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ABSTRACT

Asynchronous Mixed-Model Assembly lines are common production layouts dedi-
cated to large-scale manufacturing of similar products. Cyclically scheduling such
products is an interesting strategy to obtain high and stable throughput. In order
to best optimize these lines, it is necessary to combine line balancing, model se-
quencing, and buffer allocation. However, few works integrate these three degrees of
freedom, and evaluating steady-state performance as a consequence of these deci-
sions is challenging. This paper presents a mathematical model that allows an exact
steady-state performance evaluation of these lines, and hence their optimization.
While the combination of degrees of freedom is advantageous, it is also computa-
tional costly. An iterative decomposition procedure based on alternation between two
mathematical models and on optimality cuts is also presented. The decomposition
is tested against the proposed mathematical model in a 700-instance dataset. The
developed methods obtained 142 optimal answers. Results show that the decompo-
sition outperforms the monolithic mathematical model, in particular for larger and
harder instances in terms of solution quality. The optimality cuts are also shown to
help the decomposition steps in terms of solution quality and time. Comparisons to a
sequential procedure further demonstrate the importance of simultaneously optimiz-
ing the three degrees of freedom, as both the proposed model and the decomposition
outperformed such procedure.
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1. Introduction

Assembly lines are product oriented production layouts commonly employed for large-
scale manufacturing of similar products (Scholl 1999). While early versions of such
lines were dedicated to a single product model, the increase in product diversity led
to mixed-model assembly lines, which are shared between a set of similar products
(Boysen, Fliedner, and Scholl 2009b). Substantial research has been conducted on the
optimization of assembly lines, ranging from the simpler more theoretical cases (Scholl
and Becker 2006) to more general ones (Becker and Scholl 2006) that remove some
typical simplifying hypothesis. The focus of this paper is asynchronous mixed-model
assembly lines, an unpaced variant in which each product moves to the next station
when two conditions are met: processing at the current station is complete, and the next
station is available (Boysen, Fliedner, and Scholl 2007). In these lines, three degrees of
freedom are relevant: balancing, sequencing, and buffer allocation (Boysen, Fliedner,
and Scholl 2008).

The first problem, assembly line balancing, consists of distributing a set of tasks
amongst stations in a way that maximizes the lines’ efficiency. Stations are sequential
in nature and, usually, equally manned. Tasks have specific durations and precedence re-
lations, meaning that some must be performed before others. Thus, precedence relations
restrict task assignment. The sum of task processing times in each station is tied to the
line’s production rate. If only one product model is produced, the highest station-wise
sum dictates the line’s cycle time. When more than one product is produced in the same
line, other factors such as line pace and product sequence become important. The line
balancing problem was first introduced by Salveson (1955) and was recently object of a
review by Battaia and Dolgui (2013). The most common goals are the minimization of
the number of stations given a minimal production rate or the minimization of the cycle
time given the number of stations. In the particular case of asynchronous mixed-model
assembly lines, the production rate may be difficult to determine (Tiacci 2015b), and
may be a function of line balancing, product sequence, and buffer allocation.

The second problem, mixed-model sequencing, consists of defining the order in which
product models are to be produced. Product models usually have known processing
times in each station and given demand rates. While virtually any product sequence
is technically feasible (Boysen, Fliedner, and Scholl 2009¢), the order in which prod-
ucts are produced affects performance measures with relevant economic impacts. Cycle
time is usually considered a parameter for sequencing problems. However, in through-
put maximization variants, mixed-model sequencing can be an important optimization
aspect, especially when combined to line balancing. Thomopoulos (1967) was one of
the earliest authors to study mixed-model sequencing problem, and many variants have
been defined since then (Boysen, Fliedner, and Scholl 2009¢). In the particular context
of relatively stable demands, cyclical scheduling is often employed to obtain a high and
stable throughput (Karabati and Sayin 2003; Sawik 2012). Cyclical scheduling is often
based on the Minimal Part Set (MPS) concept (Levner et al. 2010), which is defined as
the smallest set of products that can be repeated indefinitely in order to meet the pro-
duction target. For example, if the production target is 5000 units of product model 1
and 3000 units of product model 2, then the MPS is 5 units of product model 1 and
3 units of product model 2, which can be represented by the vector (5, 3).

The third problem, buffer allocation, consists of assigning internal storage spaces in
order to increase the system’s productivity. Buffers are units with the capacity of storing
incomplete products between stages in a production system. Their presence can help
prevent starvations and blockages, therefore, increasing throughput. Naturally, they im-



ply costs. Buffer allocation problems usually assume that factors such as system design
and workload distributions have already been solved (Demir, Tunali, and Eliiyi 2014).
However, in the context of throughput maximization of mixed-model assembly lines,
previous works have shown that buffers can affect the optimal workload distribution
(Lopes et al. 2018b). The buffer allocation problem was first formalized by Koenigs-
berg (1959) and was recently reviewed by Demir, Tunali, and Eliiyi (2014). Common
optimization goals are the minimization of the number of buffers required to meet a
certain production rate, and the maximization of the production rate given the number
of buffers.

Combining these degrees of freedom should lead to better results than optimizing
them independently or sequentially (Boysen, Fliedner, and Scholl 2007, 2008). However,
most works focus separately on each of these degrees of freedom (Boysen, Fliedner, and
Scholl 2009¢; Battaia and Dolgui 2013; Demir, Tunali, and Eliiyi 2014). To the best
of the authors’ knowledge, no work has yet combined the three degrees of freedom to
obtain an optimized solution as the approach herein presented. However, some papers
combined two of these degrees, in particular balancing and sequencing. The strategies
adopted by most authors when combining these degrees of freedom and optimizing
mixed-model assembly lines are presented in Section 2.

In this paper, the number of buffers and workstations are considered as problem
parameters, i.e. finite available resources. The goal is to determine a line balancing, a
cyclical product sequence, and a buffer allocation that maximizes the line’s throughput.
The formulation presented by Lopes et al. (2018b) is extended to incorporate sequencing
and buffer allocation decisions: a new MILP model is developed for mixed-model
assembly lines, in which one is required to combine the three degrees of freedom to
optimize the steady-state throughput. Therefore, the problem at hand is a mixed-model
assembly line Balancing, Cyclical Sequencing and Buffer Allocation Problem (hereafter
abbreviated as BCSB-P). The three sub-problems are shown to be interconnected, and
the presented MILP model presents a mathematical description of such connections.
Due to the computational difficulties that arise from the combination of these degrees
of liberty, an Iterative Decomposition procedure is presented. The decomposition is
tested against the proposed monolithic model, proving to be very competitive. Both the
decomposition and the model are also compared to a sequential procedure based on
literature procedures for similar problems (Sawik 2004; Battini et al. 2009).

The paper is organized as follows. Section 2 provides a brief overview of recent related
works. In Section 3 a context is yielded and the definition of a BCSB-P is explained.
Section 4 presents the model that describes a cyclical steady-state optimization problem.
Section 5 presents the proposed iterative decomposition. Section 6 presents the results
of the comparisons between the monolithic model and the proposed decomposition.
Lastly, the main conclusions drawn from this paper are summarized and future research
directions are provided in Section 7.

2. Related Works

Works on optimization of assembly line balancing, sequencing, related and combined
problems employ a large range of methods (mathematical models, decompositions, meta-
heuristics, etc.) to solve multiple variations of problems. The main focus of this section
is not on the solution method applied, but rather on the problem’s decision variables
(balancing, sequencing, buffer allocation), and on the throughput performance measure
used, i.e. the role cycle time plays in the problem’s definition.



Most works that combine some of the three aforementioned degrees of freedom (bal-
ancing, sequencing, and buffer allocation) focus on variants of the balancing-sequencing
combination. However, the role of cycle time as a performance definition and goal func-
tion varies substantially: Sawik (2002); Alghazi and Kurz (2018) employ the weighted
average (or sum) of model-wise processing times in each station as a performance re-
quirement.

Multiple authors consider as goal functions a measure of processing time deviations
from an ideal average value: Kim, Kim, and Kim (2000a, 2006) apply such deviations
as goal functions of a combined balancing-sequencing problem and Battini et al. (2009)
use them as a goal function in a decomposition step in a problem that seeks to maximize
production rates and minimize buffer requirements.

Workload smoothing is a performance measure that is also often employed along with
other goal functions such as minimizing the number of workstations: Ozcan et al. (2010)
apply it for a problem definition with parallel assembly lines, and Hamzadayi and Yildiz
(2012, 2013) use it for U-lines with and without parallel workstations.

Some balancing-sequencing works on continuous lines with utility work minimization
goal also consider cycle time to be a parameter that affects the goal function: Kim, Kim,
and Kim (2000b) present a base formulation for straight mixed-model lines, Mosadegh,
Zandieh, and Fatemi Ghomi (2012) present a problem variant with station-dependent
assembly times and Nilakantan et al. (2017) present a formulation for two-sided lines.
Defersha and Mohebalizadehgashti (2018) present a balancing-sequencing formulation
for mixed-model paced lines with the combined goal of minimizing line length, task
duplications, and number of stations. In their formulation, time between products (cycle
time) is also considered a parameter. Another common goal function for balancing-
sequencing problems is makespan minimization for unpaced asynchronous lines (Oztiirk
et al. 2013, 2015). Biele and Monch (2018) presented a cost-oriented balancing problem
for when (non-cyclical) product sequence is given.

Many authors also consider cycle time as a parameter that must be respected by all
product models in the line, regardless of product sequence: Zhong (2017) applies this def-
inition for hull assembly line balancing (shipbuilding); Akpinar and Baykasoglu (2014);
Akpinar, Elmi, and Bektas (2017) employ this definition for mixed-model problems with
set-ups; Delice et al. (2017) uses it for two-sided assembly lines; Roshani and Nezami
(2017) apply it for multi-manned lines; Kucukkoc and Zhang (2016) uses it for complex
parallel lines variants; Dong, Zhang, and Xiao (2018) employs a chance-constraint ver-
sion of this consideration for stochastic lines. The conversion of this parameter into a
problem variable and its minimization is also a studied strategy (Karabati and Sayin
2003).

Tiacci (2015a,b, 2017) has presented a simulation-based performance evaluation to
have a direct performance measure for balancing and buffer allocation on asynchronous
stochastic assembly lines. Tiacci (2015a) argues that the above mentioned indirect per-
formance measures (weighted average processing times, workload smoothing, workload
deviations minimization, etc.) are not goals in themselves, but rather supposed means
to achieve a high and stable throughput. This has been more recently corroborated by
Lopes et al. (2018b), which presented a formulation for direct steady-state performance
measure in deterministic asynchronous lines with given cyclical product sequence and
given buffer allocation. Lopes et al. (2018b) also compared their formulation to indirect
performance measures and confirmed that they do not necessarily optimize steady-state.
Recent extensions of said formulation (Lopes et al. 2018a, 2019) incorporates sequencing
decisions and parallel workstations, but do not take buffer allocation into account.

While Tiacci (2015b) presented a balancing and buffer allocation optimization pro-



cedure, its simulation-based procedure considers a random product sequence and does
not include a mathematical model with decision variables and constraints. Lopes et al.
(2018a)’s model, on the other hand, does not incorporate buffer allocation decisions.
To the best of the authors’ knowledge, no work has addressed the combined BCSB-P:
Both the direct performance measure and the combination of balancing, sequencing,
and buffer allocation degrees of freedom remain a challenge and a gap in the literature.

3. Problem Statement

The optimization of a cyclical asynchronous assembly line requires the combination
of three degrees of freedom: balancing the assignment of tasks to stations; assigning
some buffers to the line; and cyclical sequencing and scheduling of product models in
the Minimal Part Set (MPS). Figure 1 conceptually depicts the studied BCSB-P. In
this figure, the models M1, M2, and M3 (represented by circles, squares and triangles)
are cyclically sequenced to enter to and depart from the line in a repeated pattern.
Workstations (S1-S4) perform the required tasks, and available buffers (B1 and B2)
are to be placed in two out of the three candidate spots. In this paper, the number
of workstations and buffers is considered a parameter, and the goal is to maximize
the line’s productivity, i.e. a type-2 problem (Scholl 1999). A related problem can be
defined as the minimization of the number of workstations and buffers given a maximum
steady-state cycle time.
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Figure 1.: Overview of the optimization problem

Line balancing must respect a set of precedence relations between tasks. If precedence
relations are different across models, they can be combined into a joint precedence graph
during pre-processing (Boysen, Fliedner, and Scholl 2009a). Furthermore, without loss
of generality, tasks are assigned to the same station for all models: If a task can be
performed at different stations for different product models, it can be replaced by a
set of tasks with zero processing times for all but one model each (Boysen, Fliedner,
and Scholl 2009a). For instance, in a line with 2 product models, consider a task ¢ with
durations of 7 and 9 time units for models 1 and 2, respectively. If ¢ can be performed at
different stations for each model, then it can be replaced by two tasks: ¢, with duration



of 7 and 0 time units, and ¢, with duration of 0 and 9 time units. These tasks would
have the same precedence relations as t.

A finite number of buffers must be assigned between stations. They help compen-
sate model-wise deviations of processing times (Boysen, Fliedner, and Scholl 2008) by
temporarily storing pieces between stations. In this paper, dummy stations called buffer
candidates are added between stations to represent potential buffer allocation positions:
a buffer candidate is only able to store product pieces when a buffer is assigned to that
position.

The product models in the minimal part set must be sequenced in a cyclical man-
ner. Furthermore, the discrete entry and departure times of each product piece at each
workstation must be cyclically scheduled. This scheduling ties balancing, buffer alloca-
tion, and sequencing as it must reflect the possibilities and restrictions of each of the
problem’s degrees of freedom. Furthermore, the scheduling variables should measure the
line’s steady-state performance. A recent work has shown how to measure such perfor-
mance when product sequences and buffer layout are parameters (Lopes et al. 2018b).
Such formulation must be extended to allow these aspects to become decision variables.
Cyclical scheduling is NP-Hard (McCormick and Rao 1994) and hence, by assumption,
the size of the minimal part set is assumed to be small enough so that cyclical schedul-
ing given a balancing solution is quickly solved. This means that the core combinatorial
difficulty of the problem lies on its balancing component, but that the evaluation of each
balancing solution still requires solving a sequencing and buffer allocation subproblem.

In order to illustrate the importance of each degree of freedom (balancing, sequenc-
ing, and buffer allocation) in asynchronous cyclical schedules, Figure 2 is presented.
Figures 2a and 2b, consider the same balancing solution, therefore, the processing times
for each model at each station are constant parameters. In each of these Figures, two
examples of cyclical schedules are presented with different buffer layout (Figure 2a) and
product sequence (Figure 2b). Uppercase labels indicate processing times, while low-
ercase ones represent waiting (blocked) times. Two MPS replications are portrayed for
an easier understanding of the cyclical nature of the schedules. In both Figures, arrows
indicate the cycle time: the interval between entries of the first piece of each MPS at
the latest station. It is clear from Figures 2a and 2b that buffer allocations and sequenc-
ing decisions can have a decisive influence on the steady-state CT value, even with a
fixed set of balancing decisions. Consequently, the combination of these three degrees
of freedom can provide even better solutions. Lastly, Figure 2c¢ illustrates the influence
of line balancing in solution quality. In it, two cyclical schedules are presented with
the same sequencing and buffer allocation, but different line balancing solutions. This
means different total processing time durations in each station and, therefore, different
cycle time values.

4. Monolithic Model

This Section presents the monolithic MILP model that combines balancing, sequencing,
and buffer allocation. Table 1 presents the employed notation. The problem’s goal is
throughput maximization, hereby considered as cycle time minimization. This is possible
as the throughput is the inverse of the average steady-state cycle time (Scholl 1999).
The proposed formulation’s basic concept is to produce a cyclical schedule of |P|
product pieces such that: processing times are determined by balancing and sequencing
decision variables, and scheduling constraints are affected by buffer allocation ones. Let
P be a set of positions in a product sequence that repeats indefinitely. Each (work)piece
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Parameter | Description
T Set of tasks ¢, [T states the number of tasks
S Set of stations s, |S/S| states the number of workstations
Sp Set of buffer candidates s;, S, C S
S Immediate predecessor of station s
B Number of available buffers, i.e. how many candidates can be buffers
M Set of product models m
Ny, Demand rate for model m € M: integer number of model m products in the MPS
P Set of product pieces p, |[P| = ,; Ny, states the number of pieces
R Set of precedence relations (¢,t3), 1 precedes to
Dy m Duration of task ¢ for model m, measured in Time Units [T.U.]
cT Cycle time value for the incumbent solution
BigM A large number, a valid value of CT is high enough
Variable | Description
Tt s Balancing binary variable, set to 1 if task ¢ is assigned to station s
Yp,m Sequencing binary variable, set to 1 if model m is the p** piece
Zs, Buffer allocation binary variable, set to 1 if candidate s, is a buffer
Ting s Continuous variable: Entry time of piece p at station s
Txy, s Continuous variable: Processing time of piece p at station s
Tout, s Continuous variable: Departure time of piece p at station s
cT Continuous variable: Average steady-state cycle time
LBCT Continuous variable: Lower bound on steady-state cycle time

Table 1.: Employed nomenclature

p represents a position in the cyclical product sequence. The monolithic model is defined
by Expressions 1 to 13:

Minimize CT (1)
Y om=1 VteT (2)
SES\SQ,
Sk Sk
Z Tty,s > Z Tty,s v (tl,tz) S R, Sk € S\Sb (3)
s=1 s=1
> Ypm =1 Vp e P (4)
meM
> Ypm =N Vm € M (5)
peP

Txps > ZDt,m-xm—Bz’gM-(l—yp,m) Vm e M,pe P, s e S (6)

teT




Z Tx,s = Z Ny - D - Ty s Vs € S (7)

peP teT,meM

Tout,s > Ting s+ T, Vpe P selS (8)
Tout,« = Tinys Vpe PseS: s>1 9)
Ting,s > Tout,_1 Vse S peP:p>1 (10)
Tout,, < Ting, s+ Bighl - z Vp e P s e S (11)

> 2z < B (12)

SESy

CT +Tinys > Toutps Vs € S (13)

The goal function, i.e. cycle time minimization, is stated by the Expression 1. Equa-
tion 2 states task-assignment constraint, requiring every task to be performed at one
non-buffer station (S '\ Sp). Inequality 3 states the precedence relations, requiring that
tasks be performed before their successors. Equation 4 states that a model is assigned to
every position in the product sequence, i.e. to every piece. Equation 5 states the demand
constraint: every product model m will be present in N, positions in the sequence. In-
equality 6 binds processing times of each piece p at each station s to balancing and
sequencing decision variables, tying them to the sum of durations of tasks ¢ assigned to
station s for the product model m associated to piece p. Equation 7 defines a logical
cut for processing times within each station: The sum of processing times for all pieces
equals the sum of processing times for all models, weighted by their demands. Inequal-
ity 8 states that pieces can only depart a station after entering it and being processes.
Equation 9 states that a piece enters station s, when it departs from its immediate pre-
decessor 5. Inequality 10 prevents two pieces from occupying the same station at the
same time. Inequality 11 defines buffer allocation: If a candidate is chosen as a buffer,
then pieces can stay on it after they enter it, otherwise they must depart immediately.
Inequality 12 defines the buffer allocation limit. Lastly, Inequality 13 binds cycle time in
each station to the elapsed time from the entry of the first piece to the departure of the
last one. This proposed mathematical model, defined by Expressions 1 to 13, combines
the balancing (x;s), sequencing (y,.,), and buffer allocation (z;) degrees of freedom.
Therefore, it is referred to as monolithic model.

5. TIterative Decomposition Procedure
The monolithic model presented in the previous section tends to be difficult to solve,

especially due to the constraints that employ the BigM relaxation method. When sepa-
rated, each degree of freedom should be faster to solve, however, to measure performance



algorithmically is challenging: it is difficult to determine cycle time value of the incum-
bent solution (W) directly from the binary decision variables x; s, Yp.m, and z,, without
solving a linear relaxation. Hence, in order to quickly obtain good solutions, an itera-
tive decomposition procedure was developed. This is justified by the exact performance
measurement allowed by the MILP formulation, and the expected faster exploration
of search fields when part of the decision variables is fixed. Multiple authors present
decompositions that first solve the (long-term) balancing problem then the associated
(short-term) scheduling one (Sawik 2002; Battini et al. 2009). This rationale is combined
to that of the model presented by Lopes et al. (2018b) in which the reverse occurs: bal-
ancing is optimized given sequencing and buffer parameters. This allows an iteration
between two models, which is similar to the Fix-and-Optimize approach proposed by
Helber and Sahling (2010): first the balancing variables are optimized by fixing sequenc-
ing and buffer allocation ones, then the reverse. Additionally, optimality cuts (hereafter
presented) are added dynamically. These cuts are partly based on well-established graph
analysis of precedence diagrams (Scholl and Becker 2006), and they function as (indirect)
Combinatorial Benders’ Cuts (Codato and Fischetti 2006). This type of cut consists of
inequalities tied to subsystems of the linear problem and translate either optimality or
feasibility requirements.

In this Section, the iterative decomposition and its notation are presented. The de-
composition is based on the monolithic model (Section 4): in each step of the decom-
position, some variables become parameters. Figure 3 presents a high-level overview of
the iterative decomposition.

Model D2
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Initial
Balancing
Solution

Model D2
Sequencing and Buffer Allocation given
Balancing Model with Tabu List**

——{ Reset Model D2’s Tabu List

** Best incumbent added to D2’s
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Balancing Solution
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J9)jng pue 3upuanbag
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(END)

* All feasible solutions found added to
D1’s Tabu List on further executions

Model D1 +MIP Solution Callback
Balancing Given Sequencing and Buffer
Model D1 Allocation Model with Tabu List*
Feasible?

Figure 3.: Iterative Decomposition Overview

There are two main mathematical models in the decomposition. In Model D1, the
sequencing and buffer allocation variables (y,, and z;) become binary parameters. In
Model D2, the balancing variables (x;s) are set to a fixed configuration. Therefore,
Model D1 does not require Constraints 4, 5, and 12, while Model D2 does not require
Constraints 2, and 3. Nonetheless, the binary parameter values given to both D1 and
D2 should be feasible in regard to these constraints. The proposed method ensures
feasibility by having its parameters provided by incumbent answers of MILP models
that contain these constraints.

The procedure starts by defining an initial balancing solution: By assumption, the set
of tasks T' is topologically ordered according to the precedence relations. For instance,
consider the diagram presented by Figure 1: each precedence constraints ties task pairs
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(ta,tp) such that ¢, < tp. This allows the initial balancing solution to be defined as
follows: assign each task t to station |1+ (¢t — 1) - |S/Sp|/|T|], for example, in an
instance with 9 tasks and 3 workstations, tasks 1-3 will be assigned to station 1, tasks
4-6 will be assigned to station 2, and tasks 7-9 will be assigned to station 3. Because
tasks are topologically ordered in regard to precedence relations, this initial balancing
solution will automatically respect the precedence relations. Balancing solutions are
used by Model D2 to generate a sequencing and buffer allocation solution. Model D2’s
solution is used by Model D1 to generate new balancing solutions. The process iterates
as depicted in Figure 3.

In each iteration, the best incumbent solution provided by Model D2 is added to
a Sequencing and Buffer Allocation Tabu list (TabuListpg). Let (Tabugeq, Tabupug) €
TabuListps be a Tabu vector that contains the set of non-zero sequencing and buffer
allocation variables, respectively. After the first time the Model D2 is run, further exe-
cutions will include Constraint 14. This restriction demands at least one difference from
each Tabu vector in the Tabu list, i.e., from each previously explored solution.

Z Ypm + Z zs < |P|+B—1 V (Tabugeq, Tabugus) € TabuListpe
(p,m) € Tabugeq s € Tabupug

(14)
Similarly, every solution found by Model D1 is added to a Balancing Tabu List
(TabuListp;). However, Model D2 only adds optimal solutions to its Tabu List, and
every feasible solution found by Model D1 is added to TabuListp;. This is done by using
a callback routine every time Model D1 reaches a new integer solution. The callback

procedure is illustrated by Figure 4.

New Balancing Solution Found
Callback START

A\ 4

Add New Balancing Solution to TabulListpq

|

Solve Model D2 given the New Balancing Solution
(Without TabulListp, Constraint)

Update Incumbent
CT (CT) Value

Is the combined solution
. Yes
a new incumbent? ‘
Callback END

Figure 4.: Callback procedure flowchart

This callback tests the new balancing solution by applying it to Model D1 without the
Tabu constraints (Inequality 14). This allows optimal sequencing and buffer allocation
solutions to be obtained for that specific balancing solution. The value of cycle time is
compared to the incumbent solution and replaces the previous value if the newly found
solution is better than the incumbent.
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After the first time the Model D1 is executed, Constraints 15, 16, and 17 are added
to Model D1. The first demands at least one difference from each previously explored
Tabu balancing solution Tabug, listed on Model D1’s Tabu list TabuListp;. The second
demands the sum of processing times in each station to be smaller than the incumbent
cycle time. The third one is based on the earliest and latest stations concept (Scholl
and Becker 2006), defined for each task for the incumbent cycle time: ES (+TT-1) and

LS (t,CT—-1)
problem into a single model one (Becker and Scholl 2006): First, the total processing
times D, for each task t are computed as the sum of processing times across models
weighted by their demands N,,. Then, the total processing times before and after each
task are calculated in order to define the minimum number of stations before and after
each task (graph analysis based on precedence relations) given a value of cycle time
(Scholl and Becker 2006). This allows some binary variables to be set to zero, as stated
by Equation 17, because they necessarily lead to violations of Inequality 16, otherwise.

. Such earliest and latest stations are computed by reducing the mixed-model

Z T < |T|—1 VY Tabup, € TabuListp; (15)
(t,s) € Tabuga

> Tape<CT-1 VseS (16)
peP
Trs =0 VteT seS:s ¢ {ESO’ﬁ_l)aLS(t’ﬁ_l)} (17)

By ignoring inefficiencies associated to blockages and starvations, the sum of pro-
cessing times (Inequality 16) in each station is a lower bound on the cycle time: if that
station operates at 100% efficiency, the MPS will take at least that much to be processed
on it. This means that Inequality 16 and Equation 17 (whose violations imply in viola-
tions of Inequality 16) function as optimality cuts that act indirectly as Combinatorial
Benders’ Cuts (Codato and Fischetti 2006).

By demanding new solutions to respect these lower bound constraints, a large nec-
essarily sub-optimal part of the search field is being discarded. Furthermore, if it is im-
possible for D1 to satisfy both the Tabu constraints and these performance constraints,
then the incumbent solution must be optimal: each balancing Tabu solution was tested
for optimal sequencing and buffer allocations, therefore, violating a Tabu constraint
means testing a previously fully tested balancing solution; violating the lower bound
constraint means the trial solution will have a cycle time value greater or equal to CT,
meaning the solution is either dominated or equivalent to the incumbent.

This means that the proposed iterative decomposition can prove the optimality of
its answer, as long as enough computational time is offered. It is likely that such op-
timality proof would take longer than the monolithic model’s one. However, the fact
that the decomposition can prove a solution’s optimality is relevant as it means the full
search field is guaranteed to be eventually tested. That said, the focus of the iterative
decomposition is finding good solutions within the time limit, not proving optimality of
the best solution found.

If Model D2 is infeasible for a given TabuListps, then all sequences and buffer alloca-
tion possibilities have been tested. If in all iterations Model D1 was solved to optimality,
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then the incumbent is also optimal. However, Model D1 can require substantial time to
be solved. Hence, during tests, Model D1’s time limit was set to a relatively short time
(60 seconds, as indicated in Section 6) in order to allow more iterations, and therefore,
more product sequences to be considered. With the tested global time limit, in not a
single instance Model D2 was infeasible. If that occurs for larger global time limits, then
TabulListps can be simply reset.

5.1. Illustrative Example

The proposed method is hereby illustrated with a small example. Table 2 presents
both the instance data and the proposed decomposition iterations: The problem con-
tains nine tasks (|T'| = 9), five product models (|M| = 5), three workstations
(S={1, 1.5, 2, 2.5, 3}, S, = {1.5, 2.5}, |5\ Sp| = 3) and one available buffer (B = 1).
Demand rates are considered equal for all models, leading to an MPS of with one prod-
uct piece of each. Task durations for each model (D) are presented by Table 2, as well
as precedence relations (‘Pre’ column). The example’s precedence diagram is presented
in Figure 1.

Instance Data Method Iterations
Models Assignments/Values
1 2 3 4 5 Initial Bal. 1 11 2 2 2 3 3 3
MPS |1 1 1 1 1
Task Durations Pre. ~ Bal. 1 11 2 2 2 3 3 3
1 1 0 0 0 O - A~ Seq. 1 3 5 2 4
2 |1 2 1 0 0 1 5 BA |25
3 1 2 1 0 0 1 EO = CT | 14 (First Incumbent)
4 0o o0 1 2 2 2
5 1 0 1 1 1| 34 - Bal. 1 1 2 1 2 3 2 3 3
6 2 0 0 0 3| 34 A~ Seq. 1 3 5 2 4
7 o1 0 1 2] 5 Ty BA |25
8 1 1 0 0 0| 7 S = CT | 12 (Second Incumbent)
9 0o o 2 1 1 8
Model D2 Iter. - 2 does not improve solution
Number of workstations: 3 Model D1 Iter. 2 - infeasible
Available buffers: 1 Therefore: current incumbent is optimal

Table 2.: Illustrative Example data and Iterations

The initial balancing solution, obtained by assigning each task ¢ to station |1+ (¢ —
1) - 1S/Su|/IT|], is presented as ‘Initial Bal’ In Table 2, the values presented for each
incumbent are the workstations to which each task is assigned (balancing, or ‘Bal. line),
the product model at each position of the sequence (sequencing, or ‘Seq.” line), and the
position at which the buffer is assigned (buffer allocation, or ‘BA. line). The cyclical
schedules of each of these solutions are presented by Figure 2c. Thus, tasks 1-3 are
initially assigned to station 1, tasks 4-6 to station 2, and tasks 7-9 to station 3. The
first model D2 iteration uses the initial line balancing, leading to an incumbent with
CT = 14. The first model D1 iteration uses the incumbents’ sequencing and buffer
allocation, leading to a new incumbent with CT = 12.

After the second incumbent is found, a second Model D2 iteration fails to improve
the solution. The subsequent Model D1 iteration states that the model is infeasible,
proving the optimality of the second incumbent. Table 3 helps to understand why the
second Model D1 iteration was infeasible. It states the total task durations for each task
(Dt = Y nent N - D ) as well as the values of earliest and latest stations (Scholl
and Becker 2006) for each task after each incumbent is found (ES;., LS;.). These
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values are computed using the cycle time value ¢ equal to that of each incumbent minus
one (CT —1).

Earliest and Latest Station for Each Task

Task: |1 2 3 4 5 6 7 8 9

c=CT -1 D, 1 4 4 5 4 5 4 2 4
13 ES;. |1 1 1 1 2 2 2 2 2
LS;. |1 1 2 2 2 3 3 3 3

1 ES,.|1 1 1 1 2 2 2 3 3
LS. |1 1 1 1 2 3 3 3 3

Table 3.: Illustrative example of earliest and latest stations after each incumbent

Table 3 reports that after the second incumbent is found, the first four tasks must be
assigned to the first station (ES; .=LS; .=1). However, the sum of their processing times
(Table 2) is 14, which is higher than the current incumbent cycle time (CT = 12). Hence,
Constraint 16 will be necessarily violated, leading to the aforementioned infeasible status
for Model D1’s second iteration.

6. Results

In order to verify how the proposed iterative decomposition compares to the proposed
monolithic model, tests were performed on a 700-instance dataset. The dataset is based
on Otto, Otto, and Scholl (2013)’s SALBP instances. Lopes et al. (2018b) combined
single model instances of the same size to generate a set of mixed-model instances.
This data set was extended by incorporating larger instances from Otto, Otto, and
Scholl (2013). In total, there are 350 task properties data vectors (processing times, and
precedence relations) half of which have 20 tasks and the other half 50 tasks. These data
vectors can be further classified in regard to Order Strength (OS), a number between 0
and 1 that reflects how restricted task assignment is by the precedence relations (Scholl
1999). Each instance was tested with a fixed number of stations (10 for smaller cases,
and 15 for the larger ones) and two numbers of buffers to be allocated (2 and 4 for the
smaller cases, and 4 and 6 for the larger ones). All instances have five product models
and the minimal part set was considered as one unit of each product model. Instance
data is made available by the paper’s supporting information.

Each of the 700 instances was solved with both the monolithic model (Mono) and the
proposed iterative decomposition (Dec) with a time limit of 1800 seconds. All executions
employed the same hardware and software conditions: Gurobi 7.5 was used to solve the
models using a Core i7-3770 CPU (3.4GHz) and 16 GB RAM. The best solutions found
by both methods are made available by the paper’s supporting information. Table 4
summarizes the upper bound results of the executions by comparing answers of Mono
and Dec. In Table 4, N indicates the number of instances with the respective parameters
(size, number of buffers and OS). Section 6.1 presents information on lower bounds and
integrality gaps. The solutions found by Dec and Mono were compared in regard to the
goal function (cycle time) for each instance: When only one of the methods found a
best solution for a specific instance, that solution counts as an exclusive best solution.
The column Nbest reports the number of best solutions found by each method, and
the number of exclusive best ones is reported in parenthesis. Similarly, the number of
optimal answers is reported under the Nopt column. Dec often found the optimal answer
(same cycle time as the optimal one by Mono), but could not prove its optimality. The
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number of instances in which each method was able to prove on its own the optimality
of the answer it found is reported in parenthesis under the Nopt column.

Dataset Nbest(exclusive) Nopt(proven) CTrrono - CTpee  (T.U.)

Size Buffers OS N Dec Mono Dec Mono | Min. Avg. Max.
02 75 | 68(55) 20(7) | 10(5) 13(13) | -55 26.8 97
Sumall 2 0.6 75| 65(34) 41(10) | 20(0) 23(23) | -27 15.2 92
T20 0.9 25| 25(00) 25(0) | 25(2) 25(25) 0 0 0
SI=10 02 75 | 62(43) 32(13) | 13(d) 15(15) | -42 14.0 67
4 0.6 75| 69(28)  47(6) | 39(16) 41(41) | -11 13.9 93
09 25| 25(0) 25(0) | 25(17) 25(25) 0 0 0

02 75 | 75(75)  0(0) 0(0) 0(0) 31 116.0 263

Large 4 0.6 75 | 75(75)  0(0) 0(0) 0(0) 9 106.4 256

|50 09 25| 24(23) 2(1) 0(0) 0(0) -35 55.0 150

SI=15 02 75 | 74(74) 1)) 0(0) 0(0) 1 109.8 233

6 0.6 75 | 7T1(70)  5(4) 0(0) 0(0) -36 91.2 214

09 25| 22(19)  6(3) 0(0)  0(0) 29 23.3 128

Table 4.: Results Summary - comparisons between Decomposition and Monolithical
model

The combined balancing, cyclical scheduling, and buffer allocation problem is com-
plex and hard to define lower bounds for. Hence, it is expected that only small very
restrictive instances (high ordering strength) will be solved to optimality. Indeed, all
small-size instances with high OS (0.9) were solved to optimality, but only a minority of
instances with low OS (0.2), and none of the large instances. By comparing cycle time
upper bounds, one can verify that the decomposition produced better answers in more
instances than the monolithic model: In all problem sets, the decomposition found more
or at least as many best answers as the monolithic model. In fact, the only sets in which
they tied were the small ones with high OS. In all other sets (low and medium OS),
the decomposition produced more best answers, both total and exclusive ones, than the
monolithic model. In 70.9% (496/700) of instances, the decomposition outperformed
the monolithic model, and the reverse only happened in 6.5% (45/700) of instances.

Furthermore, Table 4 presents the differences in cycle time of the best solutions ob-
tained by the decomposition and the model: maximum, average, and minimum. Positive
differences indicate that the decomposition obtained a better answer. It is clear that in
larger and less restrictive instances, the decomposition produced more substantial differ-
ences. Notice that in some cases the monolithic model did outperform the decomposition
by a significant margin, but those were the exception: both the average differences and
the number of best solutions found indicate the superiority of the decomposition.

A drawback of the decomposition is the systematic lack of lower bounds and the
consequent difficulty in proving optimality of its solutions. For instance, in the smaller
dataset, while the number of optimal solutions found was similar, only in a minority of
cases did the decomposition proved on its own the optimality of its solutions and most
of these cases had high OS. Section 6.1 further explores these lower bound questions.

Table 4 also presents an interesting behavior regarding buffers: in the small dataset,
more instances with a higher number of buffers were solved to optimality by both the
monolithic model and the decomposition. This is likely tied to the fact that more buffers
enable lower cycle times, due to the decrease of blockages and starvations they allow.
With a lower incumbent cycle time, performance constraints (Inequalities 7 and 16) can
more easily discard parts of the search space. This suggests that with larger numbers
of buffers, the highest sum of processing times becomes a better approximation of the
realized cycle time. In other words: the naive lower bound on cycle time approaches the
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optimal value of cycle time when more buffers are added.

It has been repeatedly stated that combining the degrees of liberty provides better
answers (Boysen, Fliedner, and Scholl 2008; Lopes et al. 2018b). However, doing so
explicitly and in a single mathematical model might lead to computational difficulties
and intractability, in particular for larger instances. In that regard, the proposed itera-
tive decomposition combines these degrees of freedom by iteratively transforming part
of the decision variables in parameters. This results in more easily tractable mathe-
matical models, which have led to better performance: when instances are large and
have a less restricted search-space, the decomposition generated better answers than
the monolithic model. For small and very restricted instances, the decomposition still
found many optimal solutions, even though it had significant difficulties to prove their
optimality.

6.1. Sequential Procedure, Lower Bounds, and Integrality Gaps

In order to evaluate how well the proposed decomposition and monolithic model com-
bine these degrees of liberty, a sequential method was also implemented and executed
with the same hardware and software conditions. This method (hereafter abbreviated
as ‘Seq’) consisted of a two-stage process: First, a virtual single model assembly line bal-
ancing problem is solved. This model, seeks to minimize the LBCT variable, bounded
by the Inequality 18. The only other constraints are the occurrence (Inequality 2) and
precedence relations (Inequality 3). The best answer obtained within the time limit (900
seconds) is then solved by the Model D2 to provide the optimal sequencing and buffer
allocation solutions. This sequential approach mimics the procedure described by Sawik
(2004) and employs the same virtual model definition used by Battini et al. (2009).

LBCT > > > Np-Diym-ms Vs eS (18)

teT meM

It is easy to show that a lower bound to LBCT is a lower bound to the cycle time
(CT) of the original problem: if each station operates at 100% efficiency, each MPS will
take at least the total processing time assigned to the most loaded station (Inequality 18)
to flow through the line in the steady-state. Hence the MPS-wise cycle time is higher
or equal to LBCT. Thus, if LBCT is higher than the lower bound obtained by the
monolithic model, its value can be used as a lower bound of the original problem. If the
optimal LBCT value is unknown, then the best bound obtained by the virtual single
model is employed for the comparisons. This allows integer gaps to be calculated for the
Sequential, the Decomposition and the Monolithic best answers. The average integer
gaps are presented by Table 5. Notice that the average Dec gap (5.3%) is 19% smaller
than the average Mono gap (6.6%) and 68% smaller than the average Seq gap (16.9%).
These gaps tend to be smaller for instances with more buffers: For instance, the average
gap for large instances with six buffers is lower than that of the same instances with
four for all values of ordering strength. This might be explained by the fact that more
buffers allow better cyclical schedules and the assumption that lower bounds might not
change much, since they are very difficult to compute even without taking the buffer
information into account. Furthermore, instances with higher ordering strength tend to
have smaller gaps. This is explained by the smaller search field, which makes finding
better solutions and bounds easier.

Table 5 also presents lower bound comparisons between the monolithic model and
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Dataset Integrality Gaps LB comparisons | Gap Best — LBCT
Size Buffers OS N Seq Dec Mono Rate Nimp. All Optimal
0.2 75 | 20.1% 5.7% 6.6% 99.2% 30 7.6% 7.8%
Small 2 0.6 75 | 18.4% 3.9% 4.4% 97.0% 18 7.6% 6.8%
T|=20 0.9 25 | 15.0% 0.0% 0.0% 92.3% 0 7.7% 7.7%
1S|=10 0.2 75 | 13.2% 3.0% 3.5% 99.4% 24 4.1% 2.4%
4 0.6 75 | 11.7% 1.5% 2.0% 98.4% 23 3.8% 3.7%
09 25 8.0% 0.0% 0.0% 96.7% 0 3.3% 3.3%
0.2 75 | 222% 8.8% 11.3% | 100.2% 62 8.8% -
Large 4 0.6 75 | 206% 8.7% 10.9% | 100.6% 66 8.7% -
IT|=50 09 25| 148% 6.8% 8.0% 101.0% 17 7.0% -
IS|=15 0.2 75 | 18.0% 7.1% 9.5% 100.1% 61 7.1% -
6 0.6 75 | 16.9% 7.1% 9.1% 100.5% 66 71% -
0.9 25| 114% 4.5% 5.1% 100.7% 14 4.7% -
Average/Total 16.9% 5.3%  6.6% 99.2% 381 6.7% 5.0%

Table 5.: Average integrality gaps and lower bounds

LBCT. The ‘Rate’ column presents the rate between LBCT and the lower bound
obtained by the monolithic model: values lower than 100% indicate that the monolithic
model provided better bounds in average. Notice that for small instances, in average,
the monolithic model provided better lower bounds and that the reverse happened for
the larger instances. Column ‘Nyy;, " indicates the number of instances in which LBCT
was higher than the bound provided by the monolithic model. Notice that this was the
case for the majority of Large instances, however the difference was relatively small. For
a minority of small instances, the sequential approach improved lower bounds.

Lastly, Table 5 presents a gap between the best upper bound (usually found by the
proposed decomposition) and the LBCT lower bound. This rate is computed by dividing
the difference between LBCT and the CT for the best method by LBCT. The ‘All’
column presents the average difference across all instances and the ‘Optimal’ column
presents the average across the instances solved to optimality. Notice that the values
in these columns are similar for small instances, suggesting that gaps to the optimal
solutions are smaller than reported by the Integrality Gap columns: Instances that were
solved to optimality presented average gaps to LBCT comparable in magnitude to those
that were not. This suggests that the monolithic model and the proposed decomposition
might have more difficulty in providing good lower bounds than in providing good
solutions. This is expected, lower bounds for the BCSB-P tend to be difficult to establish
due to both the combination of the three degrees of freedom and the difficulties in
performance measure.

6.2. Influence of Optimality Cuts

In order to measure the influence of the Optimality Cuts (Inequality 16 and Equation 17)
on the method’s performance, the following tests were conducted: For a fifth of BCSB-
P instances in each dataset (140 out of 700 total), 25 randomly generated sequences
were supplied to model D1. For each product sequence, the model was executed twice,
once with and once without the Optimality Cuts (7000 total Model D1 instances). Each
Model D1 instance was solved with a time limit of 60 seconds, the same one employed
by the decomposition step. The solutions obtained with and without the Optimality
Cuts were compared both in terms of solution quality (cycle time) and solution time.
The percentage of instances with different values (reductions and increases) of cycle
time and solution time is reported by Table 6. Instances in which solution quality and
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time were better with the Cuts than without them are reported as reductions (Red.)
and when the contrary happened they are reported as increases (Inc.). The average
relative difference in those measures is also reported by Table 6. For multiple Model D1
instances, the difference in C'T" between solutions was only 1 time unit (less than 0.05%)
of one another. In order to restrict the analysis to more substantial differences, these
were considered as ties for the purpose of counting. Similarly, time comparisons are
considered ties when optimality is not reached neither with or without the optimality
cuts.

Instances C'T Differences Time Differences

Size  OS | Nb. Red. Nb. Inc. Avg. Red. | Nb. Red. Nb. Inc  Avg. Red.
0.2 27.6% 11.3% 0.16% 87.5% 3.2% 44.4%

Small 0.6 32.8% 11.5% 0.26% 92.8% 2.2% 50.9%

0.9 52.0% 18.8% 1.2% 98% 2% 47.7%

0.2 63.7% 3.2% 0.66% 0% 0% 0%
Large 0.6 55.2% 4.4% 0.59% 0% 0% 0%

0.9 72.4% 16.8% 0.44% 98.8% 0% 73.5%

Table 6.: Influences of Optimality Cuts: Cycle Time and Solution Time comparisons

For both instance sizes and all values of OS, the number of instances with CT reduc-
tions was more than double the number of instances with increases. A large number of
these instances was solved to optimality, meaning that comparing the time required to
do so can be relevant. In small instances (with low, medium, and high OS), as well as
large ones with high OS, the majority of iterations were solved significantly faster when
the optimality cuts are employed. For small instances, this time reduction was near
50%, while for large ones reductions only occurred for high OS, averaging 73.5%. This
means that more iterations can be performed within the time limit, as more cyclical
product sequences and buffer allocations are fully tested. Large instances with low and
medium OS displayed too broad search fields so that none of their model D1 instances
were solved to optimality. This means that time comparisons were not possible in these
datasets, as all instances tied at the time limit. However, in the majority of executions
on these instances, the optimality cuts led to better solutions (63.7% and 55.2%, as
indicated by column Nb. Red.), averaging around 0.5% reductions in cycle time. There-
fore, Table 6 shows that, for most instances, the optimality cuts lead to better average
performance both in terms of the goal function (cycle time minimization) and in terms
of time required to solve Model D1 instances.

7. Conclusions

Optimizing throughput of mixed-model asynchronous lines requires the solution of three
optimization problems: balancing the task distribution, sequencing product models, and
allocating buffers (internal storage). While many works have focused on each of these
problems, and on some combinations of them, none thus far had explicitly combined all
three degrees of freedom. This paper expands a cyclical formulation capable of measuring
steady-state performance of said lines when cyclical sequencing and buffer allocation are
parameters, and allows these to be decision variables.

A new mixed-integer linear programming model is presented to describe and optimize
the simultaneous Balancing, Cyclical Sequencing and Buffer allocation asynchronous
assembly line Problem (BCSB-P). These three degrees of freedom have not been pre-
viously combined in the literature. However, by comparing the proposed monolithic
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model to a sequential procedure (which mimics previous literature methods), tests on a
700-instance dataset show that combining the degrees of freedom is very important to
achieve good answers: the average integer gap of the solutions obtained by the mono-
lithic model is 60% smaller than those of the sequential approach (Table 5). However,
the combined problem is computationally challenging.

Based on this computational difficulty, an iterative decomposition procedure is
also presented to obtain better answers than the proposed monolithic model (Fig-
ures 3 and 4). Two mathematical models operate alternatively: a balancing model in
which product sequence and buffer layouts are parameters, and a sequencing and buffer
allocation model in which processing times (balancing) are parameters. These models
are based on the monolithic model (Defined by Expressions 1 to 13): they retain part of
the original decision variables and change the others to parameters. Optimality cuts are
also incorporated by the decomposition (Expressions 16 and 17) and are shown to lead
to better solution quality and time at the method’s iterations (Table 6). The proposed
decomposition outperforms the monolithic model in the production of upper bounds for
the problem. The average integrality gap of solutions obtained by the proposed decom-
position is 19% smaller than those of the monolithic model (Table 4). This difference
is more significant for large instances and tends to be stronger for less restricted cases.
Although the decomposition’s focus is to generate good solutions rather than optimality
proof, it does have the capacity to do so.

The combination of the degrees of freedom makes the attainment of strong lower
bounds a challenge: in most large instances, the bounds obtained by the monolithic
model were weaker than the lower-bound provided by the virtual single model balancing
problem. Stronger lower bounds are, therefore, a direction for further works, which
can also include the explicit combination of the degrees of freedom to other problem
variants such as paced assembly lines, flexible flow-shops, parallel discrete stations, or
U-Shaped lines. Further works should also apply and adapt the proposed method to
larger problems, in particular in regard to sequencing and buffer allocation.
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