweis: Für den etwas mühsamen, aber nicht schweren Beweis siehe z.B. DICKSON (2005), Seite 71.

©2025 M. Merz

5.5 Panjer-Algorithmus

Beispiel (Berechnung von $\mathbb{E}[S^r]$ mittels Panjer-Algorithmus für $N \sim \Pi(\lambda)$)

Der Gesamtschaden

$$S = \sum_{i=1}^{N} Y_i$$

besitze eine zusammengesetzte Poisson-Verteilung mit $N \sim \Pi(\lambda)$ und $\lambda > 0$. D.h. es gilt a = 0 und $b = \lambda$ und mit (17) folgt somit

$$\mathbb{E}[S^r] = \lambda \sum_{i=0}^{r-1} \binom{r-1}{j} \mathbb{E}[S^j] \mathbb{E}[Y^{r-j}] \qquad \text{ für alle } r \in \mathbb{N}.$$

Für r = 1, 2, 3 erhält man damit:

$$\mathbb{E}[S] = \lambda \mathbb{E}[Y]$$

$$\mathbb{E}[S^2] = \lambda \left(\mathbb{E}[Y^2] + \mathbb{E}[S]\mathbb{E}[Y] \right) = \lambda \mathbb{E}[Y^2] + \mathbb{E}[S]^2$$

und

5.5 Panjer-Algorithmus

Beispiel (Fortsetzung)

$$\mathbb{E}[S^3] = \lambda \left(\mathbb{E}[Y^3] + 2\mathbb{E}[S]\mathbb{E}[Y^2] + \mathbb{E}[S^2]\mathbb{E}[Y] \right)$$
$$= \lambda \mathbb{E}[Y^3] + 2\mathbb{E}[S]\operatorname{Var}(S) + \mathbb{E}[S^2]\mathbb{E}[S]$$
$$= \lambda \mathbb{E}[Y^3] + 3\mathbb{E}[S]\mathbb{E}[S^2] - 2\mathbb{E}[S]^3.$$

Daraus folgt insbesondere

$$\mathbb{E}\left[\left(S - \mathbb{E}[S]\right)^3\right] = \dots = \mathbb{E}[S^3] - 3\mathbb{E}[S]\mathbb{E}[S^2] + 2\mathbb{E}[S]^3 = \lambda \mathbb{E}[Y^3].$$

Damit erhält man für die Schiefe von S den Ausdruck

$$V(S) = \frac{\mathbb{E}\left[(S - \mathbb{E}[S])^3 \right]}{\text{Var}(S)^{3/2}} = \frac{\lambda \mathbb{E}[Y^3]}{(\lambda \mathbb{E}[Y^2])^{3/2}} = \frac{1}{\sqrt{\lambda}} \frac{\mathbb{E}[Y^3]}{\mathbb{E}[Y^2]^{3/2}} > 0.$$
 (18)

D.h. eine zusammengesetzte Poisson-Verteilung ist stets rechtsschief.

Abschnitt 5.6 Diskretisierungsmethoden

5.6 Diskretisierungsmethoden

Der Panjer-Algorithmus zur rekursiven Berechnung der Wahrscheinlichkeitsfunktion f_S des Gesamtschadens S setzt eine arithmetische Verteilung als Einzelschadenhöhenverteilung F_Y voraus. D.h. der Träger von Y muss von der Form

$$\{0,u,2u,\ldots,mu\} \qquad \text{mit} \quad m \in \mathbb{N} \cup \{\infty\} \quad \text{und} \quad u > 0$$

sein. In der Praxis werden jedoch häufig stetige Einzelschadenhöhenverteilungen F_Y , wie z.B. Gamma-, Lognormal-, Pareto- oder Burr-Verteilung verwendet. D.h. stetige Verteilungen von Zufallsvariablen Y, deren Träger

$$[0,\infty)$$

ist. In einem solchen Fall muss F_Y zuerst durch eine arithmetische Verteilung \widetilde{F}_Y approximiert werden. Bei dieser Diskretisierung ist darauf zu achten, dass die wesentlichen Eigenschaften der Einzelschadenhöhenverteilung F_Y , wie z.B. ihre Form, der rechte Tail oder bestimmte Momente erhalten bleiben. Die Anwendung des Panjer-Algorithmus auf \widetilde{F}_Y liefert dann eine Approximation \widetilde{f}_S für die Dichte bzw. Wahrscheinlichkeitsfunktion f_S des Gesamtschadens S. Diese Approximation ist umso besser, je kleiner u ist.

Annahme: Für die stetige Einzelschadenhöhenverteilung F_Y gelte $F_Y(0) = 0$.

5.6 Diskretisierungsmethoden

Im Folgenden werden vier einfache Diskretisierungsmethoden vorgestellt:

a) Method of rounding

Definiere

$$f_0 := \mathbb{P}(0 \le Y \le u/2)$$

$$= F_Y(u/2)$$

$$f_j := \mathbb{P}((j-1/2)u < Y \le (j+1/2)u)$$

$$= F_Y((j+1/2)u) - F_Y((j-1/2)u) \quad \text{für } j = 1, \dots, m$$

und

$$\widetilde{F}_Y(ku) := \sum_{i=0}^k f_j$$
 für $k = 0, \dots, m$.

Dann gilt

$$\widetilde{F}_Y(ku) = F_Y((k+1/2)u) \ge F_Y(ku)$$
 für $k = 0, \dots, m$.

5.6 Diskretisierungsmethoden

Beispiel (Diskretisierung mittels method of rounding)

Die Einzelschadenhöhenverteilung F_Y sei eine Exponentialverteilung mit Parameter $\mu = \frac{1}{10}$. D.h. es gilt

$$F_Y(y) = \begin{cases} 1 - e^{-\frac{1}{10}y} & \text{für } y \ge 0\\ 0 & \text{sonst} \end{cases}$$
 (19)

Mit der method of rounding und u = 2 erhält man dann:

$$f_0 = F_Y(1) = 1 - e^{-\frac{1}{10}} \approx 0,09516$$

$$f_j = F_Y(2j+1) - F_Y(2j-1) = e^{-\frac{1}{10}(2j-1)} - e^{-\frac{1}{10}(2j+1)} \quad \text{für } j = 1, \dots, m$$

Dies liefert die folgenden Werte:

j	0	1	2	3	4	5	6	7	8	9	10
f_j	0,09516	0,16402	0,13429	0,10995	0,09002	0,07370	0,06034	0,04940	0,04045	0,03311	0,02711

©2025 M. Merz

5.6 Diskretisierungsmethoden

b) Lower probability matching method

Definiere

$$f_j := \mathbb{P}((j-1)u < Y \le ju) = F_Y(ju) - F_Y((j-1)u)$$
 für $j = 1, ..., m$

und

$$\widetilde{F}_Y(ku) := \sum_{j=1}^k f_j$$
 für $k = 0, \dots, m$.

Dann gilt

$$\widetilde{F}_Y(ku) = F_Y(ku)$$
 für $k = 0, ..., m$

und

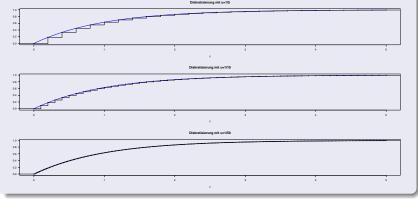
$$\widetilde{F}_Y(y) \le F_Y(y)$$
 für $0 \le y \le mu$.

D.h. \widetilde{F}_Y ist eine untere Schranke (lower bound) von F_Y .

5.6 Diskretisierungsmethoden

Beispiel (Diskretisierung mittels lower probability matching method)

Die folgende Abbildung zeigt Diskretisierungen \widetilde{F}_Y der Exponentialverteilung F_Y mit dem Erwartungswert 1 mittels der lower probability matching method und den Spannweiten u=1/5, u=1/10 und u=1/50.



5.6 Diskretisierungsmethoden

c) Upper probability matching method

Definiere

$$f_j := \begin{cases} \mathbb{P}(Y \le u) = F_Y(u) & \text{für } j = 0 \\ \mathbb{P}(ju < Y \le (j+1)u) = F_Y((j+1)u) - F_Y(ju) & \text{für } j = 1, \dots, m-1 \end{cases}$$

und

$$\widetilde{F}_Y(ku) := \sum_{i=0}^k f_i \text{ für } k = 0, \dots, m-1.$$

Dann gilt

$$\widetilde{F}_Y(ku) = F_Y((k+1)u)$$
 für $k = 0, \dots, m-1$

und

$$\widetilde{F}_Y(y) \ge F_Y(y)$$
 für $0 \le y \le mu$.

D.h. \widetilde{F}_{V} ist eine obere Schranke (upper bound) von F_{V} .

5.6 Diskretisierungsmethoden

d) Method of expectation matching

Die Wahrscheinlichkeiten f_0, \dots, f_m sind implizit definiert durch

$$\widetilde{F}_Y(ku) := \sum_{j=0}^k f_j = \frac{1}{u} \int_{ku}^{(k+1)u} F_Y(y) \, dy \quad \text{für } k = 0, \dots, m.$$

Für den Erwartungswert einer Zufallsvariablen $\widetilde{Y} \sim \widetilde{F}_Y$ gilt dann

$$\begin{split} \mathbb{E}[\widetilde{Y}] &= \sum_{k=0}^{m} u \left(1 - \widetilde{F}_{Y}(ku) \right) \\ &= \sum_{k=0}^{m} u \left(1 - \frac{1}{u} \int_{ku}^{(k+1)u} F_{Y}(y) \, dy \right) \\ &= \sum_{k=0}^{m} \int_{ku}^{(k+1)u} \left(1 - F_{Y}(y) \right) \, dy = \int_{0}^{(m+1)u} \left(1 - F_{Y}(y) \right) \, dy. \end{split}$$

Der Grenzübergang $m \to \infty$ liefert somit

$$\mathbb{E}[\widetilde{Y}] = \int_0^\infty (1 - F_Y(y)) dy = \mathbb{E}[Y].$$

D.h. bei dieser Diskretisierungsmethode wird der Erwartungswert erhalten.

5.6 Diskretisierungsmethoden

Beispiel (Diskretisierung mittels method of expectation matching)

Die Einzelschadenhöhenverteilung F_Y sei wieder eine Exponentialverteilung mit Parameter $\mu = \frac{1}{10}$. D.h. F_Y ist gegeben durch (19). Mit der Methode method of expectation matching und u = 2 erhält man dann:

$$f_0 = \widetilde{F}_Y(0) = \frac{1}{2} \int_0^2 \left(1 - e^{-\frac{1}{10}y} \right) dy = 5e^{-\frac{1}{5}} - 4 \approx 0,09365$$

$$f_j = \widetilde{F}_Y(ju) - \widetilde{F}_Y((j-1)u)$$

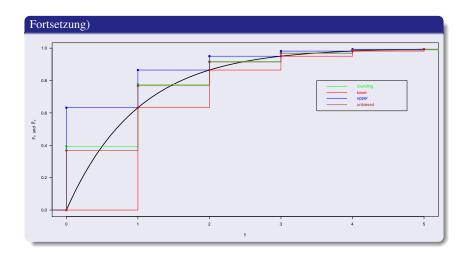
$$= \frac{1}{2} \int_{2j}^{2(j+1)} \left(1 - e^{-\frac{1}{10}y} \right) dy - \frac{1}{2} \int_{2(j-1)}^{2j} \left(1 - e^{-\frac{1}{10}y} \right) dy$$

$$= 5e^{-\frac{1}{5}(j+1)} - 10e^{-\frac{1}{5}j} + 5e^{-\frac{1}{5}(j-1)} \quad \text{für } j = 1, \dots, m$$

Dies liefert die folgenden Werte:

j	0	1	2	3	4	5	6	7	8	9	10
f_j	0,09365	0,16429	0,13451	0,11013	0,09017	0,07382	0,06044	0,04948	0,04051	0,03317	0,02716

5.6 Diskretisierungsmethoden



5.6 Diskretisierungsmethoden

Bemerkungen:

- Eine sehr kleine Spannweite u führt schnell zu einer hohen Rechenzeit. Als Faustregel gilt, dass bei praktischen Anwendungen eine Spannweite von E[Y]/20 oftmals eine ausreichend gute Approximation FY liefert.
- Die Method of expectation matching geht auf DE VYLDER- GOOVAERTS (1988) zurück. Für eine Diskretisierungsmethode, bei der sogar die ersten p Momente von Fy erhalten werden, siehe GERBER-JONES (1976). Es hat sich jedoch gezeigt, dass die Erhaltung der ersten beiden Momente i.d.R. völlig ausreichend ist und die zusätzliche Erhaltung höherer Momente nur noch eine marginale Verbesserung mit sich bringt. Diese Diskretisierungsmethode hat jedoch den großen Nachteil, dass bei der Erhaltung von mehr als zwei Momenten negative Wahrscheinlichkeiten fj resultieren können. Dies ist bei den vier hier vorgestellen Diskretisierungsmethoden nicht der Fall.

5.6 Diskretisierungsmethoden

Beispiel (Berechnung von f_S mittels Panjer-Algorithmus)

Für den Gesamtschaden gelte

$$S \sim \text{ZNBin}(1, 1/11, F_Y),$$

wobei die Einzelschadenhöhenverteilung F_Y eine Exp(1)-Verteilung ist. D.h. es gilt $\mathbb{E}[N] = 10$, $\mathbb{E}[Y] = 1$ und wegen

$$NBin(1, 1/11) = Geo(1/11)$$

kann die zusammengesetzte Gesamtschadenverteilung F_S analytisch berechnet werden. Sie ist gegeben durch (siehe letztes Beispiel in Abschnitt 5.3)

$$F_S(s) = \begin{cases} 0 & \text{für } s < 0\\ p + (1 - p)(1 - e^{-\mu ps}) & \text{für } s \ge 0 \end{cases}$$
 (20)

mit $\mu = 1$ und p = 1/11.

5.6 Diskretisierungsmethoden

Beispiel (Fortsetzung)

Die Einzelschadenhöhenverteilung F_Y wird mit der Methode method of rounding und u=1/50 diskretisiert. Man erhält dann

$$f_0 = F_Y(1/100) = 1 - e^{-\frac{1}{100}} \approx 0,00995$$

$$f_j = F_Y\left(\frac{j+1/2}{50}\right) - F_Y\left(\frac{j-1/2}{50}\right) = e^{-\frac{j-1/2}{50}} - e^{-\frac{j+1/2}{50}} \quad \text{für } j = 1, \dots, m.$$

Mit dem Panjer-Algorithmus (mit a = 1 - p und b = 0) folgt dann

$$\widetilde{f}_S(0) = M_N(\ln(\widetilde{f}_Y(0))) = \frac{p}{1 - (1 - p)\widetilde{f}_Y(0)} \approx 0,09173893$$

$$\widetilde{f}_S\left(\frac{l}{50}\right) = \frac{1 - p}{1 - (1 - p)\widetilde{f}_Y(0)} \sum_{k=1}^{l} \widetilde{f}_Y\left(\frac{k}{50}\right) \widetilde{f}_S\left(\frac{l - k}{50}\right) \qquad \text{für alle } l \in \mathbb{N}.$$

Die folgende Tabelle enthält in der zweiten Spalte die Werte für die Wahrscheinlichkeiten f_S , die bei Diskretisierung der exakten zusammengesetzten Gesamtschadenverteilung (20) mittels der Methode method of rounding mit u=1/50 resultieren.

©2025 M. Merz • Universität Hamburg • Quantitatives Risikomanagement 1 • Kapitel 4 •

5.6 Diskretisierungsmethoden

Beispiel (Fortsetzung)

Die dritte Spalte zeigt die durch Diskretisierung der Einzelschadenhöhenverteilung F_Y mittels der Methode method of rounding mit u=1/50 und dem Panjer-Algorithmus berechneten approximativen Werte \widetilde{f}_S .

Die Ergebnisse sind für einige kleine Werte von s, für einige Werte in der Nähe des Erwartungswertes $\mathbb{E}[S] = \mathbb{E}[N] \cdot \mathbb{E}[Y] = 10$ und für einige Werte in der Nähe von $\mathbb{E}[S] + 5\sqrt{\text{Var}(S)} \approx 64,77$ angegeben.

S	Exakte Werte	Panjer-Algorithmus
0,00	0,091735162	0,091738925
0,02	0,001649890	0,001649904
0,04	0,001646893	0,001646907
0,06	0,001643902	0,001643915
0,08	0,001640915	0,001640929
l		
:	:	:
9,98	0,0006671464	0,0006671444
10,00	0,0006659345	0,0006659325
10,02	0,0006647248	0,0006647228
.		
		:
64,76	$4,586006 \cdot 10^{-6}$	$4,585709 \cdot 10^{-6}$
64,78	$4,577675 \cdot 10^{-6}$	$4,577379 \cdot 10^{-6}$

5.6 Diskretisierungsmethoden

Beispiel (Fortsetzung)

R-Code:

```
###
# Berechnung von f.S mittels Panier-Algorithmus
library(actuar)
muz-1
p<-1/11
# Diskretisierung der exakten zusammengesetzten Gesamtschadenverteilung F.S mittels "method of rounding"
f.S<-rep(0.5000)
f.S[1] \leftarrow p+(1-p)*(1-exp(-mu*p*1/100))
for (i in 1:4999)
              f.S[i+1] < -p+(1-p)*(1-exp(-mu*p*(i+1/2)/50)) - (p+(1-p)*(1-exp(-mu*p*(i-1/2)/50)))
f.S
# Diskretisierung von F.Y mittels "method of rounding"
f.j<- discretize(pexp(x, 1), method = "rounding", from = 0, to = 100, step=1/50)
# Panjer-Algorithmus zur Berechnung von f.S
f.S<-rep(0,5000)
f.S[1]<-p/(1-(1-p)*f.i[1])
for (i in 1:4999)
              f.S[i+1]<-(1-p)/(1-(1-p)*f.i[1])*f.i[2:(i+1)]%*%f.S[i:1]
f.S
```


Abschnitt 5.7 Fast-Fourier-Transformation

5.7 Fast-Fourier-Transformation

Die Fast-Fourier-Transformation (FFT) ist ein sehr leistungsfähiger Algorithmus, der nach dem französischen Mathematiker und Physiker JEAN B. J. FOURIER (1768–1830) benannt ist. Ursprünglich stammt er aus der Signalverarbeitung, wo er bereits Mitte der sechziger Jahre des letzten Jahrhunderts eingesetzt wurde.

Mittlerweile besitzt die FFT jedoch in den verschiedensten Bereichen der Mathematik, Natur- und Ingenieurwissenschaften eine Vielzahl von Anwendungen. Sie wurde deshalb von den bekannten US-amerikanischen Mathematikern GILBERT STRANG (*1934) und PAUL R. HALMOS (1916–2006) als

"the most important numerical algorithm of our lifetime"

(vgl. STRANG (1994)) bzw. als

"one of the 22 most significant developments in mathematics in the last 75 years"

5.7 Fast-Fourier-Transformation

In der Wahrscheinlichkeitstheorie ist die FFT vor allem bei der Invertierung charakteristischer Funktionen zur Berechnung der Dichte bzw. Wahrscheinlichkeitsfunktion von Zufallsvariablen von Nutzen. Zur Invertierung der charakteristischen Funktion des Gesamtschadens S für die Berechnung von f_S wurde sie erstmals von BERTRAM (1981) eingesetzt.

Die charakteristische Funktion

$$C_Y(t) = \mathbb{E}\left[e^{itY}\right]$$
 für alle $t \in \mathbb{R}$

einer Zufallsvariablen Y wird auch als Fourier-Transformierte (FT) der Verteilungsfunktion F_Y bezeichnet.

Die FFT basiert auf den folgenden beiden Eigenschaften charakteristischer Funktionen:

- a) Die charakteristische Funktion $C_Y(t)$ existiert für alle Zufallsvariablen Y.
- b) Die Verteilungsfunktion F_{γ} ist durch die charakteristische Funktion $C_{\gamma}(t)$ eindeutig festgelegt.
- \implies Bei der Lösung von bestimmten Problemstellungen kann mit Hilfe von $C_Y(t)$ anstelle von F_Y gearbeitet werden.

Universität Hambu

5.7 Fast-Fourier-Transformation

Speziell bei der Aggregation von Einzelschadenhöhen können dadurch komplexe analytische Faltungen von Verteilungsfunktionen in einfache algebraische Operationen mit charakteristischen Funktionen überführt werden.

Genauer gilt:

1) Sind Y_1, \ldots, Y_n stochastisch unabhängig, dann gilt für die charakteristische Funktion von $S = \sum_{i=1}^{n} Y_i$

$$C_S(t) = \prod_{i=1}^{n} C_{Y_i}(t)$$
 (21)

2) Sind Y_1, \ldots, Y_n stochastisch unabhängig und identisch-verteilt sowie stochastisch unabhängig von N, dann gilt für die charakteristische Funktion von $S := \sum_{i=1}^{N} Y_i$ (siehe erster Satz in Abschnitt 5.3):

$$C_S(t) = M_N \left(\ln \left(C_Y(t) \right) \right) \tag{22}$$

Die folgende Inversionsformel für charakteristische Funktionen von Zufallsvariablen Y mit arithmetischer Verteilung besagt, dass sich die Wahrscheinlichkeiten $\mathbb{P}(Y = lu)$ sehr einfach aus $C_Y(t)$ zurückgewinnen lassen.

©2025 M. Merz

5.7 Fast-Fourier-Transformation

Satz (Inversionsformel für charakteristische Funktionen)

Es sei Y eine diskrete Zufallsvariable mit dem Träger $\{0, u, 2u, \dots, (m-1)u\}$ für $m \in \mathbb{N}$ und u > 0. Für die Wahrscheinlichkeiten $f_l^Y := \mathbb{P}(Y = lu)$ gilt dann

$$\left| f_l^Y = \frac{1}{2\pi} \int_0^{2\pi} e^{-itl} C_Y(t/u) \, dt \right| \tag{23}$$

für l = 0, 1, ..., m - 1.

Beweis: Die charakteristische Funktion von Y ist gegeben durch $C_Y(t) = \mathbb{E}[e^{itY}] = \sum_{i=0}^{m-1} f_i^Y e^{itju}$. Damit folgt

$$\frac{1}{2\pi} \int_0^{2\pi} e^{-itl} C_Y(t/u) dt = \frac{1}{2\pi} \int_0^{2\pi} e^{-itl} \sum_{j=0}^{m-1} f_j^Y e^{itj} dt = \frac{1}{2\pi} \int_0^{2\pi} \left(f_l^Y + \sum_{\substack{j=0 \\ j \neq l}}^{m-1} f_j^Y e^{-it(l-j)} \right) dt \qquad \text{für } l = 0, 1, \dots, m-1.$$

Für den Term auf der rechten Seite erhält man jedoch weiter

$$\frac{1}{2\pi} \int_0^{2\pi} \left(f_l^Y + \sum_{\substack{j=0 \\ j \neq l}}^{m-1} f_j^Y e^{-it(l-j)} \right) dt = f_l^Y + \frac{1}{2\pi} \sum_{\substack{j=0 \\ j \neq l}}^{m-1} f_j^Y \underbrace{\int_0^{2\pi} e^{-it(l-j)} \, dt}_0 = f_l^Y.$$

Denn aus der 2π -Periodizität der Kosinus- und Sinusfunktion folgt für $j, l \in \mathbb{N}_0$:

$$\int_{0}^{2\pi} e^{-it(l-j)} dt = \int_{0}^{2\pi} \cos(-t(l-j)) dt + i \int_{0}^{2\pi} \sin(-t(l-j)) dt = 0 + i \cdot 0 = 0$$

5.7 Fast-Fourier-Transformation

Die zusammengesetzte Trapezregel zur numerischen Integration von Riemann-Integralen lautet

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{m} \sum_{k=0}^{m-1} f\left(a+k\frac{b-a}{m}\right)$$

(vgl. z.B. MERZ-WÜTHRICH (2013), Seite 850). Zusammen mit der Inversionsformel (23) erhält man daraus

$$f_l^Y = \frac{1}{2\pi} \int_0^{2\pi} e^{-itl} C_Y(t/u) dt$$

$$\approx \frac{1}{2\pi} \frac{2\pi}{m} \sum_{k=0}^{m-1} e^{-i\frac{2\pi k}{m}l} C_Y\left(\frac{2\pi k}{mu}\right)$$

$$= \frac{1}{m} \sum_{k=0}^{m-1} e^{-i\frac{2\pi k}{m}l} C_Y\left(\frac{2\pi k}{mu}\right) \quad \text{für } l = 0, 1, \dots, m-1.$$

Dies liefert für die Wahrscheinlichkeiten f_I^Y die Approximationen

$$\widehat{f}_l^Y := \frac{1}{m} \sum_{k=0}^{m-1} e^{-i\frac{2\pi k}{m}l} C_Y\left(\frac{2\pi k}{mu}\right) \qquad \text{für } l = 0, 1, \dots, m-1.$$

(24)

5.7 Fast-Fourier-Transformation

Zur Berechnung der Approximationen \widehat{f}_l^Y werden die Werte der charaktistischen Funktion $C_Y(t) = \sum_{j=0}^{m-1} f_j^Y e^{itju}$ lediglich an den m Stellen $\frac{2\pi k}{mu}$ benötigt. Die endliche Folge dieser Werte

$$\left(C_Y\left(\frac{2\pi k}{mu}\right)\right)_{k=0,\dots,m-1} = \left(\sum_{j=0}^{m-1} f_j^Y e^{2\pi i \frac{jk}{m}}\right)_{k=0,\dots,m-1}$$
(25)

wird als diskrete Fourier-Transformierte von F_Y bezeichnet und die Inversionsformel (24) heißt inverse diskrete Fourier-Transformation von F_Y .

Bemerkungen:

- Aus (24) ist ersichtlich, dass bei der Berechnung von m Approximationen f_l eine Anzahl von Multiplikationen der Größenordnung m^2 auszuführen sind.
- Die FFT ist ein Algorithmus, mit dem diese Anzahl von Rechenoperationen auf die Größenordnung mlog₂(m) reduziert werden kann. Für große m stellt dies eine dramatische Verkürzung der Rechenzeit dar (vgl. z.B. PRESS ET AL. (2007), Seiten 609–610). Zum Beispiel reduziert sich bereits im Falle von m = 1000 die Anzahl von 10⁶ auf 10⁴ Multiplikationen. Dies entspricht einer Verringerung des Rechenaufwands um 99%.

©2025 M. Merz • Universität Hamburg • Quantitatives Risikomanagement 1 • Kapitel 4 • 94

5.7 Fast-Fourier-Transformation

Der Algorithmus der FFT wird den beiden US-amerikanischen Mathematikern JAMES COOLEY (*1926) und JOHN W. TUKEY (1915-2000) zugeschrieben, die ihn 1965 veröffentlichten. Eine erste Version des Algorithmus wurde jedoch bereits 1805 von CARL F. GAUSS (1777–1855) zur Berechnung der Flugbahnen von Asteroiden entworfen.

Die FFT beruht auf der Tatsache, dass die diskrete FT (25) bei einer Länge von $m = 2^{M}$ in eine Summe bestehend aus zwei diskreten FTen der Länge 2^{M-1} zerlegt werden kann. Denn für alle k = 0, ..., m-1 erhält man:

$$C_{Y}\left(\frac{2\pi k}{2^{M}u}\right) = \sum_{j=0}^{2^{M-1}} f_{j}^{Y} e^{2\pi i \frac{jk}{2^{M}}}$$

$$= \sum_{j=0}^{2^{M-1}-1} f_{2j}^{Y} e^{2\pi i \frac{2jk}{2^{M}}} + \sum_{j=0}^{2^{M-1}-1} f_{2j+1}^{Y} e^{2\pi i \frac{(2j+1)k}{2^{M}}}$$

$$= \sum_{j=0}^{2^{M-1}-1} f_{2j}^{Y} e^{2\pi i \frac{jk}{2^{M-1}}} + e^{2\pi i \frac{k}{2^{M}}} \sum_{j=0}^{2^{M-1}-1} f_{2j+1}^{Y} e^{2\pi i \frac{jk}{2^{M-1}}}$$
(26)

Kapitel 4

©2025 M. Merz

5.7 Fast-Fourier-Transformation

Durch Iteration dieses Vorgehens resultieren schließlich 2^M diskrete FTen der Länge $2^0=1$. Dies sind jedoch gerade die Wahrscheinlichkeiten $f_0^Y,\ldots,f_{2^M-1}^Y$. D.h. gemäß Formel (26) können umgekehrt mit den diskreten FTen f_j^Y der Länge 1 durch einfache Addition, sukzessiv die diskreten FTen der Länge $2,2^2,2^3,\ldots,2^M$ aufgebaut werden.

Bei der Berechnung der Verteilung des (zusammengesetzten) Gesamtschadens

$$S = \sum_{i=1}^{n} Y_i \qquad \text{bzw.} \qquad S = \sum_{i=1}^{N} Y_i$$

mittels FFT geht man in den folgenden fünf Schritten vor:

Universität Hamburg •

- 1) Wähle $m = 2^M$ hinreichend groß, so dass $\mathbb{P}(S \le (m-1)u) \approx 1$ gilt.
- 2) Diskretisiere F_{Y_i} , so dass die Wahrscheinlichkeiten $f_l^{Y_i} = \mathbb{P}(Y_i = lu)$ für $l = 0, 1, \dots, m-1$ vorliegen (vgl. Abschnitt 5.6). Falls dies weniger als m Wahrscheinlichkeiten $f_l^{Y_i}$ liefert, müssen die restlichen Wahrscheinlichkeiten gleich Null gesetzt werden, so dass insgesamt m Werte vorliegen. Dabei kann auch $\sum_{l=0}^{m-1} f_l^{Y_i} < 1$ vorkommen, da die Einzelschadenhöhen Y_i den Wert (m-1)u mit positiver Wahrscheinlichkeit überschreiten können.

5.7 Fast-Fourier-Transformation

- 3) Berechne aus $f_l^{Y_i}$ mittels FFT die diskreten FTen $\left(C_{Y_i}\left(\frac{2\pi k}{mu}\right)\right)_{k=0,\dots,n-1}$.
- Ermittle damit durch

$$\left(C_S\left(\frac{2\pi k}{mu}\right)\right)_{k=0,\dots,m-1} = \left(\prod_{i=1}^n C_{Y_i}\left(\frac{2\pi k}{mu}\right)\right)_{k=0,\dots,m-1}$$
(27)

bzw.

$$\left(C_S\left(\frac{2\pi k}{mu}\right)\right)_{k=0,\dots,m-1} = \left(M_N\left(\ln\left(C_{Y_i}\left(\frac{2\pi k}{mu}\right)\right)\right)\right)_{k=0,\dots,m-1}$$
(28)

die diskrete FT des (zusammengesetzten) Gesamtschadens S (vgl. (21)– (22)).

Berechne für $f_I^S = \mathbb{P}(S = lu)$ mittels der inversen diskreten FT (24) die Approximationen

$$\widehat{f}_{l}^{S} = \frac{1}{m} \sum_{i=0}^{m-1} e^{-i\frac{2\pi k}{m}l} C_{S} \left(\frac{2\pi k}{mu}\right) \quad \text{für } l = 0, 1, \dots, m-1.$$

5.7 Fast-Fourier-Transformation

Bemerkungen:

- Bei der Anwendung der Inversionsformel (24) kann ebenfalls der rekursive Algorithmus (26) angewendet werden, welcher die FFT charakterisiert.
- Die FFT besitzt im Vergleich zum Panjer-Algorithmus (vgl. Abschnitt 5.5) die Vorteile, dass sie deutlich schneller ist (mlog₂(m) anstelle von m² Rechenoperationen) und sie keine Annahmen bzgl. FN erfordert. Wenn der Panjer-Algorithmus jedoch anwendbar ist, besitzt er den Vorteil, dass er im Falle arithmetischer Einzelschadenhöhenverteilungen FY exakte Werte liefert, während die FFT nur Näherungswerte bereitstellt. Für einen ausführlichen Vergleich von Panjer-Algorithmus und FFT bei zusammengesetzten Poisson-Verteilungen siehe BÜHLMANN (1984). Die Kernaussage dieser Arbeit ist, dass bzgl. des Rechenaufwands die FFT im Falle von m ≥ 256 vorzuziehen ist, während im Falle von m < 64 der Panjer-Algorithmus vorteilhafter ist.</p>
- Werden nur die ersten r Wahrscheinlichkeiten von f_S benötigt, dann besitzt der Panjer-Algorithmus den Vorteil, dass auch nur diese r Werte berechnet werden müssen. Für eine akzeptable Genauigkeit muss jedoch bei der FFT der Wert m = 2^M stets hinreichend groß gewählt werden.

5.7 Fast-Fourier-Transformation

Beispiel (Berechnung von f_S für $S = Y_1 + Y_2 + Y_3$ mittels FFT)

Gegeben seien drei diskrete und unabhängige Zufallsvariablen Y_1, Y_2 und Y_3 mit den Wahrscheinlichkeitsfunktionen:

$$f_{Y_1}(0) = 1/4$$
, $f_{Y_1}(1) = 1/2$, $f_{Y_1}(2) = 1/4$
 $f_{Y_2}(0) = 1/2$, $f_{Y_2}(2) = 1/2$
 $f_{Y_3}(0) = 1/4$, $f_{Y_3}(2) = 1/2$, $f_{Y_3}(4) = 1/4$

D.h. es gilt u = 1. Für die charakteristische Funktion des Gesamtschadens

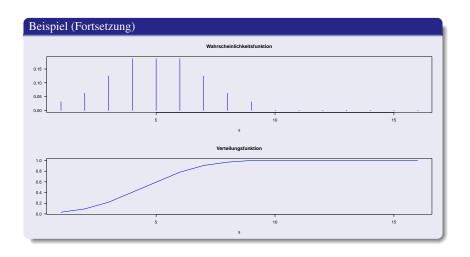
$$S = Y_1 + Y_2 + Y_3$$

folgt

$$C_S(t) = \prod_{i=1}^3 C_{Y_i}(t)$$

(vgl. (21)). Mit $m=2^4$ folgt $\mathbb{P}(S \leq m-1)=1$. Mittels FFT erhält man für f_S und F_S die folgenden Werte:

5.7 Fast-Fourier-Transformation



5.7 Fast-Fourier-Transformation

Beispiel (Fortsetzung)

R-Code:

```
###
# Berechnung von f.S mittels FFT
###
m<-2^4
# Festlegung der drei Einzelschadenhöhenverteilungen
f.Y1<-rep(0,m)
f.Y1[1]<-f.Y1[3]<-1/4
f.Y1[2]<-1/2
f.Y2 < -rep(0.m)
f.Y2[1]<-f.Y2[3]<-1/2
f.Y3<-rep(0,m)
f.Y3[1]<-f.Y3[5]<-1/4
f.Y3[3]<-1/2
# Berechnung von f.S und F.S mittels FFT
f.S<-1/m*Re(fft(fft(f.Y1)*fft(f.Y2)*fft(f.Y3),inverse=TRUE))
f.S
F.S<-cumsum(f.S)
FS
# Abbildungen für f.S und F.S
par(mfrow=c(2,1))
plot(f.S,type= "h", las=1, ylab="", xlab="s", main="Wahrscheinlichkeitsfunktion", col="blue")
plot(F.S,type= "l", las=1, ylab="", xlab="s", main="Verteilungsfunktion", col="blue")
```


5.7 Fast-Fourier-Transformation

Beispiel (Berechnung von f_S für $S = \sum_{i=1}^{N} Y_i$ mittels FFT)

Für den Gesamtschaden gelte

$$S \sim \text{ZPoisson}(3, F_Y),$$

wobei die Einzelschadenhöhenverteilung F_Y eine Gleichverteilung auf der Menge $\{100,200,\ldots,900\}$ ist. D.h. es gilt u=100 und für die charakteristische Funktion des Gesamtschadens S gilt

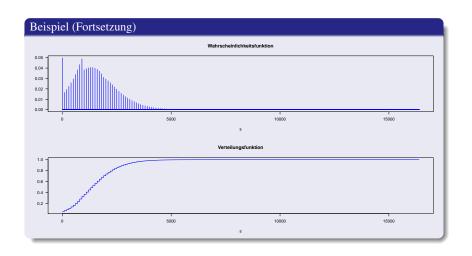
$$C_S(t) = \exp(3(C_Y(t) - 1))$$

(vgl. Aussage d) der Folgerung in Abschnitt 5.4). Mit $m=2^{14}$ erhält man

$$\mathbb{P}(S<(m-1)u)\approx 1.$$

Die FFT liefert dann für f_S Näherungswerte, die bis auf die 3. Nachkommastelle mit den im fünften Beispiel in Abschnitt 5.5 mittels Panjer-Algorithmus berechneten Werten übereinstimmen.

5.7 Fast-Fourier-Transformation



5.7 Fast-Fourier-Transformation

Beispiel (Fortsetzung)

R-Code:

```
###
# Berechnung von f.S mittels FFT
###

m<-2^14

# Festlegung der Einzelschadenhöhenverteilung
f.V<-rep(0,m)
f.Y[c(101,201,301,401,501,601,701,801,901)]<-1/9

# Berechnung von f.S und F.S mittels FFT
f.S<-1/m*Re(fft(exp(3*(fft(f.V)-1)),inverse=TRUE))
f.S[c(1,101,201,301,401,501,601,701,801,901)]
F.S<-cumsum(f.S)

# Abbildungen für f.S und F.S
par(mfrow=c(2,1))
plot(f.S,type= "h", las=1, ylab="", xlab="s", main="Wahrscheinlichkeitsfunktion", col="blue")
plot(F.S,type= "l", las=1, ylab="", xlab="s", main="Verteilungsfunktion", col="blue")
```


5.7 Fast-Fourier-Transformation

Beispiel (Berechnung von f_S für $S = \sum_{i=1}^{N} Y_i$ mittels FFT)

Für den Gesamtschaden gelte

$$S \sim \text{ZNBin}(1, 1/11, F_Y),$$

wobei die Einzelschadenhöhenverteilung F_Y eine Exp(1)-Verteilung ist. Für die Anwendung der FFT wird F_Y mittels der Methode method of rounding und u = 1/50 diskretisiert (vgl. letztes Beispiel in Abschnitt 5.6).

Die charakteristische Funktion des Gesamtschadens S ist gegeben durch

$$C_S(t) = \frac{1/11}{1 - (1 - 1/11)C_Y(t)}$$

(vgl. Aussage d) des ersten Satzes in Abschnitt 5.3 und Abschnitt 4.4). Es gilt $\mathbb{E}[S] + 5\text{Var}(S) \approx 64,77$. D.h. mit $m = 2^{12} = 4096$ folgt $\mathbb{P}(S < (m-1)u) \approx 1$.

Die folgende Tabelle enthält in der dritten Spalte die im letzten Beispiel in Abschnitt 5.6 mittels Panjer-Algorithmus berechneten Werte. Die vierte und fünfte Spalte zeigt die mittels FFT mit $m = 2^{12}$ und $m = 2^{13}$ berechneten Näherungswerte.

5.7 Fast-Fourier-Transformation

Beispiel (Fortsetzung)

S	Exakte Werte	Panjer-Algorithmus	FFT $(m = 2^{12})$	FFT $(m = 2^{13})$
0,00	0,091735162	0,091738925	0,091739889	0,091738926
0,02	0,001649890	0,001649904	0,001650866	0,001649904
0,04	0,001646893	0,001646907	0,001647867	0,001646907
0,06	0,001643902	0,001643915	0,001644874	0,001643916
0,08	0,001640915	0,001640929	0,001641886	0,001640929
:		:	;	:
9.98	0,0006671464	0.0006671444	0.0006675336	0.0006671446
10,00	0,0006659345	0,0006659325	0,0006663210	0,0006659327
10,02	0,0006647248	0,0006647228	0,0006651105	0,0006647230
64,76	4,586006 · 10 ⁻⁶	4.585709 · 10 ⁻⁶	$4,588384 \cdot 10^{-6}$	4.585711 · 10 ⁻⁶
64,78	$4,577675 \cdot 10^{-6}$	$4,577379 \cdot 10^{-6}$	$4,580049 \cdot 10^{-6}$	$4,577381 \cdot 10^{-6}$

Es ist zu erkennen, dass die FFT mit $m=2^{13}$ nahezu die gleichen Werte wie der Panjer-Algorithmus liefert.

	Panjer-Algorithmus	FFT $(m = 2^{12})$	FFT $(m = 2^{13})$
Max. absoluter Fehler	$3,76 \cdot 10^{-6}$	$4,73 \cdot 10^{-6}$	$3,76 \cdot 10^{-6}$
Max. relativer Fehler	0,84%	5,9%	0,84%

5.7 Fast-Fourier-Transformation

Beispiel (Fortsetzung)

R-Code:

```
###
# Berechnung von f.S mittels FFT
###
library(actuar)
m<-2^12

# Diskretisierung von F.Y mittels "method of rounding"
f.Y<- discretize(pexp(x, 1), method = "rounding", from = 0, to = 1/50*m, step=1/50)

# Berechnung von f.S und F.S mittels FFT
f.S<-1/m*Re(fft(1/11/(1-(1-1/11)*fft(f.Y)),inverse=TRUE))
f.S
```


Abschnitt 5.8 Approximation von F_S

5.8 Approximation von F_S

Im folgenden werden drei einfache Näherungsverfahren zur Approximation der zusammengesetzten Gesamtschadenverteilung F_S vorgestellt.

Diese Verfahren besitzen die beiden folgenden Vorteile:

- Sie sind sehr schnell und leicht (auch ohne Computer) anzuwenden.
- Es müssen keine Verteilungen, sondern nur Momente spezifiziert werden.

Diese Verfahren besitzen jedoch auch die folgenden Nachteile:

- Die Qualität der Approximationen kann i.d.R. nicht beurteilt werden.
- Im Falle von $0 \in \mathcal{N}$ besitzt F_S an der Stelle 0 die Punktmasse $\mathbb{P}(N=0)$, welche durch eine glatte approximierende Verteilung, wie die z.B. Normalverteilung, nicht angemessen wiedergegeben werden kann.
- Eine glatte approximierende Verteilung kann auch weitere besondere Eigenschaften von F_S nicht wiedergeben. Ist z.B. F_Y eine stetige Schadenhöhenverteilung und existiert ein Höchstschaden L (z.B. aufgrund einer Haftungsgrenze L), dann besitzt F_Y an der Stelle Y = L eine Punktmasse $\mathbb{P}(Y = L) > 0$. D.h. F_S weist in diesem Fall an den Stellen $s = L, 2L, 3L, \ldots$ Sprünge auf, welche durch eine glatte approximierende Verteilung nicht angemessen wiedergegeben werden.

5.8 Approximation von F_S

Normal-Approximation

Bei der Normal-Approximation wird F_S durch eine Normalverteilung $N(\mu, \sigma^2)$ mit

$$\mu = \mathbb{E}[S]$$
 und $\sigma^2 = \operatorname{Var}(S)$

approximiert.

Dieser Ansatz ist durch den zentralen Grenzwertsatz (ZGWS) motiviert. Der nach den beiden Mathematikern JARL W. LINDEBERG (1876–1932) und PAUL LÉVY (1886–1971) benannte ZGWS von Lindeberg-Lévy besagt, dass für

$$Y_1, Y_2, \dots$$
 i.i.d. mit $\mu = \mathbb{E}[Y]$ und $\sigma^2 = \text{Var}(Y) < \infty$

die Verteilung der standardisierten Summenvariable

$$\frac{\sum_{i=1}^{n} Y_i - n\mu}{\sqrt{n}\sigma}$$

für $n \to \infty$ gegen die Standardnormalverteilung Φ konvergiert. D.h. es gilt:

$$\lim_{n\to\infty}\mathbb{P}\left(\frac{\sum_{i=1}^nY_i-n\mu}{\sqrt{n}\sigma}\leq z\right)=\Phi(z)\qquad\text{ für alle }z\in\mathbb{R}.$$

5.8 Approximation von F_S

Dies motiviert für eine große erwartete Schadenanzahl $\mathbb{E}[N]$ die folgende Normal-Approximation:

$$\left| \mathbb{P}(S \le s) = \mathbb{P}\left(\frac{S - \mathbb{E}[S]}{\sqrt{\text{Var}(S)}} \le \frac{s - \mathbb{E}[S]}{\sqrt{\text{Var}(S)}}\right) \approx \Phi\left(\frac{s - \mathbb{E}[S]}{\sqrt{\text{Var}(S)}}\right) \right|$$
(29)

Bemerkungen:

- Die Normal-Approximation (29) besitzt die unschöne Eigenschaft, dass S < 0mit positiver Wahrscheinlichkeit resultiert.
- Die Normal-Approximation (29) sollte nur eingesetzt werden, wenn $\mathbb{E}[N]$ groß und F_Y keine Heavy-Tail-Verteilung ist. Falls F_Y eine Heavy-Tail-Verteilung ist, liefert (29) im rechten Tail von F_S nur eine sehr schlechte Anpassung.
- Die Normal-Approximation liefert in der Umgebung von $\mathbb{E}[S]$ i.d.R. brauchbare Ergebnisse. Tail-Wahrscheinlichkeiten $\mathbb{P}(S > s)$ für große s werden dagegen durch (29) unterschätzt, da eine Normalverteilung stets die Schiefe Null besitzt, wohingegen F_S in der Regel rechtsschief ist.

5.8 Approximation von F_S

Beispiel (Normal-Approximation)

Der Gesamtschaden S sei $ZPoisson(20, F_Y)$ -verteilt mit $F_Y = Par(4,3)$. Dann gilt

$$\mathbb{E}[N] = \text{Var}(N) = 20, \quad \mathbb{E}[Y] = 1, \quad \mathbb{E}[Y^2] = 3 \quad \text{und} \quad \mathbb{E}[Y^3] = 27$$

(vgl. Abschnitte 4.3 und 4.12). Daraus folgt weiter

$$\mathbb{E}[S] = 20$$
, $Var(S) = 60$ und $V(S) = \frac{3}{2}\sqrt{\frac{3}{5}} \approx 1{,}161895$

(vgl. Folgerung in Abschnitt 5.4 und (18)). Zu approximieren sei die kleinste Gesamtschadenhöhe s, für die

$$\mathbb{P}(S > s) = 0.05 \quad \text{bzw.} \quad \mathbb{P}(S > s) = 0.01$$

gilt, also das 95%-Quantil x(0,95) und das 99%-Quantil x(0,99) von F_S . Mit der Normal-Approximation (29) folgt

$$\mathbb{P}(S > s) \approx 1 - \Phi\left(\frac{s - 20}{\sqrt{60}}\right) = 0.05$$
 bzw. $\mathbb{P}(S > s) \approx 1 - \Phi\left(\frac{s - 20}{\sqrt{60}}\right) = 0.01$.

5.8 Approximation von F_S

Beispiel (Fortsetzung)

Zusammen mit mit dem 95%-Quantil x(0,95)=1,6449 und dem 99%-Quantil x(0,99)=2,3263 der Standardnormalverteilungsfunktion Φ erhält man somit für das 95%- und das 99%-Quantil von F_S die Näherungswerte

$$\widetilde{x}(0.95) = 32,7413$$
 bzw. $\widetilde{x}(0.99) = 38,0194$.

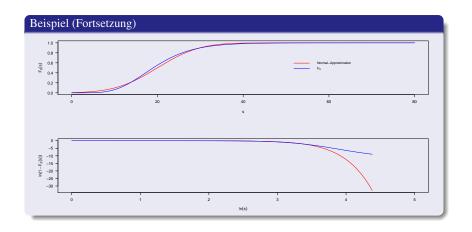
Die exakten 95%- bzw. 99%-Quantile von F_S sind durch

$$x(0.95) = 33.94$$
 und $x(0.99) = 42.99$

gegeben. D.h. die Approximation für das 95%-Quantil ist brauchbar, während der Näherungswert für das 99%-Quantil relativ schlecht ist.

Aus den beiden folgenden Abbildungen ist ersichtlich, dass durch die Normal-Approximation der rechte Tail von F_S stark unterschätzt wird.

5.8 Approximation von F_S



5.8 Approximation von F_S

Normal-Power-Approximation

Eine Normalverteilung besitzt die Schiefe Null. Die Normal-Approximation (29) liefert daher nur dann brauchbare Ergebnisse, wenn die Schiefe von F_S nahe bei Null liegt. Da jedoch F_S in der Praxis häufig eine signifikante positive Schiefe aufweist, ist es naheliegend, die Normal-Approximation (29) dahingehend zu modifizieren, dass neben $\mathbb{E}[S]$ und $\mathrm{Var}(S)$ auch eine positive Schiefe V(S) berücksichtigt wird.

Eine der bekanntesten dieser Modifikationen ist die Normal-Power-Approximation. Diese basiert auf der Approximation

$$Z := \frac{S - \mathbb{E}[S]}{\sqrt{\operatorname{Var}(S)}} \approx U + \frac{V(S)}{6} \left(U^2 - 1 \right) =: \widetilde{Z} \quad \text{mit} \quad U \sim \operatorname{N}(0, 1).$$

D.h. es gilt $U^2 \sim \chi_1^2$, womit sich mit etwas Rechenaufwand

$$\mathbb{E}[\widetilde{Z}] = 0, \quad \operatorname{Var}(\widetilde{Z}) = 1 + \frac{V(S)^2}{18} \quad \text{und} \quad V(\widetilde{Z}) = V(S) + \frac{V(S)^3}{27}$$

zeigen lässt.

©2025 M. Merz •

5.8 Approximation von F_S

D.h. falls die Schiefe V(S) nicht zu groß ist, stimmen diese drei Momente relativ gut mit den Momenten

$$\mathbb{E}[Z] = 0$$
, $Var(Z) = 1$ und $V(Z) = V(S)$

der standardisierten Gesamtschadensumme Z überein. Betrachtet wird nun die Ungleichung

$$\widetilde{Z} = U + \frac{V(S)}{6} \left(U^2 - 1 \right) \le z.$$

Für V(S) > 0 ist dies äquivalent zu

$$U^2 + \frac{6}{V(S)}U \le 1 + \frac{6}{V(S)}z$$

und mittels quadratischer Ergänzung folgt daraus weiter

$$\left(U + \frac{3}{V(S)}\right)^2 \le 1 + \frac{6z}{V(S)} + \frac{9}{V(S)^2}$$

bzw.

$$-\sqrt{1 + \frac{6z}{V(S)} + \frac{9}{V(S)^2}} \le U + \frac{3}{V(S)} \le \sqrt{1 + \frac{6z}{V(S)} + \frac{9}{V(S)^2}}.$$

5.8 Approximation von F_S

Da für eine näherungsweise Übereinstimmung der drei Momente von Z und \overline{Z} die Schiefe V(S) > 0 nicht zu groß sein darf, genügt es

$$U \le \sqrt{1 + \frac{6z}{V(S)} + \frac{9}{V(S)^2}} - \frac{3}{V(S)}$$

zu betrachten.

Diese Beobachtung motiviert die folgenden Approximationen:

$$\begin{split} \mathbb{P}(S \leq s) &= \mathbb{P}\left(\frac{S - \mathbb{E}[S]}{\sqrt{\text{Var}(S)}} \leq \frac{s - \mathbb{E}[S]}{\sqrt{\text{Var}(S)}}\right) = \mathbb{P}\left(Z \leq \frac{s - \mathbb{E}[S]}{\sqrt{\text{Var}(S)}}\right) \\ &\approx \mathbb{P}\left(\widetilde{Z} \leq \frac{s - \mathbb{E}[S]}{\sqrt{\text{Var}(S)}}\right) \\ &= \mathbb{P}\left(U + \frac{V(S)}{6}\left(U^2 - 1\right) \leq \frac{s - \mathbb{E}[S]}{\sqrt{\text{Var}(S)}}\right) \\ &\approx \mathbb{P}\left(U \leq \sqrt{1 + \frac{6(s - \mathbb{E}[S])}{V(S)\sqrt{\text{Var}(S)}} + \frac{9}{V(S)^2}} - \frac{3}{V(S)}\right) \end{split}$$

5.8 Approximation von F_S

Die sog. Normal-Power-Approximation lautet daher:

$$\mathbb{P}(S \le s) \approx \Phi\left(\sqrt{1 + \frac{6(s - \mathbb{E}[S])}{V(S)\sqrt{\text{Var}(S)}} + \frac{9}{V(S)^2}} - \frac{3}{V(S)}\right)$$
(30)

Beispiel (Normal-Power-Approximation)

Analog zum letzten Beispiel gelte wieder $S \sim \text{ZPoisson}(20, F_Y)$ mit $F_Y = \text{Par}(4,3)$.

D.h. es gilt $\mathbb{E}[S] = 20$, Var(S) = 60 und $V(S) = \frac{3}{2}\sqrt{\frac{3}{5}}$ und mit der Normal-Power-

Approximation (30) erhält man für
$$s \ge 17/2$$
 die Approximation:

$$\mathbb{P}(S \le s) \approx \Phi\left(\sqrt{1 + \frac{6(s - 20)}{9} + \frac{20}{3}} - 2\sqrt{\frac{5}{3}}\right)$$
$$= \Phi\left(\sqrt{\frac{2s - 17}{3}} - 2\sqrt{\frac{5}{3}}\right)$$

Kapitel 4

5.8 Approximation von F_S

Beispiel (Fortsetzung)

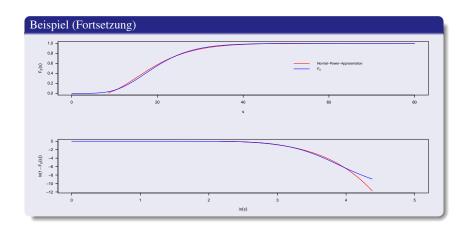
Analog zum letzten Beispiel erhält man damit für das 95%- und das 99%-Quantil von F_S die Näherungswerte

$$\widetilde{x}(0.95) = 35,2999$$
 bzw. $\widetilde{x}(0.99) = 44,6369$.

D.h. das exakte 95%- und 99%-Quantil von $F_S x(0.95) = 33.94$ bzw. x(0.99) = 42.99 werden durch die beiden Näherungswerte jeweils um ca. 4% überschätzt.

Aus den folgenden beiden Abbildungen wird ersichtlich, dass die Normal-Power-Approximation (30) eine bessere Anpassung an den rechten Tail von F_S liefert als die gewöhnliche Normal-Approximation (29). Der ganz weit rechts liegende Tail von F_S wird aber auch durch die Normal-Power-Approximation unterschätzt.

5.8 Approximation von F_S



5.8 Approximation von F_S

Edgeworth-Approximation

Bei der Edgeworth-Approximation handelt es sich um die Reihenentwicklung einer allgemeinen Verteilungsfunktion. Sie ist nach dem irischen Ökonomen FRANCIS YSIDRO EDGEWORTH (1845–1926) benannt, der neben dem bekannten russischen Mathematiker PAFNUTI LWOWITSCH TSCHEBYSCHEFF (1821–1894) um die Jahrhundertwende 19.–20. Jahrhundert die ersten Arbeiten zu dieser Approximationsmethode veröffentlichte.

Die Edgeworth-Approximation kommt in vielen verschiedenen Anwendungsgebieten zum Einsatz, wobei sich ihr Einsatz in der Risikotheorie jedoch vor allem auf die Approximation der Verteilungsfunktion F_S des Gesamtschadens S konzentriert. Eine umfassende Darstellung der Theorie zur Edgeworth-Approximation ist zum Beispiel in HALL (1992) und DASGUPTA (2008) zu finden.

5.8 Approximation von F_S

Analog zur Normal- und Normal-Power-Approximation besitzt die Verwendung der Edgeworth-Approximation mit dem zentralen Grenzwertsatz eine theoretische Rechtfertigung. Durch eine Reihenentwicklung der momenterzeugenden Funktion des standardisierten Gesamtschadens werden neben $\mathbb{E}[S]$, Var(S) und V(S) auch Momente höherer Ordnung von S berücksichtigt.

Annahme: Es sei Z eine beliebige stetige Zufallsvariable mit momenterzeugender Funktion

$$M_Z(t) = \mathbb{E}[e^{tZ}],$$

so dass es ein h > 0 mit $M_Z(t) < \infty$ für alle $t \in (-h,h)$ gibt. In diesem Fall besitzt $M_Z(t)$ die Reihendarstellung

$$M_Z(t) = \sum_{k=0}^{\infty} \mathbb{E}[Z^k] \frac{t^k}{k!}$$
 für alle $t \in (-h, h)$.

Gesucht ist jedoch eine Reihenentwicklung von $M_Z(t)$ der Gestalt

$$M_Z(t) \stackrel{!}{=} e^{\frac{1}{2}t} \sum_{k=0}^{\infty} a_k t^k \qquad \text{für alle } t \in (-h, h)$$
(31)

mit zu bestimmenden Koeffizienten $a_0, a_1, \ldots \in \mathbb{R}$.

Kapitel 4

5.8 Approximation von F_S

Satz (Reihendarstellung von F_Z)

Es sei Z eine beliebige stetige Zufallsvariable, für die es ein h>0 gibt, so dass $M_Z(t)<\infty$ für alle $t\in (-h,h)$ gilt und $M_Z(t)$ eine Reihendarstellung der Form (31) besitzt. Dann gilt

$$F_Z(z) = \sum_{k=0}^{\infty} (-1)^k a_k \Phi^{(k)}(z) \qquad \text{für alle } z \in \mathbb{R},$$
 (32)

wobei $\Phi^{(k)}$ die k-te Ableitung der Standardnormalverteilungsfunktion Φ ist.

Beweis: Schritt 1: Mittels vollständiger Induktion zeigt man, dass

$$(-1)^k \int_{-\infty}^{\infty} e^{tz} \Phi^{(k+1)}(z) dz = t^k e^{t^2/2}$$
(33)

für alle $k \in \mathbb{N}_0$ und $t \in \mathbb{R}$ gilt.

i) Induktionsanfang: Es sei k=0. Dann folgt

$$\int_{-\infty}^{\infty} e^{tz} \Phi'(z) dz = \int_{-\infty}^{\infty} e^{tz} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz = M_U(t) = e^{t^2/2},$$

wobei $M_U(t)$ die momenterzeugende Funktion von $U \sim N(0,1)$ ist.

ii) Induktionsschritt $k \rightarrow k+1$: Mit Hilfe von partieller Integration folgt

$$(-1)^{k+1} \int_{-\infty}^{\infty} e^{tz} \Phi^{(k+2)}(z) dz = \left((-1)^{k+1} e^{tz} \Phi^{(k+1)}(z) \right) \Big|_{-\infty}^{\infty} - (-1)^{k+1} \int_{-\infty}^{\infty} t e^{tz} \Phi^{(k+1)}(z) dz.$$

5.8 Approximation von F_S

Beweis (Fortsetzung): Der erste Term auf der rechten Seite von (34) ist gleich Null, da für $z \to \pm \infty$ der Faktor $\Phi^{(k+1)}(z)$ schneller gegen Null geht als der Faktor e^{rz} möglicherweise gegen ∞ strebt. Zusammen mit der Induktionsannahme folgt daraus

$$(-1)^{k+1} \int_{-\infty}^{\infty} e^{tz} \Phi^{(k+2)}(z) dz = t(-1)^k \int_{-\infty}^{\infty} e^{tz} \Phi^{(k+1)}(z) dz = tt^k e^{t^2/2} = t^{k+1} e^{t^2/2}$$

und damit die Behauptung (33).

Schritt 2: Mit (31) und (33) erhält man für $M_Z(t)$ die Reihendendarstellung

$$M_Z(t) = e^{\frac{1}{2}t} \sum_{k=0}^{\infty} a_k t^k = \sum_{k=0}^{\infty} a_k \left((-1)^k \int_{-\infty}^{\infty} e^{tz} \Phi^{(k+1)}(z) dz \right)$$
$$= \int_{-\infty}^{\infty} e^{tz} \left(\sum_{k=0}^{\infty} a_k (-1)^k \Phi^{(k+1)}(z) \right) dz$$
(35)

für alle $t \in (-h,h)$. Daraus folgt mit dem Eindeutigkeitssatz für momenterzeugende Funktionen, dass es sich bei dem Term in Klammern auf der rechten Seite von (35) um die Dichte f_Z von Z handelt. D.h. es gilt

$$f_Z(z) = \sum_{k=0}^{\infty} a_k (-1)^k \Phi^{(k+1)}(z) \qquad \text{ für alle } z \in \mathbb{R}.$$

Damit erhält man für die Verteilungsfunktion von Z für alle $z \in \mathbb{R}$ die Darstellung

$$F_Z(z) = \int_{-\infty}^z f_Z(u) \, du = \int_{-\infty}^z \sum_{k=0}^\infty (-1)^k a_k \Phi^{(k+1)}(u) \, du = \sum_{k=0}^\infty (-1)^k a_k \int_{-\infty}^z \Phi^{(k+1)}(u) \, du = \sum_{k=0}^\infty (-1)^k a_k \Phi^{(k)}(z).$$

5.8 Approximation von F_S

Für die Anwendung der Formel (32) werden die Koeffizienten a_0, a_1, \ldots benötigt. Diese erhält man durch eine (approximative) Darstellung von $M_Z(t)$ als Reihe der Gestalt (31). Im Folgenden sei hierzu zusätzlich angenommen, dass Z eine standardisierte Zufallsvariable der Form

$$Z = \frac{S - \mathbb{E}[S]}{\sqrt{\operatorname{Var}(S)}}$$

ist. Die Taylor-Reihe von $\ln (M_Z(t))$ um den Entwicklungspunkt t = 0 lautet

$$\ln(M_Z(t)) = \sum_{k=0}^{\infty} b_k \frac{t^k}{k!} \quad \text{mit} \quad b_k = \frac{d^k}{dt^k} \ln(M_Z(t)) \Big|_{t=0} .$$
 (36)

Für die ersten fünf Koeffizienten erhält man:

$$b_0 = \ln(M_Z(0)) = \ln(1) = 0$$

$$b_1 = \frac{M_Z'(0)}{M_Z(0)} = \mathbb{E}[Z] = 0$$

$$b_2 = \frac{M_Z''(0)M_Z(0) - M_Z'(0)^2}{M_Z(0)^2}$$

$$= M_Z''(0)M_Z(0) - M_Z'(0)^2 = \mathbb{E}[Z^2] - \mathbb{E}[Z]^2 = \text{Var}(Z) = 1$$

5.8 Approximation von F_S

$$b_{3} = \dots = \mathbb{E}[Z^{3}] - 3\mathbb{E}[Z^{2}]\mathbb{E}[Z] + 2\mathbb{E}[Z]^{3}$$

$$= \mathbb{E}[(Z - \mathbb{E}[Z])^{3}] = \frac{\mathbb{E}[(Z - \mathbb{E}[Z])^{3}]}{\text{Var}(Z)^{3/2}} = V(Z)$$

$$b_{4} = \dots = \mathbb{E}[Z^{4}] - 4\mathbb{E}[Z^{3}]\mathbb{E}[Z] - 3\mathbb{E}[Z^{2}]^{2} + 12\mathbb{E}[Z^{2}]\mathbb{E}[Z]^{2} - 6\mathbb{E}[Z]^{4}$$

$$= \mathbb{E}[Z^{4}] - 3 = \frac{\mathbb{E}[(Z - \mathbb{E}[Z])^{4}]}{\text{Var}(Z)^{2}} - 3 = \text{Kurt}(Z)$$
(38)

Mit diesen Koeffizienten erhält man für $M_Z(t)$ die approximative Darstellung:

$$M_Z(t) = \exp\left(\ln\left(M_Z(t)\right)\right) \approx \exp\left(\frac{1}{2}t^2 + b_3\frac{t^3}{6} + b_4\frac{t^4}{24}\right)$$
$$= \exp\left(\frac{1}{2}t^2\right) \exp\left(b_3\frac{t^3}{6} + b_4\frac{t^4}{24}\right) \tag{39}$$

Wird der zweite Faktor in (39) gemäß der Taylor-Entwicklung $e^x = 1 + x + \frac{x^2}{2} + \dots$ entwickelt und werden dabei nur Terme bis zur 6-ten Ordnung berücksichtigt, dann resultiert für $M_Z(t)$ die Approximation:

$$M_Z(t) \approx e^{\frac{1}{2}t^2} \left(1 + b_3 \frac{t^3}{6} + b_4 \frac{t^4}{24} + b_3^2 \frac{t^6}{72} \right)$$
 (40)

5.8 Approximation von F_S

Einsetzen von $b_3 = V(Z)$ und $b_4 = Kurt(Z)$ in (40) liefert schließlich mit

$$M_{Z}(t) \approx e^{\frac{1}{2}t^{2}} \left(\underbrace{\frac{1}{=a_{0}} + \underbrace{\frac{V(Z)}{6}t^{3}}_{=a_{3}} + \underbrace{\frac{\text{Kurt}(Z)}{24}}_{=a_{4}} t^{4} + \underbrace{\frac{V(Z)^{2}}{72}}_{=a_{6}} t^{6} \right)$$
(41)

die gesuchte (approximative) Darstellung von $M_Z(t)$ als eine Reihe der Gestalt (31). Zusammen mit (32) motiviert dies für F_Z die sog. Edgeworth-Approximation

$$F_Z(z) \approx \text{EW}(z) := \Phi(z) - \frac{V(Z)}{6} \Phi^{(3)}(z) + \frac{\text{Kurt}(Z)}{24} \Phi^{(4)}(z) + \frac{V(Z)^2}{72} \Phi^{(6)}(z)$$
(42)

für alle $z \in \mathbb{R}$. Daraus erhält man durch die Rücktransformation $Z \longrightarrow \frac{S - \mathbb{E}[S]}{\sqrt{\text{Var}(S)}}$ mit

$$F_S(s) \approx \text{EW}\left(\frac{s - \mathbb{E}[S]}{\sqrt{\text{Var}(S)}}\right)$$
 (43)

die korrespondierende Edgeworth-Approximation für F_S .

5.8 Approximation von F_S

Die benötigten Ableitungen $\Phi^{(k)}(z)$ für k = 3,4,6 sind dabei gegeben durch:

$$\Phi^{(3)}(z) = \frac{1}{\sqrt{2\pi}} (z^2 - 1)e^{-z^2/2}$$

$$\Phi^{(4)}(z) = \frac{1}{\sqrt{2\pi}} (-z^3 + 3z)e^{-z^2/2}$$

$$\Phi^{(6)}(z) = \frac{1}{\sqrt{2\pi}} (-z^5 + 10z^3 - 15z)e^{-z^2/2}$$
(44)

Bemerkungen:

 Völlig analog können Edgeworth-Approximationen höherer Ordnung ermittelt werden. Hierzu müssen lediglich in (40) entsprechend mehr Terme berücksichtigt werden. Für die Koeffizienten a_k der nächsten fünf in (41) hinzukommenden Terme erhält man z.B.

$$a_7 = \frac{V(Z) \operatorname{Kurt}(Z)}{144}, \ a_8 = \frac{\operatorname{Kurt}(Z)^2}{1152}, \ a_9 = \frac{V(Z)^3}{432},$$
 $a_{10} = \frac{V(S)^2 \operatorname{Kurt}(Z)}{1728} \quad \text{und} \quad a_{11} = \frac{V(S) \operatorname{Kurt}(Z)^2}{6912}$

(vgl. SCHRÖTER (1995), Seite 297).

5.8 Approximation von F_S

©2025 M. Merz

Bemerkungen (Fortsetzung):

• Für die Koeffizienten a_k in (41) gilt

$$\lim_{k\to\infty}a_k=0$$

(vgl. SCHRÖTER (1995), Seiten 297-298).

- Durch Hinzunahme weiterer Terme in (40) muss es nicht zwangsläufig zu einer Verbesserung der Edgeworth-Approximation kommen (vgl. BUCHWALDER ET AL. (1993)).
- Die Edgeworth-Approximation (43) zur Näherung von $F_S(s)$ eignet sich i.A. besser für s in der Nähe von $\mathbb{E}[S]$ als für s weit rechts im Tail (vgl. SUNDT (1999), Seite 123). Für stark schiefe Verteilungen (d.h. $|V(S)| \ge 2$) liefert sie hingegen häufig schlechte Näherungswerte (vgl. BUCHWALDER ET AL. (1993)).
- Die Normal-Power-Approximation (30) kann auch mit Hilfe der einfachen Edgeworth-Approximation

$$F_Z(z) \approx \Phi(z) - \frac{V(Z)}{6}\Phi^{(3)}(z)$$

hergeleitet werden (siehe KAAS ET AL. (2008), Seiten 34-35).

5.8 Approximation von F_S

Bemerkungen (Fortsetzung):

ullet Für die Ableitungen $\Phi^{(k)}$ mit $k\in\mathbb{N}$ gilt

$$\Phi^{(k)}(z) = \frac{d^{k-1}}{dz^{k-1}} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} = O(z^{k-1} e^{-z^2/2}) \qquad \text{für } |z| \to \infty.$$

Daraus folgt

$$\lim_{|z|\to\infty}\Phi^{(k)}(z)=0\qquad \text{ für alle }k\in\mathbb{N}$$

und damit insbesondere (unabhängig davon, wieviele Terme in (40) berücksichtigt werden)

$$\lim_{z\to -\infty} \mathrm{EW}(z) = 0 \qquad \text{ und } \qquad \lim_{z\to \infty} \mathrm{EW}(z) = 1.$$

Bei der Anwendung von EW(z) ist dennoch Vorsicht geboten, da EW(z) i.A. keine Verteilungsfunktion ist. Zum einen muss EW(z) nicht monoton in z sein und zum anderen können Werte außerhalb von [0,1] resultieren (siehe WÜTHRICH (2013), Seite 99).

• Die Ableitung von EW(z) nach z wird häufig "Edgeworth-Dichte" genannt.

5.8 Approximation von F_S

Beispiel (Edgeworth-Approximation)

Analog zu den letzten beiden Beispielen gelte wieder $S \sim \text{ZPoisson}(20, F_Y)$. Wegen $\mathbb{E}[Y^4] = \infty$ für $Y \sim \text{Par}(4,3)$ wird nun jedoch anstelle von Par(4,3) die Einzelschadenhöhenverteilung $F_Y = \text{Par}(5,4)$ betrachtet. Es gilt dann

$$\mathbb{E}[N] = \text{Var}(N) = 20, \ \mathbb{E}[Y] = 1, \ \mathbb{E}[Y^2] = \frac{8}{3}, \ \mathbb{E}[Y^3] = 16 \text{ und } \mathbb{E}[Y^4] = 256.$$

Daraus folgt weiter

$$\mathbb{E}[S] = 20 \quad \text{und} \quad \text{Var}(S) = \frac{160}{3}$$

(vgl. Aussagen a) und b) der Folgerung in Abschnitt 5.4). Mit

$$M_S(t) = \exp(20(M_Y(t) - 1))$$

(vgl. Aussage d) der Folgerung in Abschnitt 5.4) erhält man ferner:

5.8 Approximation von F_S

Beispiel (Fortsetzung)

$$\begin{split} \ln\left(M_Z(t)\right) &= \ln\left(\mathbb{E}\left[e^{tZ}\right]\right) \\ &= \ln\left(\mathbb{E}\left[e^{t\frac{S-\mathbb{E}[S]}{\sqrt{\text{Var}(S)}}}\right]\right) \\ &= \ln\left(M_S\left(t/\sqrt{\text{Var}(S)}\right)e^{-t\frac{\mathbb{E}[S]}{\sqrt{\text{Var}(S)}}}\right) \\ &= \ln\left(M_S\left(t/\sqrt{\text{Var}(S)}\right)\right) - t\frac{\mathbb{E}[S]}{\sqrt{\text{Var}(S)}} \\ &= 20\left(M_Y\left(t/\sqrt{\text{Var}(S)}\right) - 1\right) - t\frac{\mathbb{E}[S]}{\sqrt{\text{Var}(S)}} \end{split}$$

Zusammen mit (36), (37) und (38) liefert dies für die Schiefe und die Kurtosis der standardisierten Zufallsvariablen Z die Werte

5.8 Approximation von F_S

Beispiel (Fortsetzung)

$$V(Z) = b_3 = \frac{d^3}{dt^3} \left(20 \left(M_Y \left(t / \sqrt{\text{Var}(S)} \right) - 1 \right) - t \frac{\mathbb{E}[S]}{\sqrt{\text{Var}(S)}} \right) \bigg|_{t=0}$$
$$= \frac{20}{\text{Var}(S)^{3/2}} M_Y'''(0) = \frac{20 \mathbb{E}[Y^3]}{\text{Var}(S)^{3/2}} = \frac{20 \cdot 16}{(160/3)^{3/2}} \approx 0.8216$$

bzw.

$$\operatorname{Kurt}(Z) = b_4 = \frac{d^4}{dt^4} \left(20 \left(M_Y \left(t / \sqrt{\operatorname{Var}(S)} \right) - 1 \right) - t \frac{\mathbb{E}[S]}{\sqrt{\operatorname{Var}(S)}} \right) \bigg|_{t=0}$$
$$= \frac{20}{\operatorname{Var}(S)^2} M_Y^{(4)}(0) = \frac{20 \mathbb{E}[Y^4]}{\operatorname{Var}(S)^2} = \frac{20 \cdot 256}{(160/3)^2} = \frac{9}{5}.$$

Eingesetzt in (42)-(43) liefert dies für $F_S(s)$ die Edgeworth-Approximation

5.8 Approximation von F_S

Beispiel (Fortsetzung)

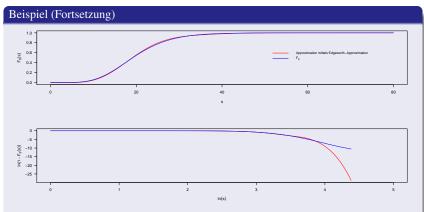
$$\begin{split} F_S(s) &\approx \mathrm{EW}\left(\frac{s-20}{\sqrt{160/3}}\right) \\ &= \Phi\left(\frac{s-20}{\sqrt{160/3}}\right) - \frac{0.8216}{6}\Phi^{(3)}\left(\frac{s-20}{\sqrt{160/3}}\right) \\ &+ \frac{9/5}{24}\Phi^{(4)}\left(\frac{s-20}{\sqrt{160/3}}\right) + \frac{0.8216^2}{72}\Phi^{(6)}\left(\frac{s-20}{\sqrt{160/3}}\right). \end{split}$$

Für das 95%-Quantil x(0.95)=33.77 und das 99%-Quantil x(0.99)=41.63 von F_S liefert die Edgeworth-Approximation die Näherungswerte

$$\widetilde{x}(0.95) = 33.6415$$
 bzw. $\widetilde{x}(0.99) = 42.9941$.

D.h. das exakte 95%- und 99%-Quantil werden relativ gut approximiert. Aus den beiden folgenden Abbildungen ist ferner ersichtlich, dass die Anpassung in der Nähe des Erwartungswertes ganz gut ist, aber der rechte Tail von F_S durch die Approximation unterschätzt wird.

5.8 Approximation von F_S



Die Unterschätzung des rechten Tails $\mathbb{P}(S > s) = 1 - F_S(s)$ folgt aus der Tatsache, dass sich die Edgeworth-Approximation für große s wie $s^5e^{-s^2/2}$ verhält (vgl. (44)), während die Par(5,4)-Verteilung für große s wie s^{-5} abklingt, also deutlich langsamer gegen 0 konvergiert.

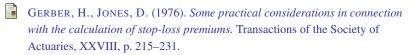
Abschnitt 5.9 Literatur

5.9 Literatur

- BERTRAM, J. (1981). *Numerische Berechnung von Gesamtschadenverteilungen*. Blätter der deutschen Gesellschaft für Versicherungs- und Finanzmathematik, 15/2, p. 175–194.
- BUCHWALDER, M., CHEVALLIER, E. & KLÜPPELBERG, C. (1993).

 Approximation methods for the total claimsize distribution an algorithmic and graphical presentation. Mitteilungen der Vereinigung schweizerischer Versicherungsmathematiker, 93/2, p. 187–227.
- BÜHLMANN, H. (1984). *Numerical evaluation of the compound poisson distribution: recursion or Fast Fourier Transform?* Scandinavian Actuarial Journal, 2, p. 116–126.
- DASGUPTA, A. (2008). Asymptotic Theory of Statistics and Probability. Springer.
- DE VYLDER, F., GOOVAERTS, M. J. (1988). Recursive calculation of finite time survival probabilities. Insurance: Mathematics & Economics, 7, p. 1–8.

5.9 Literatur



- HALL, P. (1992). The Bootstrap and Edgeworth Expansion. Springer.
- HALMOS, P. R. (1990). *Has mathematical progress slowed down?* American Mathematical Monthly, August-September 1990, 97/7, p. 561–588.
- KAAS, R., GOOVAERTS, M., DHAENE, J., DENUIT, M. (2008). *Modern Actuarial Risk Theory: Using R.* Springer.
- LUNDBERG, F. (1903). Approximations of the Probability Function/Reinsurance of Collective Risks. Dissertation.

5.9 Literatur

- MERZ, M., WÜTHRICH, M. V. (2013). Mathematik für Wirtschaftswissenschaftler: Die Einführung mit vielen ökonomischen Beispielen. Vahlen Verlag.
- PANJER, H. H. (1981). *Recursive evaluation of a family of compound distributions*. ASTIN Bulletin, 12/1, p. 22–26.
- PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., FLANNERY, B. P. (2007). *Numerical Recipes: The Art of Scientific Computing*. Cambridge University Press.
- ROBERTSON, J. (1992). *The computation of aggregate loss distributions*. Proceedings of the Casualty Actuarial Society, 79, p. 57–133.
- SCHRÖTER, K. J. (1995). Verfahren zur Approximation der Gesamtschadenverteilung: Systematisierung, Techniken und Vergleiche. Verlag Versicherungswirtschaft e.V.
 - STRANG, W. G. (1994). Wavelets. American Scientist, 82, p. 250–255.

5.9 Literatur

SUNDT, B., JEWELL, W. S. (1981). Further results of recursive evaluation of compound distributions. ASTIN Bulletin, 12/1, p. 27–39.

SUNDT, B. (1999). An Introduction to Non-Life Insurance Mathematics. Verlag Versicherungswirtschaft e.V.

SUNDT, B., VERNIC, R. (2009). Recursions for Convolutions and Compound Distributions with Insurance Applications. Springer.

THYRION, P. (1960). Contribution a l'Etude du Bonus pour non Sinstre en Assurance Automobile. ASTIN Bulletin, 1/3, p. 142–162.

WALD, A. (1944). On Cumulative Sums of Random Variables. The Annals of Mathematical Statistics, 15/3, p. 283–296.

WÜTHRICH, M. V. (2013). Non-Life Insurance: Mathematics & Statistics (December 2, 2013). http://ssrn.com/abstract=2319328.

