
Balancing and Cyclical Scheduling of Asynchronous Mixed-Model
Assembly Lines with Parallel Stations

Thiago Cantos Lopesa, Adalberto Sato Michelsa, Celso Gustavo Stall Sikorab, Leandro
Magatãoa,∗

aGraduate Program in Electrical and Computer Engineering (CPGEI)
Federal University of Technology - Paraná (UTFPR), Brazil
bInstitute for Operations Research, Hamburg Business School

University of Hamburg, Germany

Abstract

This paper considers two optimization problems commonly associated to mixed-model assembly

lines: balancing task-station assignments and sequencing/scheduling different product models in a

cyclical manner. Cyclical scheduling for this particular problem variant is challenging, and multiple

approaches have been previously employed by different authors. This paper presents a new mixed-

integer linear programming formulation to optimize the steady-state of these lines. Tests on a 36-

instance benchmark demonstrated that the proposed model significantly outperformed the previous

literature formulation. Furthermore, it is shown that common scheduling rules (often used in

simulators) do not necessarily converge to optimal cyclical schedules even when the optimal launch

order is used. Tests have also demonstrated that parallelism can allow a marginally increasing

value for workstations: doubling (tripling) stations in a line with parallelism can often offer more

than double (triple) the optimal throughput of lines without parallelism.

Keywords: Assembly Line Balancing, Mixed-Model Sequencing, Cyclical Scheduling, Parallel

Stations, Asynchronous Unpaced Line, Mixed-Integer Linear Programing

c© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

http://creativecommons.org/licenses/by-nc-nd/4.0/

Journal of Manufacturing Systems, Volume 50, Pages 193-200

DOI: 10.1016/j.jmsy.2019.01.001

1. Introduction

Assembly lines are product oriented manufacturing layouts commonly employed for large scale

production of similar products [1]. The optimization of such lines has been subject of a substantial

body of literature, including balancing task distributions [2] and scheduling product models [3].

While these inter-related optimization problems are usually treated in a sequential (hierarchical)

manner, multiple recent works have combined them [4, 5, 6, 7].

Balancing (and balancing-sequencing) works range from studies on simple single product de-

terministic lines [8] to ones that incorporate diverse realistic features [9]. Some of the commonly

∗Corresponding author: magatao@utfpr.edu.br

Accepted manuscript published by Journal of Manufacturing Systems July 24, 2019

considered aspects are: set-up times between tasks [10, 11], ergonomic constraints [12, 13], space

constraints [14, 15, 16, 17], worker movement between stations [18], among others. Extensive clas-

sifications of these problems are provided by references [9, 19]. In this paper, parallel stations and

product diversity (mixed-model) under stable demands are the main considered features.

There are multiple manners assembly lines employ parallelism [2]: Some authors consider par-

allel lines with crossover workers [4, 20], others consider parallel work within a (multi-manned)

station [21, 22]. This paper considers parallel stations [23] under an unpaced asynchronous line

control [19]. Parallel stations allow higher station-wise processing times, more balancing flexibility,

and also offer better recovery from failure capacity as the line is not necessarily stopped when one

of the stations needs maintenance [24, 25, 26]. Asynchronous line control means that products

can move downstream when processing at the current station is completed and the next stage has

an empty station. Blockages occur when a product’s processing is completed and all stations of

the next stage are busy, and starvations occur when a station is empty and no product from the

previous stage has been yet fully processed [19].

Product diversity can also affect assembly lines in multiple manners [9]: in multi-model lines

set-up times exist between models, hence, lot-sizing becomes an important part of the optimiza-

tion process [19]. This paper focuses on less restrictive mixed-model lines, in which there is no

such model-wise set-up times. Furthermore, demand rates are considered stable enough, so that

cyclically scheduling [27] the line is viable. The mixed-model aspect of the problem has also been

treated differently by multiple authors: some consider that total processing times (or averages

weighted by the demand rates) should be equalized [13, 14, 28]. This consideration can be too

optimistic without a sufficient number of buffers [29]. A more common approach is to impose a

cycle time constraint on the processing times of all product models [10, 22]. The minimization

of such cycle time has also been proposed as a goal function [30]. However, this approach can

be pessimistic as the differences between product models can often compensate higher processing

times for one model, especially if its demand rate is low [29]. Other goal functions such as workload

smoothing [20], vertical balancing [31, 32] and total deviations from average [33, 34] have also been

employed, but, as references [35, 36, 37] point out, these are not goals in themselves, but rather

supposed means to achieve a high and stable throughput. Tiacci [36] proposes a simulation-based

evaluation process to assess the quality of solutions. These simulation-based works employ an

assembly line simulator [38] that uses common and intuitive priority and scheduling rules, such as:

moving products forward as soon as possible and giving priority to pieces based on when they were

completed. These rules have been shown to converge towards accurate steady-state assessments

for straight lines without parallelism [29]. However, it is not entirely clear if simulations based on

such rules necessarily converge towards the optimal cyclical schedule [27] given a launch order in

lines with parallel stations.

Cyclical scheduling [39] is a research field closely related to the studied problem. It consists

on providing schedules that can be infinitely repeated after a certain cycle time. A review on

cyclical scheduling is presented by [27]. A usual assumption on this area is that machine-wise

2

processing times of products are known, which in the assembly line context means line balancing

(task allocation) is a parameter. Cyclical scheduling is applied to project scheduling [40], robotic

cell scheduling [41, 42], to job-shops [43, 44], and flow-shops [45, 46]. The latter category is the

problem class which most closely resembles the studied assembly lines.

A recent work [23] has presented a constraint logic programming model to optimize asyn-

chronous mixed-model lines with parallel stations. Its core rationale is to combine balancing and

cyclical scheduling to minimize the makespan of multiple replications of the Minimal Part Set [27]

(MPS) and, indirectly, minimize the cycle time. A study [29] has shown that this approach does

converge towards steady-state optimization as more MPS replications are considered, and pre-

sented a formulation to assess the performance of (single station) asynchronous lines with a single

MPS replication. An extension of this formulation [47] incorporates sequencing variables for lines

without parallelism. However, generalizing [29]’s formulation to lines with parallel workstations is

challenging due to the fact that the order products enter a stage can differ from the order products

depart from it. Lopes et al. [48] describes a simplifying ordering hypothesis (entry order equals de-

parture order) and present the mathematical model to approximately describe the line. This work

seeks to remove such simplification and exactly extend the mixed-integer linear programming for-

mulation presented by [29, 47] to incorporate sequencing and cyclical scheduling for asynchronous

mixed-model lines with parallel stations. Illustrative examples are given to demonstrate some of

the developed features.

The dataset presented by [23] is employed as a benchmark, consequently, all benchmark features

are incorporated: Mixed-model balancing, parallel stations, and cyclical scheduling are the main

features and this paper’s focus. However, [23] employs space constraints, different precedence

relations per product model, and model-wise flexible task assignments. These are added to the

proposed model so that direct comparisons are possible.

This paper is structured as follows: Section 2 describes the optimization problem. Section 2.1

discusses the proposed cyclical scheduling concept (Extension of the formulation presented by

[29, 47]) and how it compares to previous ones. Section 3 presents the developed mathematical

model. Section 4 reports the results of computational tests performed on the dataset provided by

[23]. Last, Section 5 summarizes the findings and contributions of the paper.

2. Problem Statement

Each product Model m (job) in the set M has a specific set Tm of Tasks t which must be

assigned to one of the Stages s in the set S. Tasks can be assigned to different stations for each

model, and the union set of all tasks for all models is denoted as T . Each product model m has

a set of Precedence relations Pm for task pairs (t1, t2), which require task t1 to be performed

before task t2 for the model m. Each stage s has a given amount of Available space As, which

is consumed by the assignment of tasks to them: When task t is assigned to the stage s for any

model m, it Requires a given amount of space R(t,s). The Duration of each task t at each stage

s for each model m is given by the parameter D(t,m,s). Each stage s has a parallelism degree ks,

3

meaning it has ks stations (workers, machines) and can process up to ks products simultaneously.

Each of the ks products processed simultaneously in stage s are independent: they can depart the

stage s at any time provided that they have completed processing at stage s and stage s + 1 is

not full (i.e. has less than k(s+1) products currently at it). The problem’s major physical layout

concepts are illustrated by Figure 1.

Stage 1 Stage 2 Stage 3

Boundary 2 Boundary 1 Boundary 3 Boundary 5

Station 2.1

Station 2.2

Station 3.1

Station 3.2

Station 4
Input
Buffer

Output
Buffer

Station 1

Boundary 4

Stage 4

Figure 1: Line layout example with four stages, k1 = k4 = 1, and k2 = k3 = 2

The problem consists of providing a line balancing (distributions of tasks to stages for each

product model) and cyclical schedule for the Minimal Part Set (MPS) that minimize cycle time

(maximize throughput) such that: precedence relations and space constraints are respected; No

buffer exists between stages; Infinite buffers exist before the first stage and after the last one.

2.1. Cyclical Scheduling with Parallelism

The standard definition of a cyclical schedule is one that repeats every CT units of time. This

period is called the cycle time [27] and it can be interpreted as: if an event happens at a given

time t, it happens again for the next MPS at t + CT . When there are no parallel machines or

workstations, this definition leaves little margin for interpretation, as discussed in Section 1. With

parallelism, the most common interpretation [49] for this definition is: if at time t the model m is

processed at the kth position (station, machine) of the stage s then at time t + CT the equivalent

model of the next MPS is processed at the kth position of the stage s. These positions are often

referred to as stations, workers or machines. This cyclical scheduling concept is hereafter referred

to as machine-wise cyclical concept. This interpretation implies on a designation of pieces within

an MPS to machines (workers, or stations) in each stage.

However, in the context of parallel identical machines, it is not necessary to assign models to

specific machines. It is sufficient to ensure that at most ks models are within stage s at the same

time. By defining entry and departure boundaries for each stage, the cyclical schedule can be

redefined in terms of when these boundaries are crossed, i.e. when pieces enter and depart each

stage. These boundaries are illustrated by Figure 1, and the cyclical nature of their schedules

can be defined as follows: if at time t the model m enters (departs from) the stage s, then at

time t + CT the equivalent model of the next MPS enters (departs from) the stage s. Notice that

no mention of the specific machine is necessary. This subtle difference in interpretation means

4

M1

M1

M2

M2

M1

M2

M2 M1

M2

M2

M1

M1

0 5 10 15 20 25

Station 1.1

Station 1.2

Station 1.1

Station 1.2

Single Stage Cyclical Schedules

M
ac

h
in

e
-W

is
e

Sc
h

ed
u

le
B

o
u

n
d

ar
y-

W
is

e
Sc

h
ed

u
le

CT = 7

CT = 5

Boundary 1

Boundary 2

Figure 2: Comparison between machine-wise and boundary-wise optimal cyclical schedules for a

single stage example.

that model-machine assignments can differ in each replication of the MPS. This cyclical concept

is referred to as boundary-wise cyclical concept.

At first glance, this boundary-wise interpretation might seem to violate the purpose of cyclical

scheduling: provide a stable and predictable pattern. However, the boundary-based concept does

provide both these results: one full MPS is still guaranteed to be produced every CT Time Units

(T.U.), and the schedule is completely defined by one MPS, although this might not be as apparent.

The major difference lies in the additional flexibility, which is hereafter illustrated: consider a

flowshop with a single stage equipped with two parallel identical machines and an MPS with one

unit of products M1 and M2, with processing times 7 and 3 T.U., respectively. If each piece is

assigned to a machine, then the minimal cycle time of a cyclical schedule is 7 T.U.. However,

if the boundary concept of cyclical schedule is employed, then the minimal cycle time becomes

5 T.U.: one unit of product M1 can enter the stage whenever a unit of product M2 departs it and

vice-versa. By doing this, one unit of each product type crosses entry and departure boundaries

every 5 T.U.. These schedules are illustrated by Figure 2. From the perspective of the machines,

a cyclical pattern is achieved with two replications of the MPS, but from the perspective of the

boundaries, the schedule is cyclically defined within a single MPS.

If the flowshop has a single station at each stage, then the second model can only enter it after

the first one has departed it. This generalizes to the (n + 1)th model and the nth one. The cycle

time is bounded by the time difference between the entry of the first model and the departure of

the last one [29]. In the case without parallelism, the boundary and the machine perspectives of

cyclical scheduling are essentially the same. However, if the flowshop has multiple parallel stations,

these concepts differ: Consider the case with a parallelism degree of k = 2 and an MPS with more

than two models. The first two (k) models to enter a stage can do so independently. The third

(k + 1) model, however, can only enter the stage after the first model to depart from the stage

5

departs from it1. This generalizes to the (n + k)th model and the nth one. Now consider the next

MPS entering the line. The first model of the next MPS is able to enter the stage after the second

last (kth last) model of the first MPS departs it, and the second model of the next MPS is able to

enter the stage after the last model of the first MPS departs it. In this case, there are two ways that

cycle time is bounded per stage. Contrary to single lines, however, the nth model to enter a stage

is not necessarily the nth one to depart it. This can happen due to processing times differences of

the models in each stage. Consequently, the order products cross the entrance boundary of a stage

is not necessarily the same order they cross the departure one, and hence the cyclical nature of the

schedule (while fully described by one MPS) might only become fully apparent in a machine-wise

sense when multiple MPSs are considered.

Table 1: Illustrative case data: model-stage processing times (Time Units - T.U.)

Stage S1 S2 S3 S4

Model 1 2 4 9 3

Model 2 2 8 2 2

Model 3 3 3 2 2

Model 4 3 4 5 3

Consider an illustrative case with the processing time data from Table 1 and an MPS with one

unit of each product model. The case’s line layout is presented in Figure 1 (with k1 = k4 = 1

and k2 = k3 = 2). Given the processing times at the second stage, it is clear that a machine-wise

cyclical schedule cannot arrange models in two groups with a cycle time smaller than 11 T.U..

Indeed, Figure 3a presents one such optimal schedule. However, the boundary-wise optimal shown

by Figure 3b cyclic schedule allows a cycle time of 10 T.U.. The boundaries are indicated by the

dashed lines labeled B1, ..., B5. Cycle time measurements are presented bellow the last stage in

each schedule.

Figure 3b further exemplifies two different blockage concepts that is employed in Section 3,

namely regular and cyclical blockage. These concepts are based on the MPS concept: regular

blockages occur between pieces of the same MPS, while cyclical blockages occur between pieces of

different MPS. While both are tied to scheduling variables, the latter is tied to the steady-state

cycle time, hence the label cyclical blockage. Notice that in Figure 3, even MPSs are highlighted

with thicker borders. Some examples of these blockage types are hereby provided: In Figure 3b,

model M2 “follows” model M1 at the first stage, i.e. it is blocked by it. Between minimal part sets,

model M1 “cyclically follows” model M4, i.e. it is cyclically blocked by it. Due to the difference of

entry orders and departure orders at each stage, different sets of blockages and cyclical blockages

occur per stage.

Notice that the boundary-wise cyclical concept allows more flexible scheduling patterns. The

mathematical model presented in Section 3 is defined based on the boundary-wise cyclical schedule

1The first model to depart the stage is not necessarily the first one to enter it. This is illustrated by Figure 3b,

where model M1 is the first to enter Stage 3, but the third to depart from it.

6

M2

M2

M1

M1

M3

M3

M1

M2

M3

M1

M2

M2

M3

M2

M4

M1

M4

M1

M4

M2

M1

M1

M3

M4

M2

M3

M2

M3

M1

M4

M4

M2

M3

M1

M3

M1

M4

M3

M2

M4

M2

M4

M4

M3

M1

M1

M3

M2

M3

M3

M2

M1

M4

M4

M4

M4

M2

M3

M1

M2

M3

M1

M4

M4

0 10 20 30 40 50 60

Station 1

Station 2.1

Station 2.2

Station 3.1

Station 3.2

Station 4

Optimal Machine-wise Cyclical Schedule with CT = 11

𝐵1

𝐵2

𝐵3

𝐵4

Stage 2

Stage 3

𝐵5
CT = 11 CT = 11 CT = 11

(a) Optimal machine-wise solution for the illustrative case

M1

M1

M2

M1

M3

M3

M2

M3

M1

M1

M2

M2

M3

M4

M3

M1

M4

M1

M4

M2

M4

M1

M3

M4

M1

M1

M2

M2

M3

M2

M3

M1

M4

M2

M3

M4

M3

M3

M1

M4

M2

M4

M2

M4

M1

M4

M3

M2

M3

M2

M3

M2

M1

M4

M4

M4

M1

M3

M2

M2

M3

M1

M4

M4

0 10 20 30 40 50 60

Station 1

Station 2.1

Station 2.2

Station 3.1

Station 3.2

Station 4

Optimal Boundary-wise Cyclical Schedule with CT = 10

𝐵1

𝐵2

𝐵3

𝐵4

Stage 2

Stage 3

𝐵5
CT = 10 CT = 10 CT = 10

(b) Optimal boundary-wise solution for the illustrative case

Figure 3: Machine-wise and Boundary-wise cyclical Schedules

concept.

3. Mathematical Model

The following mixed-integer linear programming model is proposed to describe the problem at

hand. In order to do so, the following decision variables are introduced: the continuous variable CT

measures the line’s cycle time; the binary variable x(t,m,s) is set to 1 if task t is assigned to stage s

for product model m; the continuous variables Tinm,s, Txm,s, Toutm,s measure entry, processing,

and departure times of each model m at, in, and from each stage s. The binary ordering variables

ym,n,s are set to 1 if the model m is the nth one to pass through the sth boundary, meaning that it

is the nth piece to leave stage s−1 and enter stage s. For instance, in Figure 3b, model 1 (m = 1) is

the first (n = 1) model to enter stage 1 (s = 1), therefore, y1,1,1 = 1. Similarly, model 3 is the first

7

model to enter stage 4, hence y3,1,4 = 1. The binary fm2,m1,s is set to 1 when model m2 is blocked

by model m1 at stage s. For instance, in Figure 3b, model 4 (m2 = 4) is blocked by model 3

(m1 = 3) at stage 2 (s = 2), meaning that model 3 must depart stage 2 so that model 4 can enter

it, therefore, f4,3,2 = 1. Similarly, model 4 is blocked by model 2 at stage 3, hence, f4,2,3 = 1.

Lastly, the binary cfm2,m1,s is set to 1 when model m2 is cyclically blocked by model m1 at stage

s, meaning that m2 can only enter stage s when model m1 from the previous MPS departs from

it. For instance, in Figure 3b, model 1 (m2 = 1) is cyclically blocked by model 4 (m1 = 4) at

stage 1 (s = 1), therefore, cf1,4,1 = 1. Similarly, model 1 is cyclically blocked by itself in stage 3,

hence, cf1,1,3 = 1, meaning it can only enter stage 3 when the model 1 piece of the previous MPS

departs from it. The Minimal Part Set is assumed to contain one model of each type (|M | pieces,

in total), and different demand rates can be represented by having multiple models with the same

processing times. For the sake of simplicity, the model presented in this section assumes that ks is

lower or equal to |M | for all stages s, and a generalization of this model is presented in Appendix

A removing such hypothesis.

Minimize CT (1)

Subject to: ∑
s ∈ S

x(t,m,s) = 1 ∀ m ∈ M, t ∈ Tm (2)

∑
t ∈ T

R(t,s) · max
m ∈ M

x(t,m,s) ≤ As ∀ s ∈ S (3)

∑
s ∈ S

s · x(t1,m,s) ≤
∑
s ∈ S

s · x(t2,m,s) ∀ m ∈ M, (t1, t2) ∈ Pm (4)

Tx(m,s) =
∑

t ∈ Tm

D(t,m,s) · x(t,m,s) ∀ m ∈ M, s ∈ S (5)

CT ≥
∑

m ∈ M

Tx(m,s)/ks ∀ s ∈ S (6)

∑
m ∈ M

y(m,n,s) = 1 ∀ n ∈ M, s ∈ S (7)

∑
n ∈ M

y(m,n,s) = 1 ∀ m ∈ M, s ∈ S (8)

y(m,n,s+1) ≤
∑

n′ ∈ M :n′≤n+ks−1

y(m,n′,s)

∀ m ∈ M, n ∈ M, s, s + 1 ∈ S

(9)

f(m2,m1,s) ≥ y(m2,n+ks,s) + y(m1,n,s+1) − 1

∀ s, s + 1 ∈ S, m1, m2, n ∈ M : n + ks ≤ |M |
(10)

8

cf(m2,m1,s) ≥ y(m2,n−|M |+ks,s) + y(m1,n,s+1) − 1

∀ s, s + 1 ∈ S, m1, m2, n ∈ M : n + ks > |M |
(11)

Tout(m,s) ≥ Tin(m,s) + Tx(m,s) ∀ m ∈ M, s ∈ S (12)

Tout(m,s−1) = Tin(m,s) ∀ m ∈ M, s ∈ S : s > 1 (13)

Tin(m2,s) ≥ Tout(m1,s) −BigM · (1− f(m2,m1,s))

∀ m1, m2 ∈ M, s ∈ S
(14)

CT + Tin(m2,s) ≥ Tout(m1,s) −BigM · (1− cf(m2,m1,s))

∀ m1,m2 ∈ M, s ∈ S
(15)

Expression 1 states the problem’s goal function, i.e. cycle time minimization. Equation 2

states the balancing occurrence constraint: each task must be assigned for a stage for each product

model. Inequality 3 states that the space required for the tasks assigned to a stage2 is limited

by the space available in it (parameter As). Notice that models will not necessarily contribute

equally to the space constraints for all tasks: each model m has its own set of tasks (Tm) and,

therefore, the occurrence constraint (Equation 2) will not affect some balancing binary variables

(xt,m,s). Expression 4 states the precedence constraints between tasks. With the balancing vari-

ables, processing times for each model at each stage are determined by Constraint 5, and a lower

bound is defined for cycle time by Expression 6: the total processing time at a stage divided by

the parallelism factor. Constraints 7 and 8 control the ordering variables, demanding that each

model be in a single position and each position contain a single model. Constraint 9 imposes a

consistency constraint in ordering variables of neighboring stages: e.g. With a parallelism degree

ks = 2, if model m is the nth to leave the stage s (and enter stage s + 1) it must have been at

most the (n + 1)th to enter the stage s. Notice that if ks = 1 then the order in which each model

m enters in a stage is the same order it departs from the stage. Constraint 10 and 11 control the

blockage and cyclical blockage binary variables sets f and cf in accordance to the boundary-wise

cyclical concept described at Section 2.1. Constraint 12 requires each model’s processing to be

completed at each stage before departing it. Constraint 13 states that when a model leaves a stage

it immediately enters the next one. Constraint 14 states that if model m2 is blocked by model m1

at stage s, m2 can only enter stage s after model m1 has departed from it, these blockages occur

within an MPS. Constraint 15 controls the cycle time by tying the analogous scheduling blockages

2The max function in Constraint 3 is non-linear, but also easily linearized. Furthermore, the function is available

and automatically linearized by OPL ILOG CPLEX.

9

between MPS. In Constraints 14 and 15, the relaxation factor BigM can take any valid value of

CT multiplied by the highest parallelism factor ks. The fact that sequencing and blockage variables

are allowed to be different for each stage s and the constraints that relate to them (Constraints 7

to 11, 14, and 15) are the key factors that extend the formulation proposed by [29, 47] by removing

the ordering hypothesis (requiring the entry orders and departure orders be the same) from, and

hence generalizing, the model presented by [48].

The additional formulation (three sequencing variable sets: y, f and cf) complexity required

to adequately represent the additional liberties of parallel stations poses a question: is it possible

to simply define sequencing variables for the first boundary (line entrance) and to simulate the

line’s behavior based on common and intuitive scheduling rules? While this approach is feasible

[36], it is not guaranteed to lead to optimal cyclical schedules even when an optimal entry order is

employed. This fact is demonstrated by an example provided in 4.2.

4. Results

The model described in Section 3 was applied to the 36-instance data set presented by [23]. The

summary of most relevant instance information and results are reported by Table 2. The proposed

model results are reported under the “Full” column, its previous particularized [48] form is reported

under the “Part.” column, and the best solution found by Ozturk’s [23] model is reported under

the benchmark (BMK) column. Table 2 compares the cycle time values of the best incumbent

found by each method within the time limit. The proposed model was only solved to optimality

for instances marked with 0% Gap (except 22 and 28). The particularized model was solved to

optimality for all instances, except the largest three (33-36). The benchmark [23], however, did

not report optimality in any instance. This may be due to the model’s nature: [23]’s machine-wise

formulation is a Constraint Logic Programming model; The approach implemented in [23] lacks a

systematic lower bound and might have difficulties in fully exploring large search fields.

In order to set aside software and hardware considerations, all models were executed in the

same hardware and software conditions: Tests were performed on a Core i7-3770 CPU (3.4GHz)

with 16 GB RAM with a time limit of one hour; The universal solver CPLEX v12.8 was used

and the original implementation files provided by [23] were employed. Cycle time comparisons are

made between the upper bound of the proposed model and the average of model-wise cycle times

reported by [23] implementation files. Models, data, and solution files are provided by this paper’s

Supplementary Material.

For instances with parallelism that were not solved to optimality, a relaxation of the proposed

model was also used to strengthen the lower bounds: By removing the sequencing and scheduling

variables and constraints, the reduced model (Expressions 1 to 6) states a balancing lower bound

for stable cycle time. The lower bound values reported by Table 2 are the maximum of the best

bound found by the proposed model and the optimal answer of the relaxed model. For instances

without parallelism, the lower bounds reported by the particularized version of the model [48] are

valid and, hence, were also used to define the best lower bounds (column LB of Table 2).

10

Table 2: Results summary for the 36-instance dataset

Instance info (Parameters) Solution info (Cycle Time) - T.U.

i
∑

m |Tm| |M | |S| ks Full Part. BMK LB Gap

1 38 5 3 1 47 47 47 47 0%

2 38 5 3 2 23.5 23.5 23.8 23.5 0%

3 38 5 3 3 15.7 15.7 18 15.7 0%

4 38 5 5 1 26 26 26 26 0%

5 38 5 5 2 12 13 14.8 12 0%

6 38 5 5 3 8 8.7 9.8 8 0%

7 52 7 3 1 57 57 58 57 0%

8 52 7 3 2 28 28.5 31.1 26.5 5.4%

9 52 7 3 3 18 19 24.7 17.7 1.7%

10 52 7 5 1 34 34 34 34 0%

11 52 7 5 2 17 17 20.4 16 5.9%

12 52 7 5 3 12 11.3 13.1 10.7 5.3%

13 114 5 3 1 107 107 121 107 0%

14 114 5 3 2 52 53.5 62.8 52 0%

15 114 5 3 3 34.7 35.7 40.4 33 4.9%

16 114 5 5 1 68 68 73.4 68 0%

17 114 5 5 2 32 34 36 30.5 4.7%

18 114 5 5 3 22.3 22.7 24.6 20.3 9%

19 156 7 3 1 142 142 149 142 0%

20 156 7 3 2 70 71 73.9 67.5 3.6%

21 156 7 3 3 48 47.3 61.4 45 4.9%

22 156 7 5 1 89 88 102 88 0%

23 156 7 5 2 46 44 61 41 6.8%

24 156 7 5 3 30 29.3 32.7 27.3 6.8%

25 190 5 3 1 197 197 197 197 0%

26 190 5 3 2 98.5 98.5 103.6 98.5 0%

27 190 5 3 3 64.3 65.7 80.4 64.3 0%

28 190 5 5 1 114 113 116 113 0%

29 190 5 5 2 56 56.5 63.2 50 10.7%

30 190 5 5 3 36 37.7 46.4 33.3 7.5%

31 260 7 3 1 263 263 267 263 0%

32 260 7 3 2 131 131.5 139 126 3.8%

33 260 7 3 3 86 87.7 104.1 84 2.3%

34 260 7 5 1 156 155 165 135 12.9%

35 260 7 5 2 76 77.5 87.3 67.5 11.2%

36 260 7 5 3 53 51.7 57.1 45 13%

11

For most instances (all except 1, 4, 10, and 25, in which all formulations tied), the proposed

model (and its particularized version) outperformed the benchmark [23]. Out of the 36 instances, 18

were solved to optimality. However, most of them (11) are instances without parallelism (ks = 1).

This highlights the additional complexity tied to parallel stations: sequencing variables have more

flexibility as the order models enter and depart stages is not necessarily the same.

Comparing the proposed model (Full) to its particularized version (Part.) [48], it is clear that

the additional flexibility (removal of the ordering hypothesis) comes with a trade-off convergence

difficulty: In 15 instances (boldfaced in column Full), removing the ordering hypothesis leads to

better answers than the particularized version. All these answers are unfeasible for the particular-

ized model due to the ordering hypothesis. However, in 8 instances (boldfaced in column Part.),

the particularized version of the model found better solutions, all of which are feasible for the

generalized version - these were not found due to time limit. Overall, the additional flexibility of

the generalized model did produce improvements: fifteen new best answers (boldfaced in column

Full), four of which are optimal ones (instances 5, 6, 14, and 27), and three new optimality proofs

(instances 2, 3, and 26).

4.1. Parallelism influence

A close analysis of the input data provided by [23] revealed that instances are equal in groups

of three, differing only by the parallelism degree: Instances 1-3 are identical except for ks, this is

also the case for instances 4-6, 7-9, etc. Furthermore, the ks parameter is constant and equal for

all stages of the same instance. This means that the performance of instances in the same group

can be normalized if their cycle time values are multiplied by ks. This comparison then allows

the verification of whether or not station parallelism (cross-overs between parallel lines) allows

better performance than to simply have parallel identical and independent lines. The results of

the comparisons are summarized by Table 3, in which the best answers for each instance is used

to generate the normalized cycle time values, and optimal answers are underlined.

Table 3: Normalized Cycle Time Comparisons

Instance Normalized Cycle Times - T.U. Improvements

Group ks = 1 ks = 2 ks = 3 2 vs 1 3 vs 1

1-3 47 47 47 0% 0%

4-6 26 24 24 7.7% 7.7%

7-9 57 56 54 1.8% 5.3%

10-12 34 34 34 0% 0%

13-15 107 104 104 2.8% 2.8%

16-18 68 64 67 5.9% 1.5%

19-21 142 140 142 1.4% 0%

22-24 88 88 88 0% 0%

25-27 197 197 193 0% 2%

28-30 113 112 108 0.9% 4.4%

31-33 263 262 258 0.4% 1.9%

34-36 155 152 155 1.9% 0%

Average 1.9% 2.1%

Maximum 7.7% 7.7%

12

Notice that in 15 out of 24 cases with parallelism the solution found by the model is better

than ks times the solution without parallelism (ks = 1). In average, this improvement rate is close

to 2%, and in the best case it is 7.7%. This demonstrates that parallel workstations can offer an

increasing marginal value in the following specific sense: the use of twice (three times) as many

resources lead to results better than double (triple) that of those obtained by the base quantity.

This is due to the fact that parallelism allows more scheduling flexibility: entry and departure

orders at each stage are allowed to differ. Notice that an analogous increasing marginal value of

workstations is not possible for a serial line in a Simple Assembly Line Balancing (SALB) context:

doubling (tripling) the number of serial single stations can at most half (reduce to a third) the

line’s cycle time. This fact is hereby proved by contradiction: suppose a solution with n ·k stations

exists with cycle time CTn·k lower than 1/k the optimal cycle time CTn for the line with n stations

(CTn > k · CTn·k). By merging task-stations assignments of the solution in groups of k stations

(1 ... k, k + 1 ... 2k, etc.), a feasible (precedence relations are respected) balancing solution for n

stations is produced with CTn ≤ k · CTn·k.

In 14 out of these 15 cases (all except instance 35), the proposed formulation outperformed the

lower bound obtained by its particularized version [48] tied to the ordering hypothesis (imposing

entry order equal to departure order at every stage). These results show that the proposed model

is capable of taking advantage of parallelism increased flexibilities, and that the imposition of the

ordering hypothesis can prune part of the valid search field.

4.2. Comparison to Completion-Based Priority Rules

Multiple recent works have employed simulation techniques [12, 35, 36, 37] to measure perfor-

mance. These are based on a simulator [38] that employs common priority rules for sequencing

and scheduling decisions: pieces move to the next station as soon as they can, and priority is given

to the first piece to be completed in case more than one can move. These common scheduling rules

are hereafter referred to as Completion-Based Priority Rules (CBPR). It might seem at first that

a simulation approach based on CBPR (such as the simulator proposed by [38]) would necessarily

lead to the optimal steady-state given a cyclic entry order in the flowshop. This does work for

lines without parallelism as simulations gradually converge towards the steady-state [29]. However,

that is not necessarily true when parallelism is present. In order to demonstrate the necessity of

multiple sets of sequencing variables (one for each boundary), an illustrative example is hereby

given.

Consider the cyclical scheduling problem associated to the processing time data presented by

Table 4. Consider an MPS with one unit of each of the three product models and consider that

both stages have a parallelism degree of two.

Assuming the cyclic entry order (M1,M2,M3) at least two different cyclical schedules are pos-

sible: one by simulating the piece flow based on the CBPR rules, i.e. by having pieces move to the

next stage as soon as they can with priority to pieces that are completed first; the other by using

the proposed model and allowing sequencing variables at each remaining boundary, i.e. by fixing

13

Table 4: CBPR vs. Model example processing time data (Time Units - T.U.)

Stage S1 S2

Model 1 3 7

Model 2 7 6

Model 3 5 3

only those tied to the first entrance boundary. These solutions are presented by Figure 4. In it,

even MPSs are highlighted with thicker borders and B1, B2, and B3 stand for Boundary 1, 2, and

3, respectively.

M1

M2

M1

M2

M1

M2

M1

M3

M3

M1

M3

M1

M3

M2

M2

M1

M2

M3

M2

M3

M1

M2

M3

M2

M1

M2

M1

M2

M3

M1

M3

M3

M3

M1

M2

M3

0 5 10 15 20 25 30 35

Station 1.1

Station 1.2

Station 2.1

Station 2.2

Station 1.1

Station 1.2

Station 2.1

Station 2.2

Time Units (T.U.)CBPR vs Model

B1

B2

B3

B1

B2

B3

CT = 10

CT = 8 CT = 8

CT = 10

C
B

P
R

So

lu
ti

o
n

M
o

d
e

le
d

So

lu
ti

o
n

Figure 4: Comparison of CBPR vs modeled solution, imposing the same cyclical entry order at

the first stage

Notice that the modeled solution has a cycle time of 8 T.U., while the CBPR one has a cycle

time of 10 T.U.. The 2 T.U. waiting time before the entrance of M2 at the first MPS replication

leads to a higher makespan value for the first MPS for the modeled solution (16 vs 13). However,

due to the lower value of cycle time, this difference decreases steadily after each replication of the

minimal part set. After the third replication, the better cyclical behavior dominates the worse

transient one, meaning that the modeled solution has a better makespan as well (32 vs 33). The

dashed colored lines in Figure 4 highlight these makespan differences.

This example demonstrates that a CBPR approach that only takes into account the entry order

at the first stage is insufficient as a cyclical performance measurement: while CBPR simulations

can generate cyclical schedules, they are not guaranteed to be able to lead to the best possible

one. By induction, this argument demonstrates the importance of sequencing variables at every

boundary.

14

5. Conclusions

Mixed-model assembly lines are often employed in industrial contexts as they balance prod-

uct diversity and production efficiency. Balancing workloads (task distribution) and cyclically

scheduling these lines are key to obtain a high and stable throughput. In the context of unpaced

asynchronous lines in particular, blockages and starvations must be taken into account to optimize

the flowshop. Parallel workstations offer further flexibility to the line by allowing stations to act

as partial buffers and by enabling more sequencing and scheduling possibilities.

Authors thus far have defined cyclical schedules of flowshops in general (and assembly lines in

particular) by a machine-wise cyclical concept. In that concept, the cycle time is defined as the time

between equivalent events of different minimal parts sets at each machine. However, by defining

boundaries between stages, as indicated by Figure 1, better and more general cyclical schedules

are possible when a boundary-wise cyclical concept is employed. This formulation is introduced

in this paper, both conceptually (Section 2.1) and formally (Section 3). This formulation extends

a previous simple station (no parallelism) one [29, 47], and generalizes another that incorporated

parallel stations [48] by removing a simplifying hypothesis. An illustrative example (Figure 3)

is provided to demonstrate the higher flexibility obtained by the boundary-wise cyclical concept.

While for assembly lines without parallelism the machine-wise and boundary-wise formulations

are the same, this is shown not to always be the case for assembly lines with parallelism. The

proposed formulation is also shown to allow better schedules than those obtained by scheduling

with common priority rules (often employed by simulation-based approaches) the assembly line

with a given entry order (Section 4.2).

A mixed-integer linear programing model is presented to solve the asynchronous mixed-model

assembly line simultaneous balancing and cyclical scheduling problem. The proposed formulation is

capable of representing cyclical schedules for any number of stages and different numbers of parallel

workstations in each stage. Tests on a 36-instance literature benchmark provided new best-known

solutions for 15 instances, with 4 new optimal ones, and 3 new optimality proofs, as summarized

by Table 2. Furthermore, by analyzing instances that only differed by the parallelism degree it was

possible to show that unpaced lines with parallel stations can outperform parallel unpaced lines

with single stations (Table 3): Cycle times found for instances with parallelism are, in average,

2% better than cycle times found for the equivalent instances without parallelism divided by the

parallelism degree. This difference is as high as 7.7% for one instance in particular.

The results summarized in Table 3 demonstrate that, aside from allowing higher recovery from

failure capacity, parallel workstations can allow a crescent marginal value: it might be possible

to more than double (triple) the production rate by doubling (tripling) the amount of resources.

Further works should seek to apply the proposed boundary-wise cyclical formulation to other

scheduling problems with parallelism such as job-shop and flowshop. Alternatively, parts of the

formulation can be adapted and extended to other classes of line balancing problems, in which

scheduling plays a major role, such as multi-manned and set-up based ones.

15

Acknowledgments

The authors thank the financial support from Fundação Araucária (Agreement 041/2017 FA –

UTFPR – RENAULT), and CNPq (Grants 406507/2016-3 and 307211/2017-7).

Appendix A. Formulation Extension

The MILP model presented in Section 3 is built under the hypothesis that the parallelism

degree ks is smaller or equal than the number of pieces in the minimal part set |M | at every stage

s. This might, however, not be the case: in some very specific environments, very long tasks might

require degrees of parallelism ks to be higher than |M | for a specific stage.

The generalization of the proposed model for such cases is based on the stage-wise correction

factor js, whose value is defined by the Equation A.1 for each stage s. This factor states the

smallest integer degree to which ks is greater than |M |. For instance, with 5 pieces in the MPS, js

is defined as 0, 1, 2, respectively, when ks belongs to the ranges {1, ... , 5}, {6, ... , 10}, {11, ... , 15}.

js =

⌊
ks − 1

|M |

⌋
∀ s ∈ S (A.1)

With the correcting factor js, four expressions must be revised: Constraints A.2 and A.3 replace

Constraints 10 and 11; and Constraints A.4 and A.5 replace Constraints 14 and 15. Notice that

when js is zero (i.e. the hypothesis ks ≤ |M | holds) the reviewed constraints are the same as the

ones presented in Section 3.

f(m2,m1,s) ≥ y(m2,n+ks−js·|M |,s) + y(m1,n,s+1) − 1

∀ s, s + 1 ∈ S, m1, m2, n ∈ M : n + ks − js · |M | ≤ |M |
(A.2)

cf(m2,m1,s) ≥ y(m2,n−(js+1)·|M |+ks,s) + y(m1,n,s+1) − 1

∀ s, s + 1 ∈ S, m1, m2, n ∈ M : n + ks − js · |M | > |M |
(A.3)

CT · js + Tin(m2,s) ≥Tout(m1,s) −BigM · (1− f(m2,m1,s))

∀ m1,m2 ∈ M, s ∈ S
(A.4)

CT · (js + 1) + Tin(m2,s) ≥Tout(m1,s) −BigM · (1− cf(m2,m1,s))

∀ m1,m2 ∈ M, s ∈ S
(A.5)

References

[1] A. Scholl, Balancing and sequencing assembly lines, 2nd Edition, Physica, Heidelberg, 1999.

[2] N. Boysen, M. Fliedner, A. Scholl, A classification of assembly line balancing problems, Euro-

pean Journal of Operational Research 183 (2) (2007) 674–693. doi:10.1016/j.ejor.2006.

10.010.

16

http://dx.doi.org/10.1016/j.ejor.2006.10.010
http://dx.doi.org/10.1016/j.ejor.2006.10.010

[3] N. Boysen, M. Fliedner, A. Scholl, Sequencing mixed-model assembly lines: Survey, classifica-

tion and model critique, European Journal of Operational Research 192 (2) (2009) 349–373.

doi:10.1016/j.ejor.2007.09.013.

[4] U. Özcan, H. Çerçioglu, H. Gökçen, B. Toklu, Balancing and sequencing of parallel mixed-

model assembly lines, International Journal of Production Research 48 (17) (2010) 5089–5113.

doi:10.1080/00207540903055735.

[5] A. Hamzadayi, G. Yildiz, A genetic algorithm based approach for simultaneously balancing

and sequencing of mixed-model U-lines with parallel workstations and zoning constraints,

Computers and Industrial Engineering 62 (1) (2012) 206–215. doi:10.1016/j.cie.2011.09.

008.

[6] C. Öztürk, S. Tunali, B. Hnich, M. A. Örnek, Balancing and scheduling of flexible mixed

model assembly lines, Constraints 18 (3) (2013) 434–469. doi:10.1007/s10601-013-9142-6.

[7] I. Kucukkoc, D. Z. Zhang, Integrating ant colony and genetic algorithms in the balancing

and scheduling of complex assembly lines, International Journal of Advanced Manufacturing

Technology 82 (2016) 265–285. doi:10.1007/s00170-015-7320-y.

[8] A. Scholl, C. Becker, State-of-the-art exact and heuristic solution procedures for simple as-

sembly line balancing, European Journal of Operational Research 168 (3) (2006) 666–693.

doi:10.1016/j.ejor.2004.07.022.

[9] O. Battäıa, A. Dolgui, A taxonomy of line balancing problems and their solution approaches,

International Journal of Production Economics 142 (2) (2013) 259–277. doi:10.1016/j.

ijpe.2012.10.020.

[10] S. Akpinar, A. Baykasoglu, Modeling and solving mixed-model assembly line balancing prob-

lem with setups. Part I: A mixed integer linear programming model, Journal of Manufacturing

Systems 33 (2014) 177–187. doi:10.1016/j.jmsy.2013.11.004.

[11] S. Akpinar, A. Baykasoglu, Modeling and solving mixed-model assembly line balancing prob-

lem with setups. Part II: A multiple colony hybrid bees algorithm, Journal of Manufacturing

Systems 33 (4) (2014) 445–461. doi:10.1016/j.jmsy.2014.04.001.

[12] L. Tiacci, M. Mimmi, Integrating ergonomic risks evaluation through OCRA index and bal-

ancing/sequencing decisions for mixed model stochastic asynchronous assembly lines, Omega

78 (2018) 112–138. doi:10.1016/j.omega.2017.08.011.

[13] A. Alghazi, M. E. Kurz, Mixed model line balancing with parallel stations, zoning constraints,

and ergonomics, Constraints 23 (2018) 123–153. doi:10.1007/s10601-017-9279-9.

[14] T. Sawik, Monolithic vs. hierarchical balancing and scheduling of a flexible assembly line, Euro-

pean Journal of Operational Research 143 (1) (2002) 115–124. doi:10.1016/S0377-2217(01)

00328-9.

17

http://dx.doi.org/10.1016/j.ejor.2007.09.013
http://dx.doi.org/10.1080/00207540903055735
http://dx.doi.org/10.1016/j.cie.2011.09.008
http://dx.doi.org/10.1016/j.cie.2011.09.008
http://dx.doi.org/10.1007/s10601-013-9142-6
http://dx.doi.org/10.1007/s00170-015-7320-y
http://dx.doi.org/10.1016/j.ejor.2004.07.022
http://dx.doi.org/10.1016/j.ijpe.2012.10.020
http://dx.doi.org/10.1016/j.ijpe.2012.10.020
http://dx.doi.org/10.1016/j.jmsy.2013.11.004
http://dx.doi.org/10.1016/j.jmsy.2014.04.001
http://dx.doi.org/10.1016/j.omega.2017.08.011
http://dx.doi.org/10.1007/s10601-017-9279-9
http://dx.doi.org/10.1016/S0377-2217(01)00328-9
http://dx.doi.org/10.1016/S0377-2217(01)00328-9

[15] M. Chica, Ó. Cordón, S. Damas, J. Bautista, Multiobjective constructive heuristics for the

1/3 variant of the time and space assembly line balancing problem: ACO and random greedy

search, Information Sciences 180 (18) (2010) 3465–3487. doi:10.1016/j.ins.2010.05.033.

[16] C. Öztürk, S. Tunali, B. Hnich, A. Örnek, Balancing and scheduling of flexible mixed model

assembly lines with parallel stations, International Journal of Advanced Manufacturing Tech-

nology 67 (9-12) (2012) 255–2591. doi:10.1007/s00170-012-4675-1.

[17] M. Chica, J. Bautista, Ó. Cordón, S. Damas, A multiobjective model and evolutionary algo-

rithms for robust time and space assembly line balancing under uncertain demand, Omega 58

(2016) 55–68. doi:10.1016/j.omega.2015.04.003.

[18] C. G. S. Sikora, T. C. Lopes, L. Magatão, Traveling worker assembly line (re)balancing prob-

lem: Model, reduction techniques, and real case studies, European Journal of Operational

Research 259 (3) (2017) 949–971. doi:10.1016/j.ejor.2016.11.027.

[19] N. Boysen, M. Fliedner, A. Scholl, Assembly line balancing: Which model to use when?,

International Journal of Production Economics 111 (2) (2008) 509–528. doi:10.1016/j.

ijpe.2007.02.026.

[20] I. Kucukkoc, D. Z. Zhang, Mathematical model and agent based solution approach for the

simultaneous balancing and sequencing of mixed-model parallel two-sided assembly lines, In-

ternational Journal of Production Economics 158 (2014) 314–333. doi:10.1016/j.ijpe.

2014.08.010.

[21] T. Kellegöz, Assembly line balancing problems with multi-manned stations: a new mathemat-

ical formulation and Gantt based heuristic method, Annals of Operations Research 253 (1)

(2017) 377–404. doi:10.1007/s10479-016-2156-x.

[22] A. Roshani, F. G. Nezami, Mixed-model multi-manned assembly line balancing problem: A

mathematical model and a simulated annealing approach, Assembly Automation 37 (1) (2017)

34–50. doi:10.1108/AA-02-2016-016.

[23] C. Öztürk, S. Tunali, B. Hnich, A. Örnek, Cyclic scheduling of flexible mixed model assembly

lines with parallel stations, Journal of Manufacturing Systems 36 (3) (2015) 147–158. doi:

10.1007/s00170-012-4675-1.

[24] B. Rekiek, A. Dolgui, A. Delchambre, A. Bratcu, State of art of optimization methods for

assembly line design, Annual Reviews in Control 26 (2) (2002) 163–174. doi:10.1016/

S1367-5788(02)00027-5.

[25] J. Bukchin, J. Rubinovitz, A weighted approach for assembly line design with station par-

alleling and equipment selection, IIE Transactions 35 (1) (2003) 73–85. doi:10.1080/

07408170304429.

18

http://dx.doi.org/10.1016/j.ins.2010.05.033
http://dx.doi.org/10.1007/s00170-012-4675-1
http://dx.doi.org/10.1016/j.omega.2015.04.003
http://dx.doi.org/10.1016/j.ejor.2016.11.027
http://dx.doi.org/10.1016/j.ijpe.2007.02.026
http://dx.doi.org/10.1016/j.ijpe.2007.02.026
http://dx.doi.org/10.1016/j.ijpe.2014.08.010
http://dx.doi.org/10.1016/j.ijpe.2014.08.010
http://dx.doi.org/10.1007/s10479-016-2156-x
http://dx.doi.org/10.1108/AA-02-2016-016
http://dx.doi.org/10.1007/s00170-012-4675-1
http://dx.doi.org/10.1007/s00170-012-4675-1
http://dx.doi.org/10.1016/S1367-5788(02)00027-5
http://dx.doi.org/10.1016/S1367-5788(02)00027-5
http://dx.doi.org/10.1080/07408170304429
http://dx.doi.org/10.1080/07408170304429

[26] A. Lusa, A survey of the literature on the multiple or parallel assembly line balancing problem,

European Journal of Industrial Engineering 2 (1) (2008) 50–72. doi:10.1504/EJIE.2008.

016329.

[27] E. Levner, V. Kats, D. A. L. de Pablo, T. C. E. Cheng, Complexity of cyclic scheduling

problems: A state-of-the-art survey, Computers and Industrial Engineering 59 (2) (2010)

352–361. doi:10.1016/j.cie.2010.03.013.

[28] T. Sawik, Simultaneous versus sequential loading and scheduling of flexible assembly sys-

tems, International Journal of Production Research 34 (14) (2000) 3267–3282. doi:10.1080/

002075400418252.

[29] T. C. Lopes, C. G. S. Sikora, A. S. Michels, L. Magatão, Mixed-Model Assembly Line Balanc-

ing with Given Buffers and Product Sequence: Model, Formulation Comparisons and Case

Study, Annals of Operations Research 1 (1) (2018) 1–26. doi:10.1007/s10479-017-2711-0.

[30] S. Karabati, S. Sayin, Assembly line balancing in a mixed-model sequencing environment

with synchronous transfers, European Journal of Operational Research 149 (2) (2003) 417–

429. doi:10.1016/S0377-2217(02)00764-6.

[31] U. Saif, Z. Guan, W. Liu, B. Wang, C. Zhang, Multi-objective artificial bee colony algo-

rithm for simultaneous sequencing and balancing of mixed model assembly line, Interna-

tional Journal of Advanced Manufacturing Technology 75 (2014) 1809–1827. doi:10.1007/

s00170-014-6153-4.

[32] Y.-g. Zhong, Hull mixed-model assembly line balancing using a multi-objective genetic al-

gorithm simulated annealing optimization approach, Concurrent Engineering: Research and

Applications 25 (1) (2017) 30–40. doi:10.1177/1063293X16666204.

[33] Y. K. Kim, S. J. Kim, J. Y. Kim, Balancing and sequencing mixed-model U-lines with a co-

evolutionary algorithm, Production Planning and Control: The Management of Operations

11 (8) (2000) 754–764. doi:10.1080/095372800750038355.

[34] Y. K. Kim, J. Y. Kim, Y. K. Kim, An endosymbiotic evolutionary algorithm for the integra-

tion of balancing and sequencing in mixed-model U-lines, European Journal of Operational

Research 168 (3) (2006) 838–852. doi:10.1016/j.ejor.2004.07.032.

[35] L. Tiacci, Simultaneous balancing and buffer allocation decisions for the design of mixed-model

assembly lines with parallel workstations and stochastic task times, International Journal of

Production Economics 162 (2015) 201–215. doi:10.1016/j.ijpe.2015.01.022.

[36] L. Tiacci, Coupling a genetic algorithm approach and a discrete event simulator to design

mixed-model un-paced assembly lines with parallel workstations and stochastic task times,

International Journal of Production Economics 159 (2015) 319–333. doi:10.1016/j.ijpe.

2014.05.005.

19

http://dx.doi.org/10.1504/EJIE.2008.016329
http://dx.doi.org/10.1504/EJIE.2008.016329
http://dx.doi.org/10.1016/j.cie.2010.03.013
http://dx.doi.org/10.1080/002075400418252
http://dx.doi.org/10.1080/002075400418252
http://dx.doi.org/10.1007/s10479-017-2711-0
http://dx.doi.org/10.1016/S0377-2217(02)00764-6
http://dx.doi.org/10.1007/s00170-014-6153-4
http://dx.doi.org/10.1007/s00170-014-6153-4
http://dx.doi.org/10.1177/1063293X16666204
http://dx.doi.org/10.1080/095372800750038355
http://dx.doi.org/10.1016/j.ejor.2004.07.032
http://dx.doi.org/10.1016/j.ijpe.2015.01.022
http://dx.doi.org/10.1016/j.ijpe.2014.05.005
http://dx.doi.org/10.1016/j.ijpe.2014.05.005

[37] L. Tiacci, Mixed-model U-shaped assembly lines: Balancing and comparing with straight lines

with buffers and parallel workstations, Journal of Manufacturing Systems 45 (2017) 286–305.

doi:10.1016/j.jmsy.2017.07.005.

[38] L. Tiacci, Event and object oriented simulation to fast evaluate operational objectives of mixed

model assembly lines problems, Simulation Modelling Practice and Theory 24 (2012) 35–48.

doi:10.1016/j.simpat.2012.01.004.

[39] C. Hanen, A. Munier, Cyclic scheduling on parallel processors: an overview, in: P. Chretienne,

E. G. Coffman, J. K. Lenstra, Z. Liu (Eds.), Scheduling Theory and Its Applications, John

Wiley & Sons LTd, 1994, Ch. 4. doi:10.2298/SOS1102133M.

[40] B. D. de Dinechin, A. M. Kordon, Converging to periodic schedules for cyclic scheduling

problems with resources and deadlines, Computers and Operations Research 51 (2014) 227–

236. doi:10.1016/j.cor.2014.03.004.

[41] N. Brauner, Identical part production in cyclic robotic cells: Concepts, overview and open

questions, Discrete Applied Mathematics 156 (13) (2008) 2480–2492. doi:10.1016/j.dam.

2008.03.021.

[42] A. Elmi, S. Topaloglu, Cyclic job shop robotic cell scheduling problem: Ant colony optimiza-

tion, Computers and Industrial Engineering 111 (2017) 417–432. doi:10.1016/j.cie.2017.

08.005.

[43] P. Brucker, T. Kampmeyer, A general model for cyclic machine scheduling problems, Discrete

Applied Mathematics 156 (13) (2008) 2561–2572. doi:10.1016/j.dam.2008.03.029.

[44] F. Quinton, I. Hamaz, L. Houssin, Algorithms for the Flexible Cyclic Jobshop Problem, in:

14th IEEE International Conference on Automation Science and Engineering (CASE 2018),

Munich, Germany, 2018, p. 5.

[45] T. Sawik, Batch versus cyclic scheduling of flexible flow shops by mixed-integer program-

ming, International Journal of Production Research 50 (18) (2012) 5017–5034. doi:10.1080/

00207543.2011.627388.

[46] W. Bozejko, M. Uchroński, M. Wodecki, Parallel metaheuristics for the cyclic flow shop

scheduling problem, Computers and Industrial Engineering 95 (2016) 156–163. doi:10.1016/

j.cie.2016.03.008.

[47] T. C. Lopes, A. S. Michels, C. G. S. Sikora, R. G. Molina, L. Magatão, Balancing and cycli-

cally sequencing synchronous, asynchronous, and hybrid unpaced assembly lines, International

Journal of Production Economics 203 (2018) 216–224. doi:10.1016/j.ijpe.2018.06.012.

[48] T. C. Lopes, C. G. S. Sikora, A. S. Michels, L. Magatão, A New Model for Simultaneous Bal-

ancing and Cyclical Sequencing of Asynchronous Mixed-Model Assembly Lines with Parallel

20

http://dx.doi.org/10.1016/j.jmsy.2017.07.005
http://dx.doi.org/10.1016/j.simpat.2012.01.004
http://dx.doi.org/10.2298/SOS1102133M
http://dx.doi.org/10.1016/j.cor.2014.03.004
http://dx.doi.org/10.1016/j.dam.2008.03.021
http://dx.doi.org/10.1016/j.dam.2008.03.021
http://dx.doi.org/10.1016/j.cie.2017.08.005
http://dx.doi.org/10.1016/j.cie.2017.08.005
http://dx.doi.org/10.1016/j.dam.2008.03.029
http://dx.doi.org/10.1080/00207543.2011.627388
http://dx.doi.org/10.1080/00207543.2011.627388
http://dx.doi.org/10.1016/j.cie.2016.03.008
http://dx.doi.org/10.1016/j.cie.2016.03.008
http://dx.doi.org/10.1016/j.ijpe.2018.06.012

Stations, in: Annals of the XLIX Brazilian Symposium of Operations Research, Blumenau,

2017, pp. 3570–3581.

[49] M. L. Pinedo, Scheduling: Theory, algorithms, and systems, 3rd Edition, Springer, 2008.

doi:10.1007/978-0-387-78935-4.

21

http://dx.doi.org/10.1007/978-0-387-78935-4

	Introduction
	Problem Statement
	Cyclical Scheduling with Parallelism

	Mathematical Model
	Results
	Parallelism influence
	Comparison to Completion-Based Priority Rules

	Conclusions
	Formulation Extension

