

Übung 6: Nichtlineare Regression

Aufgabe 1

- a) Geben Sie an, welche der folgenden Regressionsmodelle linear oder nichtlinear sind:
 - 1) $y = \beta_1 + \beta_2 e^{2x} + \varepsilon$
 - 2) $y = \beta_1 + \beta_2 x_1 + \beta_3 \ln(x_2) + \varepsilon$
 - 3) $y = \beta_1 + \beta_2 x_1 + \beta_2 x_2^{\beta_3} + \varepsilon$
 - 4) $y = \beta_1 + \beta_2 e^{x_1} + \beta_3 \frac{1}{x_2} + \varepsilon$
 - 5) $y = \beta_1 e^{-\beta_2 x} + \varepsilon$
 - 6) $y = \beta_1 + \beta_2 e^{\beta_3 x} + \sin(\beta_4 x) + \varepsilon$
 - 7) $y = \frac{\beta_1 x}{x + \beta_2} + \varepsilon$
 - 8) $y = \beta_1 + \frac{\beta_2}{\beta_1}x + \varepsilon$
 - 9) $y = \beta_1 x_1^{\beta_2} x_2^{\beta_3} x_3^{\beta_4} + \varepsilon$
 - 10) $y = \frac{1}{1 + e^{-(\beta_1 + \beta_2 x)}} + \varepsilon$
- b) Geben Sie an, bei welchen der nichtlinearen Regressionsmodelle aus Aufgabenteil a) die Regressionsfunktion $\mathbb{E}[y] = f(\mathbf{x}; \boldsymbol{\beta})$ durch eine einfache Transformation und/oder Umparameterisierung linearisiert werden kann. Geben Sie gegebenenfalls die Transformation und/oder Umparameterisierung an.
- c) Was ist bei linearisierenden Transformationen zu beachten?

Aufgabe 2

Die untenstehende Tabelle zeigt die Kursentwicklung der Kryptowährung "Statistikcoin" in den letzten 8 Jahren.

Jahr x	1	2	3	4	5	6	7	8
Kurs y in Euro	20	25	36	48	64	86	114	168

An diese Daten soll das nichtlineare Regressionsmodell

$$y = \beta_1 e^{\beta_2 x} + \varepsilon \tag{1}$$

angepasst werden.

- a) Ermitteln Sie analytisch die zu diesem nichtlinearen Regressionsmodell gehörende Funktionalmatrix (Jacobi-Matrix) $\mathbf{J}_{\mu}(\boldsymbol{\beta})$.
- b) Geben Sie die Matrix $\mathbf{J}_{\mu}(\beta)^T \mathbf{J}_{\mu}(\beta)$ und die asymptotische Varianz-Kovarianzmatrix von $\widehat{\boldsymbol{\beta}}$ an.
- c) Stellen Sie die Rekursionsvorschrift des Newton-Raphson-Verfahrens zur Bestimmung des KQ-Schätzers für β auf.
- d) Bestimmen Sie mit Hilfe von Excel oder R und der Rekursionsvorschrift aus Aufgabenteil c) Schätzungen für die beiden Regressionskoeffizienten β_1 und β_2 des nichtlinearen Regressionsmodells (??) (auf vier Nachkommastellen genau). Verwenden Sie dabei die beiden Startwerte $\beta_0 = (15; 0.25)$. Geben Sie ferner die Funktionsgleichung der an die Daten angepassten Regressionsfunktion $\hat{y} = f(x; \hat{\beta})$ an.
- e) Stellen Sie die Daten y und die angepasste Regressionsfunktion $\hat{y} = f(x; \hat{\beta})$ in einem Streudiagramm dar.
- f) Bestimmen Sie mit Hilfe von Excel oder R und den Ergebnissen aus den Aufgabenteilen b) und d) Schätzungen für den Varianzparameter σ^2 (auf fünf Nachkommastellen genau) und für die asymptotische Varianz-Kovarianzmatrix von $\widehat{\beta}$.
- g) Ermitteln Sie mit Hilfe des Ergebnisses aus Aufgabenteil f) Schätzungen für die Varianzen der KQ-Schätzer $\hat{\beta}_1$ und $\hat{\beta}_2$. Beurteilen Sie damit auf Basis einer Daumenregel, ob die beiden KQ-Schätzungen bei einem Signifikanzniveau von $\alpha = 5\%$ statistisch signifikant von 0 verschieden sind.