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Chapter 1

Introduction

Within the framework of this work, a discrete-event-simulation model is described that is de-
signed to reproduce the multi-objective, stochastic, real-time environment of automated RMGC
(rail mounted gantry crane) systems at multiple-berth seaport container terminals. Basically, a
single RMGC-operated yard block of the container storage yard is modelled in great detail along
with the corresponding waterside and landside handover areas, while the up- and downstream
processes are only considered in a very simplified way in order to keep the model at a manageable
size in terms of parametrisation possibilities, simulation costs and interpretation effort.

The simulation model is implemented using the simulation model library Tecnomatix Plant
Simulation 8.2. A detailed introduction to this model library is for instance given by Bangsow
(2008). Here, neither the simulation software nor the source code of the created simulation
model are presented in detail. Moreover, the functionalities and processes of the simulation
model are explained in detail in order to allow for a profound evaluation of simulation results
yielded with that model. With this in mind, some important processes are pictured in flowcharts
in the following chapters in order to improve the understanding of the model’s processes. A
legend of the flow charts — that are created in the style of ISO 5807 (International Organization
for Standardization) — is shown in figure 1.1. Process steps are represented as rectangles and
decisions are pictured as parallelograms. All decisions are mapped as questions, with either yes
or no as only possible answer. The horizontal field, where a process step is located in, indicates
the area of accountability for the corresponding process step.

In the second chapter, the architecture of the simulation model is explained. Thereafter,
the major modules of the simulation model — which are the scenario creation module, the
drive control module, the administration module, the strategy module, the experimental control
module and the statistics module — are successively introduced. This documentation is closed
with a summarising overview on all inputs and outputs of the model, its limitations and features

as well as on validation and verification issues.
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Chapter 2

Architecture of Simulation Model

The simulation model comprises hundreds of variables, parameters, tables, methods, dialogues
and other items — each of them connected with a certain module of the simulation model that
is designed to fulfil a certain function within the entire model. The drive control module is for
example responsible for the execution of all crane movements. In total, six modules and several
submodules can be distinguished. An overview of the architecture of the implemented simulation
model and the interactions between the modules is given in figure 2.1.

The main modules of the simulation model are depicted in the middle of figure 2.1. The
scenario-creation module (see chapter 3) comprises all functions concerning the generation of re-
producible container arrivals and departures for the modelled yard block. While individual con-
tainers as well as vessel and XT (external truck) arrivals are randomly generated by a parameter-
based data generator, the time of container arrivals and departures at the modelled yard block
are determined by a data preprocessing submodule which imitates the operations of QCs (quay
crane) and waterside horizontal transport machines in a simplified way.

The administration module (see chapter 5) and the drive-control module (see chapter 4) are
the core of the simulation model. While the latter one executes and controls all crane movements,
the administration module has many functions. Firstly, the yard block capacities are managed.
Secondly, the job-management submodule generates and manages transport jobs for the gantry
cranes, initiates their scheduling and initiates the execution in the scheduled order. Thirdly, the
handover-area management controls the occupancy of the handover-area capacities.

The strategy module (see chapter 6) is closely linked with the administration and drive-
control modules as it contains exchangeable decision procedures for these modules. The stacking
submodule decides on stacking locations for containers and returns its decision to the storage
management submodule. The crane scheduling submodule schedules the crane assignment and
sequencing of transport jobs and returns the next job for a calling crane to the job management
submodule. The crane routing submodule decides on the routing of the RMGCs, with respect
to granting the right of way and executing crane crossing manoeuvres and returns the decision
to the collision- and deadlock-avoidance submodule.

The experimental control (see chapter 7) and the statistics modules (see chapter 8) have
assisting cross-sectional functions for the main modules. By means of the experimental-control
module different experiments can be automatically conducted by the simulation model. Statist-
ical data that is needed to evaluate simulation experiments with different parameter settings is

continuously gathered and processed by the statistics module.

3
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Chapter 3

Scenario Creation Module

Meaningful results for practical terminal planning and operation do not just require a quite
realistic simulation model, moreover a data generator is needed which creates close to reality
scenarios. In fact, parameter-based data generation is a discipline on its own within the field of
operations research — several works covering this problem in general (e.g. Hall and Posner, 2001)
or for problem-specific settings (e.g. Kolisch and Sprecher, 1995; Hartmann, 2004) are available.
The usage of parameters allows for systematic data generation according to a specific experi-
mental setting. Within the framework of container storage yard simulations, data generation
is also more than just generating containers with respect to a prescribed distribution function,
since the mutual dependencies of real-world terminal functions are considerably complicated (see
chapter 2 of Kemme, 2011). Means of transportation and containers have to be generated and
each container has to be assigned to a mean of transportation for delivery and pick-up in a way
that the predefined distributions on means of transportation, sizes of means of transportation,
arrival times of means of transportation and dwell times are matched simultaneously (Hartmann,
2004).

The objective of a data generator for container terminal simulation and optimisation is to
produce realistic scenarios that contain all required input data for the planned experiment.
Usually, artificially generated scenarios are only the second-best choice, since real-world data is
generally preferred (Hall and Posner, 2001). But this is not the case for container terminals to be
built or to be expanded as well as for analysing future developments like larger vessels or changed
vessel call patterns (Hartmann, 2004). Consequently, researchers tend to use artificially generated
data. The literature on data generators for the special application of container terminals is not
very heavyset. While some investigations make use of real-world data (e.g. Kang et al., 2006;
Kozan and Preston, 1999), most references use artificially generated data (e.g. Petering et al.,
2009; Kim et al., 2008). Since the data generation is usually not the primary focus of these
references — this is an algorithm or a simulation study — only little insight into the data
generation processes is given. So far, only the publications of Hartmann (2004) and Voogd et al.
(1999) are directly devoted to data generation for container terminal simulation and optimisation.
While Hartmann (2004) provides a detailed and generally applicable guidance for generating
scenarios for seaport container terminals, Voogd et al. (1999) describes the data generation
process for a case study which is dedicated to container stacking.

A central module of the RMGC simulation model described in this documentation is a two-

phase scenario creation process. In the first phase, individual containers and means of transporta-

5



Chapter 3. Scenario Creation Module 6

tion that will arrive at the terminal are generated according to user-defined parameter settings
by the data generator submodule. Thereafter, in the second phase, the generated data on con-
tainer and arrivals of means of transportation at the terminal are broken down to arrival times
of containers and/or means of transportation at the modelled yard block based on simplifying

assumptions for the operations of the QCs and waterside horizontal transport machines.

3.1 Data Generator

Like the simulation model itself, the data generator is a comparably complicated model. There-
fore, its description is subdivided into several parts. Firstly, the output of the data generator
that is needed by the simulation model is described. Next, the general structure of the applied
data generator along with its main features and assumptions is explained, followed by a listing
of the input parameters required by the generator programme. Afterwards, some necessary pre-
calculations and the generation process for means of transportation as well as for containers is
explained in detail. Finally, it is explained how container attributes as well as departing means

of transportation and pick-up times for each individual container are generated.

3.1.1 Required Data Output for Simulation Model

Simplifying, the function of a yard block is to store containers which are delivered by internal
or external vehicles and to retrieve the respective containers when they are needed by other
vehicles. Thus, individual containers are required for the simulation, which means that each
handled container should be identifiable by a unique number. The operational performance of
yard block operations can be measured by the timely accuracy of storage and retrieval processes
(i.e. the waiting times of vehicles in the transfer areas of the blocks). Therefore, it has to be
known when a loaded vehicle arrives for delivery or an empty vehicle arrives for collection of
a container. Hence, each container should be connected with a certain ingoing and outgoing
date at the yard block. In addition, stacking strategies make use of the attributes of containers.
Therefore, the size, the weight (-group), the PoD (port of destination) and the vessel a container

is planned to depart with have to be known.

3.1.2 General Concept, Main Features and Assumptions

The model-specific data generator programme that is subsequently presented is based on the
generators of Voogd et al. (1999) and Hartmann (2004). These generators are modified and
extended in order to produce problem-specific data for simulating the operations of RMGC
systems at seaport container terminals. In this subsection, the general concept of the data
generator programme along with its main features and limitations is shortly introduced. The
entire workflow for the creation of scenarios for an RMGC operated yard block is illustrated in
figure 3.1.

Producing close to real-world distributions of container arrivals and departures necessitates
the generation of individual means of transportation along with corresponding ETA (estimated
time of arrival) and ETD (estimated time of departure). Here, the modes of transportation
deep-sea vessel, feeder vessel and XT are distinguished. For reasons of simplicity it is assumed

that transshipment containers are either going from feeder to deep-sea vessel or vice versa but
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Chapter 3. Scenario Creation Module 8

never from deep-sea to deep-sea or feeder to feeder. Furthermore, it is assumed that the arriving
mode of transshipment containers is equally distributed between deep-sea and feeder vessels. For
import and export containers, it is assumed that import containers only arrive by and export
containers only depart by deep-sea vessel and that the number of import containers equals
the number of export containers. In addition, container flows from XT to XT are neglected.
These assumptions allow for a simplified definition of the distributions between the modes of
transportation and the corresponding container flows. The required calculations are explained
in section 3.1.4.

The generator programme does not produce data for the whole terminal. Moreover, only
the required data for the simulation of one RMGC operated yard block of any size is generated.
Thus, after the input parameters have been defined, some precalculations are done in order to
proportion some parameter settings — which have initially been made on the terminal level due
to being commonly used figures in that field — to the yard block level. The container flows and
the vessel sizes are for instance defined for the whole terminal level and on that score these values
are proportioned to the block level. However, the proposed data generator can easily be adapted
to produce close to real-world data for whole container terminal systems of any size and type.

On basis of the defined parameters and precalculations, individual means of transportation
along with the related containers to be unloaded are generated. In this step of the generation
process, the containers only have a unique ID, the other required data still has to be generated.
In contrast to the data generation procedures of Voogd et al. (1999) and Hartmann (2004), here
the length of the quay wall and therewith the berthing capacity of the terminal is explicitly
considered. In the next step, the container-specific attributes size, weight and destination are
generated according to the predefined distributions. The final step deals with the allocation of
an outgoing mean of transportation and the related collection date to each initially generated
container. Thereby, the defined dwell time distribution as well as the arrival time distributions
for all modes are simultaneously taken into account. After the generation process, all produced
means of transportation and containers are written to two separated files. The ’sailing list’
contains in rows the information on all arriving deep-sea vessels, feeder vessels and XTs. The
‘scenario data list’ contains in rows all required information on the arriving containers in the
simulation period. In order to ensure the reproducibility of all generated scenarios and thus the
comparability of simulation results, all random and distribution-based decisions are instantiated

by a controllable seed value.

3.1.3 Input Parameters

The input parameters can be distinguished into general parameters, terminal parameters, yard
parameters, parameters for means of transportation and parameters for container attributes.
The general parameters are the length T' of the simulation period and the length T of the
warm-up period. Both values are measured in the number of weeks, since it is assumed that the
deep-sea vessels follow a periodically weekly-repeated vessel call pattern (see section 3.1.5). The
warm-up period is required, as the yard is not initially filled with containers when the simulation
period begins and investigations are generally concerning the regular yard operations, not the
setup process. Hence, the statistical data collection won’t start until the warm-up period has

finished and the yard block system has reached a steady state. Consequently, the simulation
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results are based on T'— T weeks of regular yard block operation.

Required terminal parameters are the annual terminal throughput 7t°ueh the length rlersth

qcm

of the quay wall, the fraction 7* of transshipment containers and the number 7" of QC moves

through i mheasured in the

per hour for vessels of mode ¢. The annual terminal throughput
number of containers handled by the QCs per year (Saanen, 2004). While the hinterland turnover
is not considered for the terminal throughput, transhipment containers are counted twice, as
they are unloaded and loaded by the QCs. The length 7"t of the quay wall, which limits the
number of vessel that can be served simultaneously, is measured in metres. The berthing time
of a vessel clearly depends on the unloading and loading speed of the QCs. Here, a fixed number

qcm

T

of QC moves (i.e. containers per hour) for vessels of mode i is assumed. The fraction

through which is induced

7' of transhipment containers defines the share of the throughput =
by containers that are ingoing and outgoing by vessel. This parameter is used to compute the
number C; of containers delivered by mode ¢ and the fraction ¢;; of containers delivered by mode
i and picked-up by mode j (7,5 € {deep-sea, feeder, xt}).

Yard parameters are the size of the RMGC yard blocks, the average filling rate of the yard
block 7, the dwell time distribution and the block-factor 7f. The size of the yard blocks
is measured in the number of TEU-sized slots (twenty feet equivalent unit), which is given by
the number n* of bays, the number of n¥ lanes and the number n” of tiers per yard block. It is
assumed that all yard blocks of the container terminal are equally sized. The average filling rate of
the yard block describes the ratio between the net number of occupied slots and the theoretically
available slots over the simulation period. The dwell time is the number of days a container
spends in the yard. Depending on the type of dwell time distribution, different parameters are
required. However, here the mean container dwell time ¢ is introduced. The block-factor 7! is
a parameter which is required to adjust the data generation process from the terminal to the
yard block size. With this parameter, the yard block distribution of containers associated with a
certain vessel is controlled. In case of an uniform distribution, all blocks receive the same number
of containers from /for a specific vessel, regardless of the distance to the respective berthing place.
As this might be unrealistic, the uniformly distributed number of containers is multiplied with
7Pt > 1. The greater 7Pf, on the one hand, the more containers are received for/from a specific
vessel, and on the other hand, the less vessels are related to a specific yard block.

For a realistic generation of the means of transportation some classes should be defined for
the modes ¢ € {deep-sea, feeder}, since transport capacities and vessel lengths can — even for

the same mode — vary up to a few thousand TEU and more than hundred metres, respectively.

class
4

Thus, the number n of classes of transport mode ¢ has to be defined. For XTs different classes

are not considered and it is assumed that each XT either delivers a single container or picks up
a single container. For each class k the fraction pg}fss for the respective mode has to be defined
with ), p;?}fss = 1 for each mode 7. In addition, for each class k an interval for the moves per
call and the ship lengths has to be defined. The interval of the moves per call is given by the
minimum number S;;, of moves per call in class k of mode i and the maximum number Sy, of
moves per call. The interval of the ship length is given by the minimum length L;; of a ship in
class k of mode i and the maximum length L.

Finally, the arrival time distributions for each mode ¢ has to be defined. While the arrivals of

deep-sea vessels are mainly determined by a user-defined, weekly repeated vessel call pattern and
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only the exact arrival times randomly vary by a few hours from week to week, the arrival times
of XTs and feeder vessels are generated completely at random and there is no weekly repetition.
Thus, for mode i € {deep-sea} a vessel call pattern has to be specified by the user, while for
modes i € {xt, feeder} distributions on the weekly and daily arrival probabilities have to be
specified. Differences in the arrival frequencies are possible for different days of the week and

different time slots of the day. For the sake of simplicity, systematic differences in daily arrival

timeslot
7

i € {xt, feeder}, the first H;, and the last H;; hour of slot ¢ and the fraction ptimeslot of arrivals

in time slot ¢ of mode ¢ have to be defined.

distributions are neglected here. Thus, only the number n of daily time slots for mode

For the weekly repeated vessel call pattern, the user has to specify the number of weekly
repeated vessel tours nY°P. In addition, the user has to specify the deep-sea class k of tour [,
the hourly planned arrival and departure times over the week of tour [ as well as information on
the concernment of the modelled yard block (i.e. if any container of tour ! will be stored in the
modelled block). Of course, each vessel of tour [ has the same attributes. The vessel call pattern
has to be specified by the user with respect to the quay wall and yard block capacities, which

means that the definitions of 7lensth

, L., Lik, the planned arrival and departure times, as well
as the definitions of the yard block capacity, S;z, Sik, n'P and the concernment of the modelled
yard block have to be well-matched. To make sure that the specified vessel call pattern will be
feasible even after the concretisation of the vessel-individual moves per call, in the first instance
the time interval between the planned arrival and departure times of tour [ may be based on
the maximum number of moves per call for vessels of the corresponding class. Thus, a quay
wall capacity is granted to each vessel, that will be sufficient independently on the later chosen
concrete number of moves per call for each individual deep-sea vessel.

The container attributes are the size, the weight and the destination. The data generator
programme distinguishes 20’ and 40’ containers, 45’ containers are not considered. The average
size over all containers handled at a seaport container terminal in terms of TEU is given by the

TEU-factor 7*". Parameters defining the weight distribution of containers are the number n"eight

of weight classes and the fraction pxeight of containers in weight class w. Parameters defining the

dest

destinations are the number n5°" of destinations for containers departing with mode ¢ and the

fraction pgest

i of containers with destination g among all containers departing with mode .

3.1.4 Precalculations

The precalculations can be distinguished into two types. The first type is required due to only
generating data for a single yard block and deals with the proportional adaption from the terminal
size to the block size. The second type of precalculations deals with the definition of the container
flows.

In order to proportion some parameters to the block level, the relation between the size of
the single block and the size of the total yard has to be computed. Therefore, the fraction pPlock

of yard slots located in the simulated yard block is computed by

X X z fill
block _ noono-n-m

through . teu . _ m® i ’
{77 g (1 2 ) 365—‘

p (3.1)
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The numerator gives the number of averagely used slots in the regarded yard block, as the
the number of theoretically available yard slots is multiplied with the average filling rate. The
denominator gives the number of averagely used slots in the whole storage yard of the terminal
by multiplying the number of containers stored in the yard per year with the fraction of a year
that an average container stays in the yard. Since each transshipment container is handled twice

through of the terminal per year

by the QCs but only stored once in the yard, the throughput =
has to be reduced by these double handlings in order to get the number of containers stored in
the yard per year.

For the definition of the container flows, the number C; of containers delivered by mode i and
the fraction ¢;; of containers delivered by mode ¢ and picked-up by mode j have to be computed.
Based on the assumptions made in section 3.1.2, the number of containers delivered by deep-sea

vessel, feeder vessel and XT are given by

nx‘nx‘nz'ﬂ.ﬁll.T"? 1—27'(' +7r4

Cdeep—sea = g pteu : 1— 71.2(:5 ) (32)
nX.onpX.ont.gillopoy ”Tts
Cfeeder = g pteu . 1_ ﬂ_; and (33)
X X Z fill 1—m's
n*-n*-n”- T
CXt = g tZu : 27Tts ) (34)
. 7T — T

respectively. The first terms of the equations give the total number of to be stored containers in
the regarded block during the simulation period, while the second terms of equations 3.2, 3.3 and
3.3 give the fractions of containers delivered by deep-sea vessel, feeder vessel and XT, respectively.

The numerator of the first terms give the number of used slot-days during the simulation period,

X Z

as n* - n* - n? - il give the number of averagely used slots, and T - 7 give the number of days
in the simulation period. Since 40’ containers require two slots and containers normally stay a
few days in the block, the number of used slot-days is divided by the average dwell time and the
TEU-factor, yielding the total number of to be stored containers in the regarded block during
the simulation period.

Considering the previously explained assumptions, the second terms give the fractions of

containers delivered by the considered mode of transportation only on basis of the fraction 7% of
1,,45 ﬂ,ts ﬂts 1,71-55

transshipment containers. Clearly, this implies i =+ : i+ N 2+ = 1. The idea behind
2 ) )

these fractions can best be explained by a small numerical example. In case 7% = 0.4 and 100
containers are handled by the QCs, 100 - (1 - %s) = 80 containers arrive in the yard, thereof

ts ]

™

100 - ”; = 80 - —2% = 20 are transshipment containers and 100 - ths = 80 — = 10 arrive

t
-7 -5

7l,ts s
by deep-sea and feeder vessel, respectively. Consequently, 80 - <1 — 1% =80- (11_:; ) =60
7 -3
are either import or export. Since half of these 60 containers arrive by XT and deep-sea vessel

ts - ts ts

S S i sl
respectively, altogether 80 - ﬁ = 40 container arrive by deep-sea vessel, 80 - ; ‘e =10
7 7
1t
container arrive by feeder vessel and 80- —2+ = 30 container arrive by XT. The relation between

2
the transshipment factor 7% and the fraction of containers arriving by deep-sea vessel, feeder

vessel and XT is depicted in figure 3.2. The fraction of container arriving by deep-sea vessel
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Figure 3.2: Effects of the fraction of transshipment containers.

equals independently of the fraction of transshipment containers 50%, while the fraction of XT
containers decreases and the fraction of feeder containers increases with increasing transshipment
rate.

Due to the previously made assumptions on the container flow, it follows that cqeep-sea,deep-sea =
Ceeder,feeder = Cfeeder,xt = Cxt,feeder = Cxtxt = 0. Additionally, all containers arriving by XT or
feeder vessel will be picked-up by deep-sea vessel (i.e. Cfeeder,deep-sca = Cxt,deep-sea = 1). From
the assumption also follows that all transshipment containers arriving by deep-sea vessel will be
picked-up by a feeder vessel and that the remaining containers arriving by deep-sea vessel will

be picked-up by XT. Hence, these fractions are computed by

ﬂ.ts

4
Cdeep-sea,feeder = 7__ts s (35)
2 + 4
1—7ts
_ 2
Cdeep-sea,xt — 1_nts ts (36)
2 T 1

with the transshipment factor being the only influence parameter. Reviving the previous example

; ts _ _ 1 _ 3
with 7% = 0.4 leads to Cqeep-sea,feeder = 7 and Cdeep-sea,xt = -

3.1.5 Generating Means of Transportation and Containers

After the precalculations are completed, the generator programme starts the generation process
of individual means of transportation and containers. In general, the generation process is similar
for all modes of transport. Firstly, the individual means of transportation along with the numbers
of containers delivered by the related means of transportation for the regarded yard block are
generated. Thereafter, the berthing times of the means of transportation are computed, followed

by the generation of individual containers along with the related arrival data and the departing
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mode. However, differences in the generation process still exist. Therefore, the generation process
for deep-sea vessels is explained in detail and for feeder vessels and XTs the variations are shortly
described.

The generation of deep-sea vessels is based on the user-defined vessel call pattern. Firstly, T’
individual vessels of deep-sea tour [ are generated, if the modelled yard block is concerned with

that tour I. The classes of these vessels as well as their arrival times over the week are more or

vessel

M of each individual vessel

less given by the user-defined tour [. Only the exact arrival time a
v varies randomly within an equally-distributed time interval around the user-defined planned
arrival time for vessels of tour [, in order to realistically reproduce some stochastic differences
of the realised arrivals compared to the vessel call pattern. Next, the number S, of containers
that is delivered by vessel v is generated in two steps: Firstly, each vessel v is assigned a class-
dependent, equal-sized, minimum number of containers S™" to be unloaded by vessel v, in order
to ensure that container volume of each generated vessel is connected with the modelled yard
block. Secondly, some additional containers are randomly distributed over all generated vessels,
in order to reproduce stochastic variations of the container deliveries between different vessels. In

block 7-bf _ ¢ s computed

the first step, the minimum number of containers ST = S deep-sea ki 0-0°P
by a repeated procedure, that enlarges the correction parameter e, until ), S{f‘in < Ceep-sea-
Initially, € is set to be zero. In the second step, the final number of to be delivered containers S, =
Smin 4 gadd i generated for each individual vessel on basis of S™" and a random additive S24,
which is an equal-distributed number chosen from [O, (gdeep_sea’k — §deep_sea7k) -0.5 - pblOCk . be],

vessel
dv

until >, Sy = Cyeep-sea- Next, the departure times of all individual vessels are determined.

In order to consider differences in the QC productivity, the berthing time of vessel v is a normally

distributed variable b;jessel ~ N (=&, 0.1- ﬂq%% which depends on the time needed to
deep-sea deep-sea
unload and load all containers from/on vessel v, which roughly is Wq%f v—. The departure time

deep-sea

of vessel v is then computed by dYess! = gYessel 1 pyessel,

As for all containers that arrive by feeder vessel and XT, the outgoing deep-sea vessel has
to be known (see section 3.1.1) — even containers that arrive shortly before T and that are
planned for departure after T'— additional deep-sea vessels and the corresponding arrival dates
are created for some weeks after T'. Thus, a concrete deep-sea vessel can be determined for each
container that arrives by feeder vessel or XT(see section 3.1.7).

Finally the individual containers that are delivered by each deep-sea vessel are generated.

Besides the unique ID of the containers, the related arrival date and the departing mode are

container

< of an individual container ¢ is generated by drawing

also generated. The arrival date a
a random time out of the interval [a‘ljessel,a;’essel +0.5- bxessel], which roughly represents the
unloading time of the related vessel v. The pick-up mode of container c is drawn in the style of
the optimised procedure of Hartmann (2004), which means that the pick-up mode for the first
vessel is randomly chosen between feeder vessel and XT, while for each following vessel the pick-
up mode with the currently greatest difference between the user-defined fractions of cqeep-sea,feeder
and Cgeep-sea,xt and the actually realised fractions of these container flows is selected, thus ensuring
that the fractions cqgeep-sea,feeder aNd Cdeep-sea,xt are roughly realised in the end.

For feeder vessels and XTs, the generation steps are slightly different, as no user-defined ves-

class

sel call pattern exists. For the generation of a feeder vessel, a class k£ out of the number ng2% is

drawn in the style of the optimised procedure of Hartmann (2004). Next, the number S, of con-
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block bf @
oK 7Sfeeder,k‘

tainers that are delivered by vessel v is randomly chosen from [ﬁfeederyk -05-p
0.5 - pPlock . wa}. For all XTs the number S, is simply set to 1, which means that each gener-
ated truck only delivers one container. The generation of individual feeder vessels and trucks is
repeated until the total number of delivered containers equals Cheeqer and Ckt, respectively. The
arrival date of a feeder vessel is generated by simply drawing a random time out of the interval
[0,7]. Unlike deep-sea vessels, it is assumed that feeder vessels do not arrive according to a
periodical vessel call pattern. However, the berthing capacity has to be respected, therefore for
each feeder vessel an arrival time is drawn until an appropriate one is found. According to the
previously made assumptions, the departing mode of a container that arrives by feeder vessel

always is a deep-sea vessel. The arrival dates of individual XTs are generated by first drawing a

random arrival day out of [0, 7]. Thereafter, a time slot ¢ out of the number n{i™etof time slots
with probability pfggj;eslot is randomly drawn. Finally, an arrival time in the interval [ﬂxt,t; Fxt,t]

is randomly chosen. The departing mode of a container that arrives by XT always is a deep-sea
vessel. The container generation process for containers that are delivered by XT and/or feeder
is the same as for deep-sea vessels.

At the end of this part of the generation programme, individual means of transportation and
individual containers are generated. In Addition, the arrival dates and the pick-up mode of each

container are known.

3.1.6 Generating Container Attributes

In the next part of the data generation process, the required container attributes of size, weight
and destination are generated for all containers that have been produced in the previous part.
Firstly, the weight of a container is determined by drawing a weight group w with probability

weight
Pw

7*®U the size of each container is determined with the optimised procedure of Hartmann (2004).

weight

out of the defined number n of weight groups. Based on the user-defined TEU-factor

The destination of an individual container is generated by randomly drawing a destination g

with probability p?;St out of the number ngest

planned to depart with mode .

of possible destinations for containers that are

At the end of this part of the generation programme, the container attributes of size, weight,

and destination are known for each individual container.

3.1.7 Generating Departing Means of Transportation and Pick-Up Time

The only missing information for each individual container ¢ are the concrete mean of trans-
portation that is planned to collect container ¢ and the departure time dS°™*3iner of container ¢
with the collecting mean of transportation. Both information is generated in the final part of
the generator programme.

The determination of a collecting mean of transportation is quite similar for containers that
are planned to depart by deep-sea or feeder vessel. In the first step, the individual dwell time
0. of container c¢ is randomly drawn based on the shifted exponential probability distribution
function

—5¢

76371 5C
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Y

-1

1
f(0c) = : (3.7)
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that is specified by the user-defined mean container dwell time 6. In this way, both a minimum
dwell time of one day for each container ¢ (i.e., 6. > 1.0 days, Ve € C) and an expectancy
value for the container dwell time of § days are ensured. Owing to possible differences between
the dwell time distributions of transshipment containers and import-export containers (Drewry,
1998), a mean container dwell time 5% for transshipment containers and a mean container dwell

. —ie . . . . = ts  —<ts ts
time 0~ for import export containers can be separately specified, with § = %54~ + (1 — %) .

5 defining the mean container dwell time over all types of containers. In the next step, the
sailing list is checked for an appropriate vessel v, which is characterised by being of the required
mode of transportation, having sufficient loading capacity left and having a loading interval
[a;’essel + w, d;’essel} that covers the time the container ¢ has to be picked-up according
to the drawn dwell time. This procedure is repeated until a dwell time J. has been drawn for
which an appropriate vessel v exists. For containers with an XT as departing mode the generation
process is different. A new XT arrival is generated for each container to be collected. Hence, no
appropriate XT has to be searched for, but the XT arrivals have to be generated according to

timeslot of time slots and the related fractions pfgtrf;eSlOt of arriving XTs

the predefined number n
within that time slot.
The generation of the actual departure date dgontainer for an individual container ¢ is quite
different for all three modes. In case the departing mode is an XT, the departure date is just the
arrival date of the previously generated collecting XT. For feeder vessels as departing mode, a
) dXeSSEl] of the collecting

vessel v that is assigned to collect container ¢. In case of a deep-sea vessel two possibilities exist:

dvessel _avessel
) v

time is randomly chosen out of the loading interval |aYesse! +

Firstly, like for feeder vessels, a time can be randomly chosen out of the loading interval of the
collecting vessel. Secondly, if online stowage planning is applied, no concrete pick-up date is
generated for the container. Moreover, the departing date will be generated just a few hours
before the loading process of the assigned vessel starts. In addition, containers of the same
category are exchangeable for each departing date (see chapter 5 of Kemme, 2011). Here, online
stowage planning is implemented in three steps. Firstly, during the data generation process for
each deep-sea vessel a date is determined for the creation of the stowage plan of the corresponding
vessel. This date is a user-defined time t° before the loading process of that vessel starts. Hence,
—t%. Secondly,

when the simulation time reaches the creation date of a stowage plan, a pick-up date for each

dvessel_avessel
) v

the creation date of a stowage plan for vessel v is defined by 55! +

container that has to be loaded by the relevant vessel is randomly chosen out of the loading
d\’éessel _a}Lf)essel

5 ,dVesse!| of the vessel. Thirdly, the pick-up dates of containers that

interval [afu’essel +

belong to the same category are exchanged during the loading process such that containers that
require fewer shuffle moves are loaded first.
At the end of this part of the scenario generation process all required data (cf. 3.1.1) for the

simulation of a single RMGC yard block is available. But so far, the generated dates afontainer

container
and d

represent the container arrival and departure times at/from the terminal interfaces,
respectively, but not at/from the modelled yard block. Thus, the generated arrival and departure
dates have to be adjusted to the yard block level, which is done by the data preprocessing

submodule, that is explained in the next section.
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3.2 Data Preprocessing

Like the presented data generator, the data preprocessing submodule is a part of the scenario
creation module (cf. figure 2.1). But here no new data is generated, moreover the previously
generated data is adjusted to the yard block level by simplifying taking into account the waterside
processes of the QCs and the waterside horizontal transport equipment (i.e. SC or AGVs). This
is required due to a timely discrepancy between the generated data and the data required for
the simulation model. So far the arrival date a2 and the departure date dS°™*8inerof an
individual container ¢ are based on the arrivals of the relevant vessels and XTs at the terminal’s
waterside and landside interfaces. But the interfaces of the simulation model are the waterside
and landside handover areas of the modelled yard block. For the dates on landside container
arrivals and departures, it is simplifying assumed that all XTs arrive directly at the yard block, so
that the generated XT arrival times actually represent the needed container arrival and departure
times at the yard block. Of course, vessels cannot be assumed to arrive directly at the yard block.
Therefore, the time between the vessel and the yard block — which is the loading and unloading
time of QCs as well as the transportation time of horizontal transport machines — has to be
taken into account for the arrival and departure dates of containers at the waterside handover

area of the modelled yard block.

container

< is the time container c is

So far, for containers that arrive by vessel, the date a
picked-up by a QC for unloading from the arriving vessel. Similarly, for containers that depart
by vessel, the date dS°™aner js the time container c is dropped by a QC on the vessel that
container is planned to depart with. The waterside processing time t%*P™°°®S  which is the
time between starting/finishing the pick-up/drop operation of a container on the vessel and the
arrival /departure at the modelled yard block depends on several factors like driver skills, traffic
jams, weather conditions and the degree of coordination between QC and horizontal transport

tVSPTocess may be considered as a stochastic

operations. Thus, the waterside processing time
component. However, here a user-defined fixed value is assumed for the waterside processing
time, in order to exclude any effects of the QC and waterside horizontal transport operations for
the investigation of RMGC systems as aimed at with this simulation model.

Finally, the arrival and departure times at the yard block are yielded by adding and sub-
tracting the waterside processing time ¢t"*P'°°*8 respectively. For waterside arrivals, the actual
arrival of a container at the yard block is tWSP%sS after the pick-up by the QC on the vessel (i.e.

container 4 ywsprocess) - For waterside departures, the actual departure of a container from the yard

a
block is tWsProcess hefore the container is placed on the vessel by the QC (i.e., deontainer _gwsprocess),
At the end of this process step (see figure 3.1), all required data for the simulation of a RMGC

operated yard block is generated and adjusted to the yard block level.
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Drive Control Module

The drive control module consists of four submodules — namely the drive control for all crane
movements (i.e. portal, trolley and spreader) as well as the collision and deadlock avoidance
submodule (see figure 2.1). While the first three submodules are needed for each crane system,
the latter one is only needed for multi-crane RMGC systems in order to avoid collisions and/or
deadlocks between the cranes of TRMGC, DRMGC and TriRMGC systems. Table 4.1 shows
the events of the simulation model that are linked with the drive control module. There are two
types of events: main and interface. Main events describe changes in the state of the crane, while
interface events fulfil an interface function to other modules and submodules of the simulation
model. The events ’job received’ and ’job finished’ are the connections to the administration
module and the events 'shunting initiated’ and ’shunting finished’ are the interface to the collision
and deadlock avoidance submodule.

This section is organised as follows: Firstly, the execution and the control of all crane move-
ments are explained, which include the submodules for portal, trolley and spreader movements.

Thereafter, a description of the collision and deadlock avoidance submodule is given.

4.1 Crane Movements

The movements of gantry cranes are caused by two reasons. Firstly, transport jobs require the

crane to move to the pick-up and drop positions of the corresponding job. Such a crane movement

main events interface events
portal/trolley /spreader starts acceleration job received
portal /trolley /spreader reaches top speed job finished
portal /trolley /spreader starts deceleration shunting initiated
portal /trolley /spreader stops shunting finished

portal /trolley /spreader reaches pick-up position
portal /trolley /spreader reaches drop position
portal /trolley /spreader reaches break point x/y/z
portal reaches shunting position

trolley reaches crossing position

spreader reaches driving position

spreader finishes fine positioning

Table 4.1: Discrete events relevant to the drive control module.

17
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is initiated by the job management submodule, which sends the driving coordinates for a job
to the drive control module and induces the event ’job received’. Secondly, within multi-crane
systems, a crane may be required to drive to a shunting position due to collision avoidance
and right of way rules. These crane movements are initiated (event: ’shunting initiated’) by
the collision and deadlock avoidance submodule, which decides on the right of way in close
cooperation with the crane routing submodule and sends the coordinates of the shunting position
to the drive control module.

Immediately after receiving the driving coordinates of a job or a shunting position, the
crane is prompted by the drive control module to start the required movements to the received
coordinates — if not already standing there. The crane movement consists of portal, trolley and
spreader movements, which are executed in certain sequences depending on the respective crane
system. First of all, the spreader is only moved if both portal and trolley have stopped and
have already reached the respective driving coordinates. Conversely, portal and trolley are only
allowed to start a new movement if the spreader has returned to its driving position. To be in the
driving position, the spreader has to be completely hoisted, so that no collisions with containers
in the top layer of the storage block can occur during portal and trolley movements. For crane
systems with crossing capabilities (i.e. DRMGC and TriRMGC systems), additional sequence
restrictions for portal and trolley movements of the outer large crane have to be regarded, since
collisions with the inner small crane(s) have to be avoided. Regularly, the trolley of the outer
large crane has to be positioned in the special crossing position, which is at the side of the portal,
beyond the profile of the inner small crane. The trolley of the outer large crane is only allowed to
leave this crossing position after permission by the collision and deadlock avoidance submodule.
For the same-sized (inner small) cranes in the TRMGC and TriRMGC systems, simultaneous
portal and trolley movements are allowed without any restrictions.

The driving coordinates of each crane movement are given in metres alongside the x-axis
(bays), y-axis (lanes) and z-axis (tiers) of the yard block. Each driving coordinate is a multiple
of the metrics of a storage slot, which can be freely scaled in the simulation model. Here,
according to the metrics of a 20’ container and some safety margin between neighbouring bays
and lanes, the size of a storage slot is by default set to 6.4 m long, 2.8 m wide and 2.6 m high.
Each driving coordinate is located in the middle of the x-y-metrics and on top of the z-metric
of a storage slot. Thus, a 20’ container is picked alongside the middle of its x-axis, but as a 40’
container occupies two slots it can not be picked in middle. Moreover, it is assumed that the
driving coordinates for picking-up or dropping a 40’ container is the slot which is closer to the
waterside handover area. This is just a small simplification and the effects can be neglected since
differences in the total driving distances are balanced out due to longer distances to/from the
landside handover area and shorter distances to/from the waterside handover area.

The crane only has to stop its movements at potential driving coordinates. Thus, breakpoints
for portal, trolley and spreader movements are implemented alongside the x-, y- and z-axis for all
possible driving coordinates. The driving coordinate and breakpoint issues are illustrated for the
x-y-dimensions by a top view of the modelled yard block in figure 4.1. It is shown that alongside
the x-axis n* +4 breakpoints for the portal movements with distances of 6.4 m are implemented,
whereof the first two and the last two breakpoints represent the waterside and landside handover

areas, respectively. Alongside the y-axis, n¥ breakpoints with distances of 2.8 m are implemented
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and in case of RMGC systems with crossing capabilities, an additional breakpoint — representing
the crossing lane — is implemented 5.6 m apart from the last breakpoint. Alongside the z-axis,
n”—+ 1 breakpoints are implemented with distances of 2.6 m between the first n* breakpoints and
a distance of 3.0 m to the last breakpoint, which is the driving position of the spreader. The
breakpoints are used by the drive control module for the execution of certain crane movements.
Each time a breakpoint is reached by portal, trolley and spreader (event: 'portal/trolley/spreader
reaches break point x/y/z’), it is checked if the respective movement has to be stopped because
either the destination is reached or a collision has to be avoided. The driving coordinates for a
container that is stored in bay 10, lane 5 and tier 3 are for example (76.8 m, 12.6 m, 7.8 m).

Furthermore, the millimetre-exact positions of portal, trolley and spreader are controlled by
the drive control module for each thousandth part of a second. Therefore, acceleration and
deceleration of all crane movements can be precisely modelled. Different values for velocity,
acceleration and deceleration can be defined for portal, trolley and spreader movements of each
crane, depending on whether the crane is laden or not.

So far, all functions of the drive control module are deterministic. However, in practise, even
for an automated RMGC system, some stochasticity is observed. Containers cannot always be
placed exactly in the center of the respective storage slots as wind and other influence factors
have to be regarded. Consequently, some sensor-controlled fine positioning of the spreader may
be required that cannot be predicted in advance. Here, the period of time for the fine posi-
tioning of the spreader along with the time for twist-lock handling is assumed to be a random
gamma-distributed variable. Considering that container pick-up and drop operations inside the
yard block and in the waterside and landside handover areas are to different degrees affected
by stochastic influences, thus inducing different distributions of the fine positioning times, the
simulation model allows for the parametrisation of different gamma distributions for container

handling in the storage block, in the waterside handover area and in the landside handover area.

4.2 Collision and Deadlock Avoidance

An important topic within multi-crane RMGC systems is the avoidance of collisions and dead-
locks. A collision means an accident of two cranes (i.e. one crane drives against the other crane),
while a deadlock in general occurs if two or more processes have stopped and they are waiting
one of the other processes to fulfil a certain criterion. But since the observed processes are all
stopped, the awaited criterion will never be fulfilled — the processes are trapped in a deadlock
situation. Within the TRMGC system such a situation is easily imaginable: The waterside crane
is in bay 8 and has to drive to bay 20, while the landside crane is in bay 16 and has to drive to
bay 4. A collision avoidance mechanism would prevent them from colliding somewhere around
bay 12, but then both cranes would have stopped, each of them awaiting the other crane to
clear the way to its destination. Consequently, it has to be decided on basis of some criteria
which crane has to clear the way and which one is allowed to drive first. Altogether, within
RMGC systems collision and deadlock avoidance are two coherent issues that have to be treated
simultaneously. A description of a collision and deadlock avoidance mechanism for TRMGC and
DRMGC systems is for example given in Valkengoed (2004).

Within this simulation model, a claiming-based collision and deadlock avoidance mechanism
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is applied. Basically, the x-axis is divided into several sections — so-called claims — and a crane
is only allowed to drive into such a section if it has previously been reserved for the respective
crane (i.e. it has been claimed). Otherwise, the crane is not allowed to start driving or it has to
stop. However, here a section only needs to be claimed by a crane, when the corresponding yard
bay is blocked by that crane for storage and/or retrieval operations of other cranes. While a
small crane is always blocking the yard bays it is located in, an outer large crane is only blocking
these bays when its trolley is not located in the crossing position. Otherwise, containers below
the portal of the outer large crane are still accessible for a small crane. The sections are zoned
according to the breakpoints along the x-axis of the storage block. Each section covers 3.2 m to
the left and 3.2 m to the right of a certain breakpoint; which means a section is equivalent to
the length of a storage slot (see figure 4.1).

Before a certain section is claimed by a crane, several tests and decisions are required by the
collision and deadlock avoidance submodule. Most tests and decisions depend on the used crane
system, but some rules apply for all multi-crane systems. Firstly, no overlap is possible between
claims of different cranes. Secondly, a section can only be claimed by a certain crane if it has
not already been claimed by another crane. However, this does not mean a strict application
of the FCFS-principle (first-come-first-served) — a claim for a certain crane can be canceled in
order to allow claiming for another crane. Thirdly, in order to ensure a safety distance to other
cranes, a minimum of three sections is always claimed by each crane. Besides the section the
crane is located in, also the sections to the right and to the left are claimed by that crane. Hence,
on both sides of the central point of the crane 9.6 m are claimed, which is a reasonable safety
distance (Valkengoed, 2004).

The collision and deadlock avoidance mechanism for the TRMGC system is probably the
simplest one, since crane conflicts are only possible in certain situations. When the waterside
crane is running in the waterside direction, no conflicts can occur, since the landside crane can
never be positioned closer to the waterside than the waterside crane itself. Thus, claiming is
always possible up to its target position for the waterside crane when moving to the waterside.
The same applies vice versa for the landside crane when running in the landside direction.

A schematic representation of the collision and deadlock avoidance mechanism for the TRMGC
system is given in figure 4.2. Each time a crane receives new driving coordinates or it passes
a breakpoint, this process is started. Firstly, it is checked whether a predecessor of the crane’s
job has to be picked first at its destination. In case a container has to be shuffled by the other
crane before the regarded crane can pick its container, it is checked next if the other crane can
reach its destination without conflicts. If this is possible, the sections up to the target position
of the other crane are granted to the regarded crane. If not, claiming is denied and a shunting
position is determined so that the other crane can reach its target position in order to shuffle
the container.

In case no predecessors have to be picked first, it is checked for claiming conflicts with the
other crane. When no conflicts arise, the whole distance to the crane’s destination is claimed.
Otherwise, it is firstly checked if the two cranes are running towards each other, which means that
the target positions are located in a way that not both of them can be reached simultaneously.
In that case it is checked next, if at least the other crane can reach its target destination without

the need for shunting operations of the regarded crane. If this applies, the sections are claimed
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up to the target position of the other crane. But if also the other crane cannot reach its target
position, it has to be decided which of the cranes is moved to a shunting position. Here, the
minimum remaining distance to the target position is chosen as criterion. But one can also
think of other criteria like for example the minimum handover area due date of the cranes’ jobs.
However, if this distance is smaller for the other crane, claiming for the regarded crane is denied,
instead of a shunting position is determined which allows the other crane to reach its target
position. In case the distance is smaller for the regarded crane, a shunting position for the other
crane is determined and the sections up to the current position of the other crane are claimed.
The same applies for situations in which the cranes are not running towards each other and the
other crane is not working. But when the other crane is currently executing a certain job, the
desired sections are claimed up to the current position of the other crane.

Due to the crossing capability, a lot more flexibility is involved with the DRMGC system than
with the TRMGC system, but at the same time — contrary to the TRMGC systems — collisions
can occur for all crane driving directions within the DRMGC system. Thus, on the one hand
the number of different collision situations increases, while on the other hand a collision is only
possible if the trolley of the outer large crane is not located in the crossing position. A schematic
representation of the collision and deadlock avoidance mechanism for the DRMGC system is
given in figure 4.3. Due to the different characteristics of the outer large and inner small cranes,
two separate processes are depicted. On a first eyes view, both processes seem to be similar and
simpler than the TRMGC process. This is possibly true for the inner small crane, but not for the
outer large crane which contains two process steps that are executed by the strategy submodule
for crane routing decisions. These process steps — which greatly influence the outcomes of the
collision and deadlock avoidance mechanism — are described in section 6.3. In summary, the
extent the trolley of the outer large crane is not located in the crossing position and along with
it the number of to be claimed sections for the outer large crane and the possibility for crane
interferences depend on the applied crane routing strategy.

According to figure 4.3, the collision and deadlock avoidance process for both cranes begins
with a check on predecessors. For the inner small crane the checks and outcomes concerning
predecessors are the same like in the TRMGC system. The trolley of the outer large crane is
moved into the crossing position — if not already there — in case a container has to be shuffled by
the inner small crane before the outer large crane can pick its container. In case no predecessors
have to be picked first, it is checked for claiming conflicts with the other crane. While the
desired sections are completely claimed by the inner small crane if no conflict occurs, the desired
sections are only claimed up to the conflict start position with the outer large crane in case of a
conflict. For an outer large crane, the outcome of the conflict check is greatly dependent on the
used crane routing strategy and the number of to be claimed sections. However, if no conflict is
expected, the desired sections are completely granted to the outer large crane. Whereas in case
of a conflict, the actions depend as well on the decision of the routing strategy.

The TriRMGC system contains parts of the TRMGC and DRMGC systems. Consequently,
parts of both collision and deadlock avoidance mechanisms are used for the TriRMGC system.
While the collision and deadlock avoidance between the two same-sized inner small cranes works
like the TRMGC mechanism, the collision and deadlock avoidance between the outer large crane
and the two inner small cranes works similar to the DRMGC mechanism. Like for the DRMGC
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system, the checks and outcomes for the outer large crane greatly depend on the used crane

routing strategy.



Chapter 5

Administration Module

The administration module is probably the nerve centre of the simulation model, as it has
interfaces to all other modules and is responsible for manifold functions: Firstly, information
on arriving and departing containers — that are provided by the scenario creation module —
are processed by the administration module. Secondly, there is interaction with the strategy
module as the decision making process for container stacking and crane scheduling is initiated
and the results are processed by the administration module. Thirdly, the drive control module is
provided with driving coordinates of to be executed jobs by the administration module. Finally,
parameters of the administration module are automatically controlled by the experimental control
module and the statistics module obtains most information from the administration module.
According to its main functions, the administration module is divided into three submodules:
The stacking capacities of the modelled yard block are managed by the storage management
submodule. The job management submodule generates and manages transport jobs for the
gantry cranes. The handover area management controls the occupancy of the handover area

capacities.

5.1 Storage Management

The storage management submodule comprises all administrative functions concerning the stack-
ing capacities of the simulated yard block and the storage positions of individual containers.
While three processes are directly controlled by the storage management submodule, many pro-
cesses of other modules work with the information that is provided by this submodule.

In detail, four information sources are managed by the storage management submodule.
Firstly, the slot occupancy table, which has dimensions n* x (n¥ - n*), contains information on
the current occupancy of each slot in the yard block as well as the ID of the corresponding
container. In case container c is stacked in bay p¥, lane p and tier p?, cell (p¥,pt + (p% — 1) n¥)
of the slot occupancy table is filled with ’¢’. The representative cell of an empty slot is filled
with '0’. Secondly, the filling rate of the yard block is then computed by counting the cells in
the occupancy table with entries # 0 and dividing this number by the number of theoretically

lane " contains

available slots. Thirdly, the stack occupancy table, which has dimensions n”® x n
information on the prospective occupancy of each stack in the modelled yard block. In contrast
to the slot occupancy table, besides the currently stored containers also the slots are taken

into account that are only virtually occupied (i.e. a container is already planned for storage
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in the corresponding stack but has not yet arrived). Finally, the relocation table, which also
has dimensions n* x n¥, contains information on the number of planned but not yet executed
container pick-ups for each stack in the yard block. In order to avoid unnecessary shuffle moves,
it is harmful to store new containers in a stack with planned pick-ups. Therefore, jobs with drop
positions in stacks with planned pick-ups are avoided and/or postponed until all pick-ups of that
stack are executed.

The first process that is controlled by the storage management submodule is 'planning ad-
mission into yard block’. The respective flow chart of this process is shown in figure 5.1. It
is assumed that the storage management submodule is informed about the future arrival of

container ¢ at the modelled yard block a random triangular-distributed time in advance of the

container

o of container ¢, which means there is a stochastic look-ahead time for

actual arrival time a
prospective container arrivals at the modelled yard block. Owing to the fact that the up- and
downstream process at the waterside and landside block ends of the modelled yard block are to
different degrees predictable, different probability distributions for the look-ahead times can be
specified by the user for vehicle/container arrivals in the waterside and landside handover areas.
Once the information on a prospective container arrival is received by the storage management
submodule, two points are then immediately checked: Firstly, it is checked whether there is some
capacity left or if the user-defined maximum filling rate is already reached. Secondly, the mod-
ule checks for available storage capacity in stacks that have the required size for that container
(i.e. 20" or 40’). In case there is no capacity available in the yard in general or in the required
stacks, the container is rejected by the modelled yard block and redirected to another yard block.
Otherwise, the handover lane management submodule (cf. section 5.3) is informed about the
container arrival, which then tries to allocate a position in the handover area to the respective
container arrival. If no position is available in the handover area, stacking of that container is
also rejected. Otherwise, a storage location for this individual container is determined in real-
time by the stacking submodule of the strategy module. Afterwards, for the corresponding stack
of the planned storage location, the virtual stacking height is increased (i.e. the relevant cell(s)
in the stack occupancy table is (are) increased by one). Finally, a transport job from the planned
position in the handover area to the planned storage position is generated.

Another process that is controlled by this submodule is "Planning relocation from yard block’
which is illustrated in figure 5.2. The process starts with the announcement — according to a
randomly drawn look-ahead time for a vehicle arrival at the yard block, just as explained before
— of the prospective departure time dS°™1°" of an individual container c. In case containers
are stacked above the required one, shuffle moves have to be planned, which is done according
to the process 'Planning shuffle move’ that is illustrated in figure 5.3. However, this process
continues with the determination of a concrete drop position in the relevant handover area (cf.
section 5.3). Finally, a transport job from the current storage position to the chosen position in
the handover area is generated.

The last process that is mainly controlled by the storage management submodule is "Planning
shuffle moves’ which is illustrated in figure 5.3. As described before, the process is mostly
initiated by the process 'Planning relocation from the yard block’. After receiving information
on the container that has to be retrieved from that stack, a container is identified that has to

be relocated to another stack in that block. Next it is checked, if there is capacity available in
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adequately-sized stacks of that block. In case no adequate stack is found, the identified container
is planned to be retrieved at the waterside block end, in order to be transported by horizontal
transport vehicles to another yard block with adequate stacks available. Therefore, a position
in the waterside handover area is determined, a transport job to the waterside handover area
is generated and the relocation table is modified accordingly. If, however, at least one adequate
stack is available, a storage location for the to be shuffled container is determined and the
corresponding transport job is created. Thereafter, for the current and planned stack of that
container, the relevant cells of the relocation table and stack occupancy table are increased by
one. This process is repeated until all containers on top of the to be retrieved one are either
planned for a shuffle move or a waterside retrieval move.

All three processes that are described in this section are continued by the process 'Planning
the execution of transport jobs’ which is headed by the job management submodule and explained

in the following section.

5.2 Job Management

The job management submodule manages all tasks and information connected with crane trans-
port jobs: New jobs are processed, jobs are checked for feasibility and scheduling as well as the
execution of transport jobs are initiated. In detail, two information sources are managed by this
submodule and one process is controlled that is of central importance for the simulation model.

The information sources managed by this submodule are the job information table and the
joblist. The job information table is probably the most important information source as it con-
tains extensive data of all individual jobs that are already executed, that are currently executed
and that have just been announced and are waiting for execution. Once available, the job in-
formation table comprises the following data of each job: Job ID, ID of the handled container,
pick-up coordinates, drop coordinates, job type (wsin, wsout, lsin, lsout, wsshu, lsshu, wshk,
Ishk), due date for arrival at the handover area, realised arrival at the handover area, due date
for container pick-up, realised container pick-up, job status (waiting, assigned, started, picked,
finished, deleted), assignable crane(s) (according to the preselection method, see section 6.2),
assigned crane, required predecessor job, realised crane waiting time due to crane’s earliness,
realised waiting time for other transport modes (XTs, AGVs, SCs) due to crane’s lateness, total
job execution time, crane empty driving time, crane interference time. The joblist contains the
ID of all jobs with status 'waiting’ (i.e. all jobs that have not yet been assigned to a crane).
Each time a new job is created, it is recorded in the job information table and the joblist. After
the status of a job changes from ’waiting’ to ’assigned’ or ’deleted’ the job is deleted from the
joblist.

The process that is controlled by the job management submodule is 'Planning the execution
of a transport job’. The flow chart of this process is shown in figure 5.4. This process is always
running during a simulation run as it continuously observes the joblist and the status of the
crane(s). The execution of the process is then activated, each time a new job is recorded in the
joblist or a crane becomes available. Thereafter, the first process step checks for required sequence
relations of the jobs that are listed in the joblist. Sequence relations are generally required if a

shuffle move has to be executed before another container is accessible. The job ID of the shuffle
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move is recorded as predecessor of the job that is stored directly below the shuffle container.
In the next step, the assignable crane is determined for each job in the joblist according to the
chosen preselection method (see section 6.2). Based on the type and driving coordinates of a
job, it is determined which crane(s) are allowed to execute the job — of course, for SRMGC the
decision is very simple and therefore this process step can be skipped. Afterwards, it is checked
if valid assignments of jobs to cranes are at all possible. The process only continues to the next
step if at least one crane is available for which at least one job is determined to be assignable.
Otherwise, the process is reset to the beginning and the status of the cranes and the joblist are
again observed for changes. However, in case valid assignments of jobs to cranes are available,
depending on the selected crane scheduling strategy (see section 6.2), one or even more jobs are
assigned to the cranes and sequenced. After that, as a precaution, the job that is scheduled
next for execution is checked for feasibility. Within the framework of the feasibility check, the
corresponding container of this job is tested for availability, storability and retrievability, which
means it is tested if the relevant container is still stored at the pick-up coordinates of the job, if
there is still enough capacity at the drop coordinates and if the container can be picked without
preceding shuffle moves, respectively. If required, the job is either postponed, deleted or changed.
In case the job is deleted, the process is reset to the determination of required precedence relations
and it is tried to plan another job for execution. Otherwise, the execution of the job is started by
the drive control module and the process is also reset to the determination of required precedence

relations.

5.3 Handover Area Management

The handover areas do not really belong to the yard block system, moreover they are interfaces
to the waterside and landside horizontal transport systems. Hence, the handover areas can partly
be ascribed to the container storage yard subsystem and the horizontal transport subsystem of
seaport container terminal systems. However, as the primary focus of this simulation model is
the container storage yard subsystem and the horizontal transport subsystem is not explicitly
modelled, it is decided to model the handover areas only in a simplified way.

Several parametrisations are possible for the waterside and landside handover areas. In fact,
for both handover areas, the user has to specify the capacities and the probability distributions
for vehicle residence times in the handover area, for look-ahead times of vehicle arrivals in the
handover areas and for spreader fine positioning times in the handover areas. Firstly, the capacity
of the landside handover area represents the number of XTs that can be simultaneously located
in and/or assigned to the handover area of a yard block, while the meaning of the waterside
handover area capacity depends on the underlying horizontal transport system. In case AGVs
are used as waterside horizontal transport vehicle, the meaning is similar as for the landside
capacity. But for SCs as horizontal transport vehicle, the capacity represents the number of
containers that can be simultaneously placed in and/or assigned to the waterside handover area
of a yard block.

Secondly, the residence time of a transport vehicle in the handover area is the period of time
a vehicle stays in the handover area after the loading or unloading operation of that vehicle is

finished. Of course, the occupied position in the handover is blocked for other vehicles until the
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relevant vehicle has left the handover area. Here, it is assumed that the residence time is an
exponentially-distributed random variable. Usually, the expected residence time is longer for the
landside than for the waterside handover area, as XTs are manually controlled and the driver has
to leave his cab during the handover operation, while waterside vehicles might be automated and
a driver would not be required to leave his cab during handover. Thirdly, the look-ahead time of
vehicle arrivals defines the period of time the arrival of a vehicle in the handover area is certainly
known in advance of its actual arrival. The longer the look-ahead time for an arrival, the better
the corresponding transport job can be scheduled according to a user-defined objective. Since
waterside horizontal transport machines are controlled by the terminal, longer look-ahead times
may be expected for the waterside arrivals than for XT arrivals at the landside. Here, it is
assumed that the look-ahead times of an individual arrival is a random triangular-distributed
variable. Finally, the time required for spreader fine positioning in both handover areas has to
be specified (see also 4.1). Here, it is assumed that the required spreader fine positioning time
for an individual container pick-up or delivery is a random gamma-distributed variable.

The only information sources that are managed by this submodule are the handover occupancy
tables of the waterside and landside handover areas. The cells of these tables represent the
positions in the handover areas and are either filled with 0 for an unoccupied position or the ID
of an container that is planned to be picked-up or dropped at the corresponding position. Thus,
the number of zeros in the handover occupancy tables indicate the number of available positions
in both areas. Here, it is assumed that a handover position is occupied with a certain container
along with the creation of the respective job. In addition, it is assumed that all positions in the
handover areas are directly accessible for the cranes, which means containers are positioned on
the ground or on chassis but never stacked one upon the other.

The containers are allocated to a certain handover position within the process ’Allocate
positions in the handover area’ which is illustrated in figure 5.5. This process is embedded in
the processes 'Planning admission into yard block’, 'Planning relocation from yard block’ and
"Planning shuffle moves’ (see figures 5.1, 5.2 and 5.3). After the basic information on a new
job has been received by the handover area management submodule, it is checked whether it is
a storage (job types: wsin, Isin) or a retrieval job (job types: wsout, lsout). In both cases, it
is then checked for available capacity. If it is a storage job and there is no position available
in the handover area, this information is send to the storage management submodule which
then rejects the storage of the relevant container. If there are some unoccupied positions in
the relevant handover area, for both retrieval and storage jobs, a position is randomly drawn
and the allocated position is send to the storage management submodule. In case of a retrieval
job and no available positions in the handover area, the system waits until a position becomes
available. Thus, a retrieval job is not created until a position in the handover area has been
found. Altogether, the maximum number of main jobs (i.e. storage and retrieval job) that
are simultaneously plannable is specified by the user-defined joint capacity of the waterside and

landside handover areas.
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Chapter 6

Strategy Module

Within the framework of the strategy module, all operational planning decisions are made, which
include decisions on the storage positions of individual containers, the crane assignment and
sequencing of transport jobs as well as the routing of the cranes. Therefore, three submodules
are implemented: The stacking submodule, the crane scheduling submodule and the crane routing
submodule. All these submodules are subsequently explained, but the details and the ideas of
the different strategies are not described here — instead of, the general technical implementation
of these strategies is briefly introduced. A detailed description of all implemented operational

strategies is given in chapter 5 of Kemme (2011).

6.1 Stacking

All decisions on storage positions for individual containers are made within the stacking sub-
module. Thus, it is frequently called by the storage management submodule (see section 5.1).
In detail, the stacking submodule executes the process step 'Determine storage position for con-
tainer’ which is embedded in the processes 'Planning admission into yard block’ and "Planning
shuffle moves’. Within this process step, a feasible storage position is determined for a container
that is transmitted by the administration module. The storage position is chosen out of the set of
all adequately sized stacks with remaining capacity which is previously determined by the stor-
age management submodule. Which allowed storage position is actually selected depends on the
applied container stacking strategy. Basically, every possible stacking strategy can be applied,
but initially only a random stacking strategy (RaS) and a greatly parametrisable combined cost
function stacking strategy (CCFS), which is based on the ideas of the category, the retrieval time
and the positional stacking concepts, are implemented. The main idea and the functionality of
both strategies are described in great detail in section 5.2 of Kemme, 2011. Considering the fact
that the performance of the stacking strategies in terms of the number of shuffle moves does
not only depend on the applied strategy itself, but also on the exchangeability of containers
during the vessel loading process, the user is able to decide on whether online stowage planning

is applied or not (see section 3.1.7).
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6.2 Crane Scheduling

The crane assignment of transport jobs as well as their execution sequence is determined by the
crane scheduling submodule. In figure 5.4 it is shown that this submodule is called two times by
the job management submodule during the process 'Planning the execution of a transport job’.
Firstly, the crane scheduling submodule is responsible for the process step 'Determine assignable
crane for each job in joblist according to preselection method’. Here, for each job that is waiting
for execution and that has not yet been assigned to a crane (i.e. having status 'waiting’), this
submodule determines on basis of user-defined rules which crane(s) is/are allowed to execute
which job. These rules are based on the type and the driving coordinates of a job. A set of rules,
that defines the assignable crane for each job, is called preselection method. For each job, the
results of the preselection method — which are the assignable cranes — are recorded in the job
information table. Of course, for the SRMGC crane the one and only crane is allowed to perform
each job, but for multi-crane systems a crane may be restricted to perform a currently waiting job
for technical reasons (i.e. not possible to access the relevant handover area) and/or performance
reasons (i.e. in order to reduce interferences between the cranes). Detailed considerations on
the purpose of preselection methods and different design variants of preselection methods are
presented in section 5.3 of Kemme (2011).

Secondly, also the process step 'Determine job assignment and sequence’ is executed by the
crane scheduling submodule. Here, based on the assignable crane(s) for each job in the joblist, a
job is assigned to a currently idle crane of the modelled yard block. Which crane-job assignment
is actually realised depends on the applied combination of online policy and solution method for
the crane scheduling problem. In section 5.3 of Kemme (2011) four online policies and seven
solution methods are introduced that are all implemented in the RMGC simulation model and
can be combined in different ways. In case the greedy or FIFO online policy is applied, only the
next job for an idle crane is determined, whereas the crane assignments are based on sequences of
several jobs for all cranes of a yard block if the replan or ignore online policy is applied (Grotschel
et al., 2001). The FIFO online policy simply assigns the jobs in the order of appearance, while
the greedy online policy evaluates all allowed (by the preselection method) crane-job assignments
with respect to a user-defined scheduling criterion or cost function and selects the assignment
with the lowest costs for realisation. By applying the replan online policy, new sequences of jobs
are created with the used solution method each time the process step 'Determine job assignment
and sequence’ is called by the job management module. All previously generated and only
partly realised sequences of jobs for the cranes are rejected. In contrast, by applying the ignore
online policy, new sequences of jobs are only determined if a job sequence for one of the cranes
has already been completely realised. As long as the previously generated job sequence of the
currently idle crane has not been completely realised, no new schedule is created for all cranes
and the next not yet performed job of the previously planned job sequence for the idle crane is

assigned for realisation.

6.3 Crane Routing

The crane routing submodule of the simulation model is closely linked with the collision and

deadlock avoidance submodule, as it comprises all decision making processes on crane routing
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in terms of crane crossing manoeuvres and granting the right of way in conflicting situations.
While all conflicts between the inner small cranes are simply resolved as described in section
4.2, exchangeable routing procedures for the DRMGC and TriRMGC systems — in particular
for the outer large cranes — are implemented in the simulation model. Therefore, the crane
routing submodule is called twice during the process ’Avoid collisions and deadlocks (DRMGC)’
(see figure 4.3). If this process is executed for the outer large crane, the process steps 'Determine
which sections have to be claimed’ and 'Decide on shunting of inner small crane’ are performed
by the crane routing submodule.

The first process step is related to the question, to which extent is the movement of the
portal of the outer large crane allowed if its trolley is not located in the crossing position. In
contrast to the collision and deadlock avoidance mechanism that is presented in Valkengoed
(2004), here it is assumed that the trolley of the outer large crane is by default located in the
crossing position during portal movements, if not differently specified by the applied crane routing
strategy. Consequently, within the simplest crane routing strategy, the trolley is only allowed
to leave its crossing position if the portal has reached its target position, and before the portal
starts driving again, the trolley has to be moved back to the crossing position — independently
of the distance(s) to the inner small cranes. Therefore, only three sections need to be claimed for
each trolley movement. However, other strategies allow portal movements without the trolley
being located in the crossing position, but then some additional sections have to be claimed.
Here, the sections that have to be claimed are determined with respect to the selected routing
strategy and the expected driving times for the trolley and the portal of the outer large crane.

The second process step is only relevant in case sections have to be claimed due to portal
movements without the trolley being located in the crossing position and a conflict with the
inner small crane is detected by the collision and deadlock avoidance submodule. Then it is
determined on basis of the selected routing strategy as well as the status of the cranes and their
driving coordinates which crane is granted the right of way. The outcomes may either be that
the outer large crane cannot start its planned move (i.e. the inner small crane is given the right
of way) or the inner small crane is stopped and/or moved to a shunting position (i.e. the outer
large crane is given the right of way). In section 5.4 of Kemme (2011) several design variants of
crane crossing processes and other enhancing features for routing of RMGC multi-crane systems

with crossing capabilities are introduced, which are all implemented in this simulation model.



Chapter 7
Experimental Control Module

The experimental control module may not be regarded as an immanent part of the simulation
model since it is not responsible for any function of the real-world yard block system. Moreover,
the purpose of the experimental control module are reliefs and time savings for conducting
simulation experiments. A simulation experiment is defined as a certain number of simulation
runs with different seed-initialised data realisations but with the same parameter settings for
each of these runs. The experimental control module facilitates automatic changes of data
realisations and parameter settings according to a user-defined pattern. This pattern is specified
by the number of different data realisations for each simulation experiment, the to be modified
parameters, the extent of modification for each parameter and the order in which parameters are
modified. Since a major purpose of this simulation model is the investigation of layout changes, a
predefined pattern concerning changes of the numbers of bays, lanes and tiers is already included
in the model. In addition, methods and tables can be specified by the user that enable each
pattern of parameter changes.

The results of each experiment and each single simulation run are automatically recorded
and exported into Excel files. For each experiment, a new Excel file is created that contains the
results of each simulation run for that experiment and another file is created after all user-defined
experiments have been conducted which contains the average results of the simulation runs for
each experiment. Both types of Excel files are similarly structured. The results of the simulation
runs and experiments are shown in rows and each row contains in columns the values of these

figures for the corresponding simulation run or experiment.
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Statistics Module

Like the experimental control module, also the statistics module is not an intrinsic part of the
simulation model. It is responsible for data collection and automated computing of meaningful
figures which allow for a differentiated evaluation and interpretation of the conducted experi-
ments. The figures of each simulation run are based on the data collection from the end of the
warm-up period 7 to the end of the simulation horizon T'. The data for some figures is collected
in special tables while other figures are computed on basis of administrative data components like
the job information table or the slot occupancy table. Most figures are separately computed for
each crane and for each job type. Consequently, depending on the applied crane system, several
dozens of statistical figures are available for each simulation run. In fact, 60, 173, 173 and 228
figures are computed for each simulation run and/or experiment with the SRMGC, TRMGC,
DRMGC and TriRMGC system, respectively. These figures include:

e the number of jobs performed by all cranes and by each individual crane,

e the fraction of all job types performed by all cranes and by each individual crane,
e the final filling rate of the yard block,

e the average filling rate of the yard block,

e the number of redirected containers to other yard blocks,

e the number of relocated containers to other yard blocks,

e the average realised container dwell time,

e the operating crane hours for all cranes and each individual crane,

e the total productivity (jobs/h) for all cranes and each individual crane, in terms of per-

formed jobs over the statistically relevant simulation horizon (T' — T°%),

e the operative productivity (jobs/h) for all cranes and each individual crane, in terms of

performed jobs over the operating crane hours,

e the productive productivity (jobs/h) for all cranes and each individual crane, in terms of

performed main jobs over the operating crane hours,

e the maximum total productivity (jobs/h) for all cranes and each individual crane,
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e the maximum productive productivity (jobs/h) for all cranes and each individual crane,
e the mean execution time for jobs performed by all cranes and each individual crane,

e the mean EDT (empty driving time) for jobs performed by all cranes and each individual

crane,

e the mean crane interference time during the execution of jobs performed by all cranes and

each individual crane,

e the number of crane waiting times due to early arrivals in the handover areas for all cranes,

all types of jobs, each individual crane and each job type,

e the mean crane waiting time due to early arrivals in the handover areas for all cranes, all

types of jobs, each individual crane and each job type,

e the standard deviation of the mean crane waiting time due to early arrivals in the handover

areas for all cranes, all types of jobs, each individual crane and each job type,

e the maximum crane waiting time due to early arrivals in the handover areas for all cranes,

all types of jobs, each individual crane and each job type,

e the number of vehicle waiting times due to late crane arrivals in the handover areas for all

cranes, all types of jobs, each individual crane and each job type,

e the mean vehicle waiting times due to late crane arrivals in the handover areas for all

cranes, all types of jobs, each individual crane and each job type,

e the standard deviation of the mean vehicle waiting times due to late crane arrivals in the
handover areas for all cranes, all types of jobs, each individual crane and each job type as

well as

e the maximum vehicle waiting times due to late crane arrivals in the handover areas for all

cranes, all types of jobs, each individual crane and each job type.

In case of a single simulation run, the resulting figures are displayed on the console and exported
to an Excel file. But, the results of each simulation run are not displayed and exported, if several
runs and experiments are conducted automatically by usage of the experimental control module.
Moreover, the results of different simulation runs for each experiment are collected and exported
to a joint Excel file and average values of each experiment are exported to another Excel file (see
chapter 7). Finally, the temporal development of some important figures (e.g. average filling
rate of the yard block, the mean EDT, the mean vehicle waiting time) can be displayed in charts

that dynamically change with the progress in simulation time.



Chapter 9
Summarising Evaluation

In order to give an impression and to allow for an evaluation on the quality and the practical
use of the RMGC simulation model, that is comprehensively described with all its modules in
the preceding chapters, some additional information on the main features and limitations of
the model as well as its validity are provided in this chapter. It is started with a summarising
overview on the extensive parametrisation possibilities and the data and animation outputs of the
model, which is followed by a discussion on the model’s main features and limitations compared
to other simulation models in the field of seaport container terminals. Finally, the validation
process of this simulation model is explained, in order to create trust in the reliability and the

practical validity of the model outputs.

9.1 Model Inputs and Outputs

Within the previous sections, several inputs and outputs of the simulation model are mentioned
and described in the context of their associated modules. A summary of all these inputs and out-
puts is provided in this section, in order to give the user an overview of the huge parametrisation
possibilities and the extensive outputs which allow for a reliable and meaningful interpretation
of the simulation experiments. Firstly, the inputs of the simulation model are summarised and
thereafter an overview of the different types of model outputs is given.

The model inputs consist of parameters that specify the scenario creation, the technical crane
data, the yard block dimensions, the handover areas, the automatic experiment execution and the
yard operations. Exemplary screen-shots of the menu windows for specifying the corresponding
input parameters are shown in A.1. The inputs for the scenario creation comprise all parameters
that define the distribution of container arrivals and container attributes. A detailed description
of these parameters is provided in section 3.1.1. The acceleration, deceleration and velocity
of portal, trolley and spreader can be individually specified by the user for each loaded and
unloaded crane of the yard block (see section 4.1). The yard block dimensions are specified by
parameters on the number of bays, lanes and tiers as well as on the length, width and height
of a single storage slot. For both handover areas, the capacities can be defined by the user and
distributions for the fine positioning of the spreader, the look-ahead times for vehicle arrivals
and the residence time of vehicles in the handover area can be parametrised. In addition, it can
be selected whether the waterside transport vehicles are either AGVs or SCs. For the automatic

execution of experiments, the to be changed parameters and the corresponding change pattern

42



Chapter 9. Summarising Evaluation 43

as well as the number of different data realisations for the experiments have to be specified by
the user. Finally, dozens of parameters for the yard operations have to be specified by the user.
Most of theses parameters are connected with the stacking and crane scheduling strategies, which
may be individually parametrised for each crane and for each job type. Besides these strategy
parameters, the user also has to decide on the usage of housekeeping moves, the application of
online stowage planning, the settings of the crane routing strategy and various other parameter
settings. Altogether, more than 200 inputs may be specified for a single simulation run.

The outputs of the simulation model are twofold. Firstly, several figures are recorded and
computed for each simulation run. Most of theses figures are distinguished according to the
relevant crane and job type. A detailed listing and description of the available statistical output
is provided in chapter 8. Secondly, during each simulation run, all crane movements can be
graphically displayed in a two dimensional model in any desired simulation speed. Thus, the
driving behaviour of the cranes can easily be observed, which simplifies tracing of errors and the
interpretation of performance figures. Some screenshots on the animation of crane movements

in this RMGC simulation model are shown in appendix A.2.

9.2 Features and Limitations

So far, an extensive description of an elaborated yard block simulation model is given, which con-
tains several noteworthy features but as well some limitations. Within this section, an overview
of the most important features and limitations of the presented simulation model is provided.
The features and limitations are discussed and compared to other simulation models in order to
allow for a profound evaluation of the presented simulation model by the user.

Starting with the model limitations — the most important one is that QCs and SCs/AGVs
are not explicitly modelled. It is assumed that the related processes are deterministic and that
no waiting times for the RMGCs are induced due to late arrivals of SCs/AGVs at the yard block
(see section 3.2). In addition, only one yard block is modelled. Therefore, the interdependencies
between processes of the whole storage yard, the SCs/AGVs and QCs are neglected and the
GCR (gross crane rate) cannot be used as a performance indicator. However, in Petering et al.
(2009), it is shown that the waiting times of SCs/AGVs at the waterside handover areas have
significant effects for the GCR. Consequently, the effects of the yard block for the performance
of the whole terminal system can be reliably evaluated without detailed modelling of the whole
terminal system.

In addition, several assumptions (not necessarily real limitations) have to be made for the
scenario creation. Firstly, trains and land-land movements are ignored by the scenario creation
module. The former assumption can be made without loss of generality since the transport
between a rail yard and the landside handover area of the yard block would be performed by
TTUs (truck trailer unit). Hence, the processes are similar to that for XTs, only the look-ahead
time for arrivals of TTUs may be longer since the transport is controlled by the terminal. Also,
no noteworthy limitation is involved with the latter assumption, since containers arriving and
departing by XTs are usually not desired by the terminals and only make up for very small
fractions of the overall cargo volume. Secondly, some simplifying assumptions on the relations of

import, export and transshipment containers are made for the creation of container flows between
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all considered modes of transportation in order to avoid the need for explicit definitions of all
these container flows (see section 3.1.2). Thirdly, 24/7 operations are assumed for all terminal
processes. Concerning the waterside processes, this may be a reasonable assumption for most
terminals, but for the landside processes, the relevant legislative provisions of the country where
the terminal is located have to be regarded (e.g. truck driving ban on weekends).

Finally, only 20’ and 40’ standard dry containers are created. Containers of other sizes
(45’ long, high cubes, foldable, etc.) and boxes for special goods (refrigerated goods, liquids,
dangerous goods, etc.), which are accountable for about 15% of the throughput of a container
terminal (Petering et al., 2009), are neglected. In addition, it is assumed that only a single
container is either delivered or collected by each arriving vehicle in the waterside and landside
handover areas. Technical errors and machine breakdowns are ignored for the RMGCs.

The most remarkable features of the simulation model are the previously unavailable parametri-
sation options (see section 9.1) and the detailed reproduction of the highly dynamic, stochastic,
real-time environment of an RMGC storage yard system at a multiple-berth container terminal
(see chapters 4 and 5). Most other simulation models that are described in the relevant literature
name far less parametrisation options and make rather simplifying assumptions on the driving
behaviour of the gantry cranes (cf. e.g. Petering et al. 2009, Dekker et al. 2006, Choe et al.
2007). In this respect, the realistic crane movements — including load-dependent acceleration
and deceleration of portal, trolley and spreader — along with the sophisticated collision and
deadlock avoidance mechanisms can be regarded as unique characteristics compared to other
simulation models.

In spite of the various assumptions that are necessary for the implemented data generator,
it offers some noteworthy features in comparison to the generators that are applied within other
simulation studies. The data generator produces individual means of transportation and con-
tainers and assigns each container to a mean of transportation for delivery and pick-up in such a
way that the predefined distributions on transport modes, transport mode sizes, transport mode
arrival times and dwell times are matched simultaneously. Furthermore, pure transshipment
terminals, import-export terminals and hybrid terminals can be simulated, since the programme
provides data generation for variable fractions of transshipment containers. Unlike other known
data generators, the presented one also considers the user-defined length of the quay wall and
the berthing times of the vessels for the random generation of the vessel arrivals (e.g. Hartmann
et al. 2007; Voogd et al. 1999). According to Petering et al. (2009), the major limitations of most
simulation models on container terminals are the consideration of only one vessel at the same
time and rather short simulation horizons, often of only one day. Here, containers and vessels
are produced by the presented data generator for a user-defined simulation horizon in such a way
that multiple vessels may be served simultaneously.

The simulation model contains several parametrisable stochastic components. Besides the
data generator, which produces random container arrivals and attributes, also the look-ahead
times for individual XT and SC/AGYV arrivals, the residence time of XTs and AGVs/SCs in the
handover areas and the time required for fine positioning and twist-lock-handling of the spreader
at the pick-up and drop locations are user-defined stochastic components. Another noteworthy
model feature is the recording and computation of several dozens of figures, which allow for a

meaningful and differentiated interpretation of the simulation experiments (see chapter 8). Fi-
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nally, all crane movements can be graphically observed in any desired simulation speed, which
facilitates the understanding of the crane driving behaviour and the interpretation of the simu-
lation results (see section 9.1). In summary, the presented simulation model is based on several
assumptions, but most of them are reasonable and cannot be regarded as model limitations.
Moreover, it is shown that the model contains several unique characteristics in comparison to

known simulation models.

9.3 Validation and Verification

In order to use the results of a simulation model for supporting real-world planning decisions on
the design and the operation of RMGC systems at seaport container terminals, it is of utmost
importance that the model is without errors and valid for that purpose. This is in particular
true for the simulation model presented here, as it is developed from scratch, without any reused
simulation modules that have already been verified and/or validated before.

In general, a simulation model can be validated by applying statistical and expert validation
to the graphical and numerical outputs (i.e. animation and figures) of that model (Kleijnen,
1999). In the context of automated container terminals, the usage of both statistical and expert
validation is recommended by Saanen (2004). However, the new simulation model developed for
the purpose of this work is not designed to represent actually existing container terminals, but to
support the planning of new constructions of RMGC systems. Therefore, it would be improper
for validating this model to only compare the simulation results of a certain real-world model
configuration with the actual performance figures of the corresponding real system. Instead of,
the developed model is iteratively validated by a multi-stage expert analysis of the graphical
and numerical model outputs. The expert analysis is mainly based on the authors professional
experience on design planning and operation of international seaport container terminals. In
addition, several discussions with operational terminal staff, terminal managers and professional
terminal simulation people are used for the expert validation of this model.

The multi-stage expert validation of the developed simulation model is organised in several
iteratively repeated steps. It is started with an inspection of the numerical simulation results
of pilot runs with different model configurations. Whenever relatively extreme performance
measurements are found (based on the expert evaluation), the relevant model configuration is
rerun and the animation is carefully inspected for errors and/or inaccuracies of the modelled
and/or implemented RMGC operations until the cause(s) for the unexpected measurements are
identified. If necessary, the model is revised, the pilot runs are repeated and the expert validation
of these runs is started again from the beginning. This validation process is repeated until no
longer any unimagined performance figures, errors and/or operational inaccuracies are found.
Finally, the model resulting from the expert validation process is validated against both real-
world performance figures of existing RMGC systems and simulation results of other simulation
models on RMGC systems. It is found, that the developed model is able to reproduce the results
of these systems with only negligible differences of the compared figures (i.e. only very few

seconds for the mean vehicle waiting time in the handover area).
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A.1 Screen-Shots of Menu Windows
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Figure A.1: Screenshot of RMGC simulation model — main menu (TriRMGC).
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Figure A.2: Screenshot of RMGC simulation model — scenario creation menu.
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Figure A.3: Screenshot of RMGC simulation model — yard block dimensions menu.
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Screenshot of RMGC simulation model — RMGC operations menu (TriRMGC).
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Figure A.5: Screenshot of RMGC simulation model — handover areas menu.
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Figure A.6: Screenshot of RMGC simulation model — crane kinematics menu (TriRMGC).
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A.2 Screen-Shots of Crane Animation
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Figure A.7: Screenshot of RMGC simulation model — exemplary visualisation of RMGC oper-

ations (TriRMGC).
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