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We present a new approach for decentralized coordination in light of asymmetric information. 

The basic idea is to perform an iterative exchange of primal information, like proposals for 

purchase and supply quantities, in order to identify improvements over an initial, uncoordinated 

solution. Unlike most existing approaches, it will coordinate decisions of two or more 

decentralized parties, provided that the decision problems can be modeled and solved as linear or 

mixed-integer programs, while it does not require a central decision-making entity. We present a 

coordination scheme that identifies the system-wide optimum in a finite number of iterations, 

provided that all but one decentralized party report their cost changes incurred by new proposals 

and that the models of these parties can be formulated as linear programs, while the model of the 

remaining party may be of a mixed-integer type. In computational tests, we find that 20 iterations 

are sufficient to obtain considerable improvements over initial master plans in supply chains 

consisting of one buyer and one or multiple suppliers. Moreover, we show that the information 

exchange can be embedded into a strategy-proof mechanism, for which a lower bound on the 

efficiency can be derived. 

 

1.  Introduction 

In decentralized organizations, decision markers are often misled due to double marginalization, a phe-

nomenon that has already been recognized by Spengler (1950). Myopically optimizing their own profits, 

decentralized parties determine an allocation of interdependent or central resources that may be subopti-

mal for the whole system. Depending on the degree of this suboptimality, there is a need for the estab-

lishment of coordination mechanisms, which induce the decentralized parties to implement actions that 

result in system-wide gains. One such approach is revealing private information to enable a central entity 
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to determine an improved allocation of the central resources (see, e.g., Harris et al. 1982 and the example 

of Shirodkar and Kempf 2006). 

However, decision makers frequently do not accept sharing of relevant data. Some private data (especially 

capacities and absolute cost figures) may be regarded sensitive because they constitute a strategic advan-

tage for bargaining, which is lost after revelation. Hence, most of the recent studies assume that decisions 

are only made by decentralized parties and focus on the development of incentive schemes that align the 

decentralized objectives with the system-wide objective (e.g., Baldenius et al. 1999 and Chen et al. 2001). 

This paper also aims at improving decentralized decision-making without the involvement of a central 

entity. Additional assumptions are that data are deterministic, decentralized information is private, and 

that decision problems can be modeled as linear programs (LP) or mixed-integer programs (MIP). For this 

general setting, we propose a coordination mechanism that implies an iterative disclosure of primal, in-

sensitive information guided by a coordination scheme (also abbreviated by “scheme” in the following), 

i.e., a set of rules that specify the information disclosed and the sequence of its exchange. With this addi-

tional primal information, the decentralized parties are able to generate and to identify an improvement (if 

one exists) over an initial solution. A new solution incurs a reallocation of the central resources (e.g., 

supply quantities). Hence, the mechanism must cope with two interdependent problems simultaneously: 

the generation and identification of an improved solution as well as the establishment of incentives for 

truthful information exchange. 

The scheme presented here requires an iterative exchange of proposals regarding the use of the central 

resources and – for all but one decentralized party – the associated cost changes compared to the uncoor-

dinated central resource allocation. The proposals are generated by mathematical programming models. 

The basic idea is to identify proposals that allow for considerable reductions in system-wide costs and at 

the same time address regions of the solution space that have not been examined in previous iterations. 

The system-wide optimum is found within a finite number of iterations if the optimization models of all 

but one decentralized party can be formulated as LP. In addition, we propose a modified version of this 
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scheme, which allows for discrete decisions in the models of the decentralized parties and shows im-

proved convergence in general. Computational tests for the coordination of master plans in supply chains 

of one buyer and one or multiple suppliers result in considerable reductions of the system-wide costs after 

only 20 iterations.  

Furthermore, in order to ensure truthful reporting of cost changes, we propose a strategy-proof, individu-

ally rational, and budget-balanced mechanism. This mechanism implies that one party receives the total 

surplus from coordination and pays previously fixed lump sums to the others. We assume that each cost-

reporting party has prior, incomplete knowledge about the marginal surplus, i.e., the increase of the sys-

tem-wide surplus that results from this party’s participation in coordination. If the cost-reporting parties 

are risk-neutral and their prior knowledge is uniformly distributed, at least 3/4 of the marginal surpluses 

can be realized on average.  

In summary, the assumptions of our approach fit for a setting that has been identified by Stadtler (2007) 

in the context of collaborative supply chain planning as an existing gap in research: coordination of de-

centralized organizations of an arbitrary number of self-interested parties (e.g., a buyer-supplier or an n-

tier supply chain) that hold and keep private information and rely on complex LP or MIP for their opera-

tional planning. This includes, for example, the alignment of different functional objectives in an intra-

organizational supply chain (e.g., Karabuk and Wu 2002) as well as the coordination of material flows 

across legally separated companies in an inter-organizational supply chain with conflicting objectives 

(like a supply chain consisting of a manufacturer and a distributor, which is a fundamental issue that has 

not been addressed in the literature, e.g., Chen 2004). 

The remainder of this paper is organized as follows: §2 reviews the relevant literature and points out some 

principal drawbacks of the exchange of dual information for coordination purposes. In §3 we describe the 

scheme and its convergence behavior. §4 presents a modified version of the scheme, which shows im-

proved convergence and is applicable for multiple, decentralized MIP. The mechanism is outlined in §5. 
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In §6 we show how to customize the scheme to coordinate master plans in supply chains and provide the 

results of computational tests. §7 concludes the paper. 

2.  Literature Review 

Coordination mechanisms in the form of contracts have been dealt with extensively in the literature (see 

Cachon 2003 and Tsay 1998 for detailed reviews). Frequent assumptions are demand uncertainty and 

symmetric information. Papers that consider asymmetric information include Schenk-Mathes (1995), 

Corbett and de Groote (2000), Cachon and Lariviere (2001), Corbett et al. (2004), Cachon and Zhang 

(2006), Özer and Wei (2006), and Taylor (2006). In contrast to the setting analyzed here, all of these pa-

pers focus on one-sided information asymmetry, rely on analytic decision models, and consider few un-

certain or unknown parameters. 

Other papers explicitly address the coordination of parties that employ mathematical programming mod-

els for decision-making. An elegant method is the application of classical decomposition techniques (see 

Dantzig and Wolfe 1960 and Benders 1962) or their modifications. This idea has a long tradition, begin-

ning with Dantzig and Wolfe when they interpreted their decomposition procedure as decentralized deci-

sion-making. More recently, Karabuk and Wu (2002) addressed the intrafirm coordination of capacity 

planning in the semiconductor industry with demand and capacity uncertainty and applied an Augmented 

Lagrangian procedure. Arikapunam and Veeramani (2004) proposed a coordination scheme based on the 

L-shaped method. Ertogral and Wu (2000) and Walther, Schmid, and Spengler (2007) rely on subgradient 

procedures. All of these papers (implicitly) assume truthful exchange of information. Self-interested be-

havior (including potential incentives for distorted information exchange) has been taken into account by 

Kutanoglu and Wu (1999), Fan et al. (2003), and Guo et al. (2007). In line with Dantzig-Wolfe decompo-

sition, they propose that the decentralized parties submit bids for the use of the central resources, while a 

central entity determines the market-clearing prices. The applicability of these mechanisms in decentral-

ized environments, however, is limited due to the need for a trusted third party and a large number of 
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participants (e.g., in Fan et al. 2003, incentive compatibility can only be achieved if the number of par-

ticipants approaches infinity).  

Exchange of dual information is essential for approaches based on classical decomposition techniques. 

However, we argue that limiting the exchange to primal information is preferable for coordination pur-

poses in our setting. If dual information is generated by decentralized models (e.g., Benders decomposi-

tion) and if these models contain integer variables, some difficulties arise. Early research has shown that 

for integer programming models, appropriate dual functions can be identified (Wolsey 1981). In contrast 

to dual prices of linear programming, these dual functions involve a large amount of data, which, depend-

ing on the algorithm used for their generation, may increase exponentially with the problem size. The 

disclosure of large amounts of data, however, may not be accepted by decision makers if they want to 

ensure that their private data will not be reconstructed by other parties (e.g., using inverse optimization, 

see Troutt et al. 2006). Apart from that, the computational effort for the identification of dual functions is 

considerable (e.g., Guzelsoy and Ralphs 2007). Alternatively, dual prices can be generated by a master 

problem and then be communicated to the decentralized parties (e.g., Dantzig-Wolfe decomposition). In 

this case, however, dual prices are not an effective guidance toward a system-wide improvement if duality 

gaps are large. Finally, we believe that the exchange of primal information has generally a better chance 

of acceptance in practice because decision makers understand clearly which information they actually 

disclose. In contrast, not all managers have an understanding of what dual information signifies.  

Few papers have addressed the coordination of mathematical programming problems without the ex-

change of dual information. Schneeweiss and Zimmer (2004) proposed the use of hierarchical anticipa-

tion. In Fink (2005), a mediator generates proposals that decentralized parties accept or reject. Both ap-

proaches rely on strong assumptions about information availability (the possibility of estimating the fol-

lower’s cost parameters, and the existence of a mediator knowing decentralized restrictions, respectively). 

In addition, the incentive compatibility of these approaches has not been shown. The papers most related 

to ours are those of Dudek and Stadtler (2005, 2007), which devise coordination schemes for interde-
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pendent lot-sizing problems. Our research shares the idea of an iterative exchange of supply proposals 

with these papers, but differs on two important points. First, our scheme converges in a finite number of 

iterations for a general class of optimization problems, whereas Dudek and Stadtler only showed im-

provements by computational tests for their capacitated lot-sizing problems. Second, our approach is not 

limited to a team setting with frank disclosure of information. 

3. Decision Problem and Coordination Scheme 

Consider an optimization problem with a block-angular structure: 

 
∑
=

=
I

i
i

T
iC xcZ

1
min  

 

(C) s.t. 0
1

bxA
I

i
ii ≤∑

=

 (1) 

  IibxB iii ,...,1    =∀≤   

  IiXx ii ,...,1      =∀∈ .  

P={1,…,I} is the set of decentralized parties i. ion
iA   ×∈ and ii om

iB   ×∈ are rational matrices, io
ic ∈ , 

im
ib ∈ , and nb ∈0  are real vectors. The components of vectors io

ix ∈  are nonnegative decision 

variables that may be restricted to binary or integer values. After skipping the joint constraint (1), (C) 

decomposes into I decentralized problems (DPi). We assume that (C) has a feasible solution. In case each 

party i implements the optimal solution of (DPi) without regard to the actions of the others, this mostly 

will result in excess use of the central resource b0 and infeasibility of the whole system. To overcome this 

problem, it is common practice to rely on simple rules that determine a feasible but often suboptimal solu-

tion. Examples include solving the decentralized problems in a given sequence (e.g., in a supply chain, 

often the upstream parties determine the supply quantities) or allocating the central resources according to 

a prespecified scheme. (Note that for implementing both these rules and the scheme proposed below, b0 

has to be publicly known. This is often a natural assumption; for the coordination of the material flow in 
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supply chains, b0=0 holds because the quantities of the items delivered by the supplier have to be equal to 

the quantities received by the buyer.) In the following, we assume that an initial central resource alloca-

tion has been determined and devise a scheme that identifies the system-wide optimum if all but one de-

centralized party utilize LP for generating their decentralized plans. 

The scheme specifies a sequential generation of proposals regarding the use of the central resources by 

parties 1,…,I-1. The associated cost changes are reported unilaterally, i.e., parties 1,…,I-1 report to party 

I both the cost changes of their own proposals compared to the initial solution as well as those resulting 

from a potential implementation of the proposals generated by I. Other decentralized data are kept private. 

In light of the almost complete information asymmetry, the key feature of the scheme is the search strat-

egy for promising new proposals. We consider a proposal as promising if it shows a potential for system-

wide cost savings and addresses regions of the solution space that have not been investigated in previous 

iterations of the scheme. Using model (CS1i), each party i=1,…,I-1 can generate proposals with these 

characteristics. 

  ( ) ( )i
st
ii

T
ii

st
i

T
iCS xxAkxxcZ

i
−+−=1max  (2) 

(CS1i) s.t. ( ) ( ) i
st
i

e
i

T
i

st
i

e
ii

T
i ee xxcxxAk ,...,1   =∀−−≥−  (3) 

  ii Mk ≤  (4) 

    iii bxB ≤  (5) 

       ii Xx ∈  (6) 

  0≥ik . (7) 

This model aims at maximizing the potential savings of a solution xi compared to a fixed starting solu-

tion st
ix  (note that the constant st

i
T
i xc  is included for ease of exposition in (2)) and assigns penalties and 

bonuses for changes in the use of the central resources. Variables n
ik ∈  are endogenous prices for these 

changes. They are determined by constraints (3) such that 01 ≤
iCSZ  with the repetition of a previous solu-
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tion E
i

e
i Xx ∈ . E

iX  is the set of existing solutions for party i, including the initial solution and those iden-

tified in previous iterations of the scheme. The number of elements of E
iX is denoted by ie . In order to 

avoid unboundedness, constraint (4) establishes an upper bound for ki. Mi is a vector made up of big num-

bers that exceed marginal cost savings resulting from increases in central resource use (i.e., 

( ) ( )2121
ii

T
iiii

T
i xxcxxAM −−>−  must hold for any two feasible solution vectors 1

ix  and 2
ix ). Constraints (5) 

and (6) ensure the compliance of the decentralized restrictions of i. Finally, (7) is a non-negativity con-

straint. 

After solving (CS1i), the new supply proposal iii xA=π  together with ( )init
ii

T
ii xxc −=χ , the associated 

cost change compared to init
ix , are communicated to party I. init

ix  is the initial solution and is determined 

based on the initial resource allocation init
iπ and a further model (CS-EVALi) described below. 

With a fixed, feasible value for ki, (CS1i) corresponds to the subproblem of Dantzig-Wolfe decomposi-

tion. The fact that ki is determined endogenously in (CS1i) and not supplied by a master problem is the 

crucial point that allows us to limit the exchange to primal information. Lemma 1 makes this relationship 

explicit. It shows that the outcome of (CS1i) is a feasible vertex solution to (DPi), provided that the costs 

of the starting solution st
ix do not exceed the costs of a convex combination of previous solutions with 

central resource use equal to or smaller than that of st
ix . Define V

iX  as the set of vertex solutions to (DPi). 

All proofs have been relegated to the Appendix. 

LEMMA 1. Let (DPi) only comprise continuous variables. Then: 

1. There is a feasible solution to (CS1i) if ∑
=

≤
ie

e

e
iie

T
i

st
i

T
i xcxc

1
λ  for all scalars 0≥ieλ  (e=1,…, ie ) 

with ∑
=

≥
ie

e

e
iiei

st
ii xAxA

1
λ  and ∑

=

=
ie

e
ie

1
1λ . 

2. For *
ix , the optimal solution to (CS1i), V

ii Xx ∈* holds. 
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Party I runs a different model, (CS2I). This model minimizes both the costs of party I and a convex com-

bination (determined by variables λie through (10) and (11)) of the other parties’ costs of previous propos-

als e
iπ (8), while securing that the parties’ use of the central resources – including that of party I – does not 

exceed the availability b0 (9).  

 ∑∑
−

= =

+=
1

1 1
2min

I

i

e

e

e
iieI

T
ICS

i

I
xcZ χλ  (8) 

(CS2I) s.t. 0

1

1 1
bxA

I

i

e

e

e
iieII

i

≤+∑∑
−

= =

πλ  (9) 

  1,...,1      1
1

−=∀=∑
=

Ii 
ie

e
ieλ                      (10) 

  iie eeIi ,...,1 ,1,...,1     0 =−=∀≥λ  (11) 

  (5), (6).  

Note that in (5) and (6), i is set to I here. (CS2I) yields ∑
=

=
ie

e

e
iiei

1
πλπ , the new proposals for the use of the 

central resources by parties i =1,…,I-1, which are communicated to these parties then. (CS2I) is closely 

related to the master problem of Dantzig-Wolfe decomposition. However, the decentralized decisions for 

party I and the allocation of the central resources are determined simultaneously in (CS2I). Note that this 

transformation is a general means of making ideas from classical decomposition techniques applicable for 

decentralized coordination without a central entity.  

Finally, we state the third model used by parties i=1,…,I-1 to evaluate party I’s last proposals iπ . 

  
i

T
i xcmin   

(CS-EVALi) s.t. iii xA π≤   

  (5), (6).  
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Relevant outcomes of this model are ( )init
ii

T
ii xxc −=χ , the cost change for party i due to a potential im-

plementation of iπ , which is communicated to I then, and the solution xi, that is used as the starting solu-

tion for the next application of (CS1i). Below, we summarize the single steps of the scheme and state the 

main result of this section. 

Algorithm 1: Coordination scheme 

• Initialization: For all parties i=1,…,I-1: Solve (CS-EVALi) with init
ii ππ =  

• Iterations: Repeat 

o ∀ i=1,…,I-1: Solve (CS1i) with st
ix as the last outcome of (CS-EVALi) and communicate 

iπ and iχ to I  

o I: Solve (CS2I) and communicate iπ separately to i=1,…,I-1 

o ∀ i=1,…,I-1: Solve (CS-EVALi) with iπ as the last proposal by I and communicate iχ to I 

Until iZ
iCS ∀≤   01 =1,…,I-1 and 

ICSZ 2  has not been improved compared to the last run of (CS2I). 

THEOREM 1. Following the scheme, the optimal solution to (C) can be identified within a finite number 

of iterations if the decision problems of the cost-reporting parties can be formulated as LP.  

Theorem 1 is the first to show that coordination can be guaranteed by an exchange of only primal infor-

mation. To achieve this, the interaction of a third party is not needed. Last but not least, finite conver-

gence can even be achieved with discrete decisions for one decentralized party.  

4. Extending the Applicability and Accelerating the Scheme 

In this section, we propose some modifications to accelerate the convergence rate and to extend the 

scheme for settings with multiple parties running MIP. First, (CS1i) is modified to (CS1’i).  

 ( ) ( ) i
T
ii

st
i

T
iCS dkxxcZ

i
ε+−−='1max  (12) 

(CS1’i) s.t. i
st
iiii dxAxA +≤  (13) 
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  ( ) ( )( ) i
st
i

e
i

T
i

st
i

e
ii

T
i ee xxcxxAk ,...,1   =∀−−≥−

+
 (14) 

  0≥id  (15) 

  (5)-(7).  

We have introduced new variables n
id ∈ depicting increments of the central resource use (13). As a 

consequence, only penalties, but no bonuses, are imputed in the second term of (12). Hence, (CS1’i) will 

only generate proposals with cost savings of party i compared to st
ix , which increases the probability for 

the identification of a system-wide improvement and thus tends to accelerate the convergence rate. The 

arbitrarily small penalty-cost factor ε helps to avoid exploring minor deviations that may occur if multiple 

optimal solutions to (CS1’i) exist. The use of (14) instead of (3) assures feasible solutions for ki, even if 

(DPi) is an MIP. (For MIP, (3) may become infeasible since the condition stated in 1. of Lemma 1 is not 

necessarily fulfilled there.) 

Second, party I runs (CS1’’I), a modification of (CS1’i), in case (CS2I) did not yield a new proposal.   

  ( ) ( ) I
T
II

st
I

T
ICS dkxxcZ

I
ε+−−=''1max   

(CS1’’I) s.t. ( ) ( )( ) i
e
i

st
i

T
i

st
I

e
II

T
I eeIi xxcxxAk ,...,1 ,1,...,1   =−=∀−−≥−

+
 (16) 

  ∑
=

≤+
I

i

best
i

T
iI

T
I xcxc

1
ε  (17) 

   (5)-(7), (13), (15).  

Again, i has to be replaced by I in (5)-(7), (13), and (15). Constraints (16) exploit the knowledge of party I 

about the cost changes previously reported by parties 1,…,I-1. Especially for multiple cost-reporting par-

ties, (16) permits a more accurate determination of the endogenous penalty costs than (14), since the cost 

changes of each single cost-reporting party can be considered.  Constraint (17) limits the search to pro-

posals with a potential for an improvement compared to best
ix , the best solution found so far. Analogously 

to parties i=1,…,I-1, I evaluates the proposals of i=1,…I-1 by (CS-EVALI) in each iteration. 
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Third, parties run models (CS1’i) and (CS1’’I) not only once, but successively with randomly cho-

sen E
i

st
i Xx ∈  until a new proposal with 0'1 >

iCSZ  or 0''1 >
iCSZ has been identified or all previous propos-

als have been tried. That way, different regions of the solution space are searched, which helps mitigating 

difficulties due to the non-convexity of (DPi) for MIP and thus constitutes a further advantage compared 

to the application of dual decomposition procedures in the setting considered by us.  

Fourth, except for the first iteration, (CS2I) is extended to (CS2’I) by allowing deviations from the convex 

combination of the other parties’ proposals at the expense of penalty costs (26).  

 ∑ ∑
−

= =
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

1

1 1
min

I

i

e

e

T
ii

e
iieI

T
I

i

cpdxc χλ  (25) 

(CS2’I) s.t. 0

1

1 1
bdxA

I

i
i

e

e

e
iieII

i

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+∑ ∑

−

= =

πλ  (26) 

  (5), (6), (10), (11), (13), (15). 

As above, i has to be replaced by I in (5), (6), (13), and (15). To roughly anticipate the other parties’ cost 

changes with deviations di, each element of vector n
icp ∈ , the unit penalty costs for changes in the cen-

tral resource use, is set to ( )( ) i
fst

i
init
i

T
i dpxxc − , with fst as a superindex denoting the first proposal gener-

ated by party i. dpi is set to ( )( )+
=∑ −

n

j
init
i

fst
iij xxA

1
if ( ) 0>− fst

i
init
i

T
i xxc , and to ( )( )−

=∑ −
n

j
init
i

fst
iij xxA

1
oth-

erwise, with j as the dimensions of central resource use. 

5. Coordination Mechanism  

In this section, we present a mechanism for use in combination with the scheme proposed. The mecha-

nism does not require the involvement of a third party and is strategy-proof, individually rational, and 

budget-balanced. A mechanism is individually rational and budget-balanced if parties will not incur any 

losses from participating and if the payments specified sum up to zero (see, e.g., Mas-Colell et al. 1995 

for more detailed explanations). While strategy-proofness, which means that truth-telling is a weakly 
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dominant strategy for parties (if they are required to reveal their valuations), is favorable for practical 

interfirm coordination, the two latter properties appear to be indispensable (e.g., Chu and Shen 2006).   

In the mechanism, we apply the following rule for sharing the surplus from coordination, i.e., the differ-

ence between the costs of the initial, uncoordinated solution and those of the solution determined by the 

scheme: if a coordinated solution is implemented, then the party I with knowledge about the other parties’ 

cost changes (we abbreviate this party by IP=”informed party” in the following) receives the total surplus 

from coordination and pays previously negotiated lump sums to parties 1,…,I-1 (RPi=”reporting party i”; 

we omit the index i when we address a two-party setting). Note that the fact that only the surplus is shared 

implies that parties incurring cost increases by the implementation of coordinated proposals are compen-

sated accordingly, which is necessary for the individual rationality of the mechanism.  

The parties’ actions within the mechanism can be divided into three steps: First, each RPi determines the 

lump sum Li, which he receives in case of successful coordination and informs the IP accordingly. Sec-

ond, parties exchange information along the lines of the scheme. The RPi decide in this step whether to 

report their cost changes truthfully. Third, the IP decides separately for each RPi whether to implement a 

coordinated solution and to pay Li or to implement the initial solution. Of course, the IP will prefer the 

coordinated solution if and only if the marginal surplus Si is greater than or equal to Li. In case of multiple 

RPi, the IP can model this decision by declaring variables initi,λ  as binary in (CS2I) and (CS2I’) and set-

ting init
iχ  to -Li in the objective functions of these models. 

For our analysis of the mechanism, we introduce the following assumptions: 

ASSUMPTION 1: The RPi have prior, incomplete knowledge about their marginal system-wide surpluses 

Si.  

This knowledge can be derived from the general experience of decision makers or be acquired by (Bayes-

ian) learning if coordination is undertaken repeatedly (e.g., once a month). We define Si as a random vari-

able with the probability density function fi(Si) over the interval [ai,bi].  
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ASSUMPTION 2: In the second step of the mechanism, parties’ expected marginal surpluses are maxi-

mized if parties implement the actions as specified by the scheme.  

First, this assumption requires that the scheme underlying the mechanism is the most efficient among all 

known schemes based on the exchange of primal information, which holds, up to our knowledge, for the 

scheme presented here. (Note here that we do not recommend schemes requiring the exchange of dual 

information for use with this mechanism. Dual information communicated to the RPi may enable them to 

estimate the cost changes of the IP in order to usurp additional shares of the marginal surpluses, such that 

strategy-proofness would get violated.) Second, we assume that an RPi cannot strategically affect the mar-

ginal surpluses of other RPi, since he cannot foresee the effects of his proposals on other RPi due to the 

privateness of decentralized data.  

ASSUMPTION 3: The information exchange required by the scheme does not violate individual rational-

ity of parties. 

Within supply chain management, an (iterative) exchange of demand forecasts is common practice, for 

example, in CPFR (e.g., Aviv 2001). Proposals about the central resource use (e.g., supply quantities) 

comprise comparable information. Hence, we argue that an exchange of a modest number of such propos-

als and the associated, aggregated cost-effects does not do harm to the party disclosing this information, 

as the exchange of production capacities might do (which practitioners often regard as sensitive informa-

tion, see, e.g., Kersten 2003). 

The mechanism is individually rational and budget-balanced. For evaluating strategy-proofness and effi-

ciency, we model parties’ actions by a multi-stage game. If a proposal of an RPi is accepted by the IP, the 

RPi’s gains comprise the lump sum and a potential markup li that is due to distorted cost reporting. Due to 

his information status (see Assumption 1), a rational RPi will choose equal markups for all proposals. 

Hence, the decision problem of an RPi in the second step of the mechanism is 

( ) ( )∫ ++
+i

iiiii

b

)(lslL iiiil
dSSflL max , with si(li) as the function that maps the expected reduction of Si with li. 
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By Assumption 2, si(li)≥0 holds, which means that the performance of the scheme is highest with truthful 

reporting. The RPi weakly prefers a lump-sum payment iii lLL ˆˆ += together with li=0 to any payment iL̂  

with any markup 0ˆ >il . That is, truth-telling is a weakly dominant strategy for the RPi, since he is al-

lowed to determine Li in the first step of the mechanism. 

*
iL , the optimal value for Li, can be determined analytically if the cumulated density function of Si has an 

increasing generalized failure rate, which holds for many of the commonly applied distributions (see 

Lariviere and Porteus 2001). Then *
iL is the maximum of ai and the solution to the first-order condition of 

the RPi’s decision model: ( ) ( ) 0=−∫ iii
b

L iii LfLdSSfi

i

. After some transformations, we get that 

{ }2,max*
iii baL =  if the RPi is risk-neutral and his prior knowledge about Si is uniformly distributed over 

the interval [ai,bi]. Provided that all RPi choose { }2,max*
iii baL = , ( ) ( )∫∫

i

i

i

i

b

a iiii
b

L iiii dSSfSdSSfS  

( )( ) ( )( ) 43283 2 ≥+−= iiiii ababb  of the marginal surpluses and, hence, at least a share of 

[ ] [ ]( )sys

Pi
i SESE 41 ∑

∈

−  of Ssys, the surplus for the whole system, can be realized. For a two-party setting, 

the sum of the marginal surpluses equals the surplus for the whole system. With three or more parties, the 

ratio between these surpluses depends on whether coordinated solutions of different RPi are complemen-

tary and on the RPis’ prior knowledge about that. Most frequent is the non-complementary case, which 

occurs, for example, if several RPi are competing for one central resource (see the appendix for an exam-

ple). Then, the system-wide surplus exceeds the sum of the marginal surpluses and more than 3/4Ssys can 

be obtained. We summarize our main results in Theorem 2. 

THEOREM 2. The scheme proposed can be embedded into an individually rational, strategy-proof, and 

budget-balanced mechanism that does not require the involvement of a third party. If parties’ prior 

knowledge about the marginal surpluses is uniformly distributed and the sum of the marginal surpluses is 
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smaller than or equal to the system-wide surplus, at least 3/4 of the system-wide surplus can be realized 

on average. 

Note that parties’ roles (IP, RPi) have to be determined before applying the mechanism. Considering a 

two-party supply chain, both roles have advantages. To obtain an indication about the allocation of the 

surplus realized by the mechanism, assume a uniform distribution for f(S) with a=0, which means that 

solutions with quite small improvements exist, too. An easy calculation shows that 2/3 of the surplus real-

ized are allocated to the RP then, which seems to favor the RP. However, there are reasons for the RP to 

claim smaller shares than anticipated by our model. First, the RP will do so if he is risk-averse. Second, 

experimental studies (e.g., Rapoport et al. 1998, Seale et al. 2001) indicate that parties (and especially the 

less informed ones, which holds for the RP here) tend to claim considerably smaller shares of the overall 

profit in sealed bid double auctions, a mechanism related to that proposed here. Third, settling for a 

smaller share strengthens long-term collaboration. This may induce the IP to put more effort into corre-

sponding coordination activities and result in future increases of the marginal surplus. It is important to 

note that the overall efficiency increases sharply if the RP claims less. If, for example, the share of the RP 

is 1/2 instead of 2/3, the real decrease in the RP’s profit from coordination will be only 1/9. The effi-

ciency of the mechanism, in turn, will rise from 3/4 to 8/9.  

Especially for supply chains with more than two parties, there is often a natural choice for the roles of IP 

and RPi. For example, if an OEM (original equipment manufacturer) uses the mechanism for coordination 

with his suppliers, the OEM will serve as the IP and his suppliers as the RPi. Finally, note that the choice 

of parties’ roles only affects the relative shares of the surpluses allocated; irrespectively of this choice, 

each party will obtain nonzero benefits if a coordinated solution (i.e., a solution incurring a different use 

of the central resources by this party compared to the initial solution) is implemented (except for the very 

special case that the marginal system-wide surplus exactly matches the lump sum required), which further 

favors the applicability of the mechanism proposed. 
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6. Customization to Master Planning and Computational Tests 

In order to evaluate the convergence behavior of the scheme, we consider a hypothetical application, the 

coordination of master plans among multiple units in a decentralized supply chain. Besides production 

quantities, decisions about inventory and overtime are essential for master planning (e.g., Billington et al. 

1983). In addition, we consider backorders because they are frequently used in practical modeling and 

reveal inefficiencies of uncoordinated solutions. The formulation of the centralized master planning 

model considered is given in the appendix. 

We consider a supply chain consisting of an OEM and multiple suppliers in a single-sourcing relation-

ship. The interdependencies between parties in the centralized model are covered by the inventory bal-

ance constraints for the supplied items JD. 

. 1,...,,      1 TtJjIXrXI D

JSk
jtktjkjtjt

B
j

=∈∀+=+ ∑
∩∈

−  (18) 

Ijt is the inventory and Xjt is the production amount of item j in period t. rjk is the number of units of item j 

required to produce one unit of the immediate successor item k, Sj is the set of immediate successors of 

item j in the bill of materials, and JB the set of items produced by the buyer. We apply the following re-

formulation to (18): 

,,...,1       1 Tt,JjIBXrXBIB D

JSk
jtktjkjtjt

B
j

=∈∀+=+ ∑
∩∈

−  (19) 

,,1,... 1 Tt,Jj      ISXSXIS D
jtjtjtjt =∈∀+=+−  (20) 

,1,..., Tt,Jj      IBISI D
jtjtjt =∈∀+=   

T,t,Jj    XSXB D
jtjt 1,..., =∈∀≥  (21) 

, 1,..., Tt,Jj     XSXB D
jtjt =∈∀≤  (22) 

.,...,1,   0,,, TtJjISIBXSXB D
jtjtjtjt =∈∀≥   
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IBjt and ISjt are inventories at the buyer’s and the suppliers’ sites of an item DJj∈  in period t.  XBjt is the 

amount of item j delivered to the buyer in period t, and XSjt the amounts delivered by the suppliers. (19) 

and (20) are inventory balance constraints for the decentralized models. Constraints (21) and (22) corre-

spond to the restriction of the central resource in (C) and link the decentralized models. With this decom-

position, models (CS-EVALi), (CS1’i), (CS1’’I), and (CS2’I) can be derived directly.  

To further speed up the convergence rate, a modification specific to supply chain planning is applied to 

(CS1’i) and (CS1’’I). In order to avoid a penalization of complementary changes in the supply pattern, we 

replace constraints (21) and (22) by  

,1,...,     
11

Tt,JjXSXB D
t

j

t

j =∈∀≥ ∑∑
== τ

τ
τ

τ  (23) 

.1,...,       
11

Tt,JjXSXB D
t

j

t

j =∈∀≤ ∑∑
== τ

τ
τ

τ   

(Note that a similar idea has been used by Dudek and Stadtler (2005) in their scheme.) Thereby, con-

straints (23) are only applied to penalize solutions that benefit from earlier supply.  

In order to thoroughly evaluate the convergence behavior of the scheme, we aim at investigating test 

problems that are hard to coordinate. In principle, potential reasons for easy coordination may be large 

cost asymmetries among parties (then, proposals by the party with the greater costs may come very near 

to the system-wide optimum without further need for coordination) or among single items (which may 

allow the scheme to concentrate on the high-cost items and may have a similar effect like reducing the 

problem size). Both problems have been avoided here. In the master planning problem considered, the 

major cost components depending on central resource use are backorder costs for the buyer and overtime 

costs for the suppliers. Hence, to avoid easy coordination, we set the costs for an increase in capacity by 

overtime and the resulting decrease of backorder costs (for items produced on this resource or for their 

successor items) to be equal on average in our basic test set. Additionally, we conduct sensitivity analyses 

for different ratios between average overtime and backorder costs (1:5, 5:1). Define the cumulated capac-
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ity requirements of an item j as ∑ ∑∈ =
+=

jRk

M

m mjkkjj aara
1

, with M as the number of resources and Rj as 

the set of immediate predecessors of j in the bill of materials. Backorder costs for one unit of item j in a 

period are set to Kabl jj = , with K as a constant of an arbitrary value used for the correct transformation 

of the unit of ja . Overtime costs for one unit of capacity increase on resource m are set to 

( ) mJj mjjm Jabloc
m

∑ ∈
= , with Jm as the set of items produced on m. In order to determine unit costs 

for inventory holding, we assume that the values of end items equal their unit backorder costs and that the 

values of intermediate items equal their cumulated capacity requirements transformed as above. Further 

assuming monthly periods for master planning and capital costs of 10% p.a. for inventory holding, we 

obtain ( )TKah jj 10= .  

We evaluate 14 different test sets. The basic test set (BASE) comprises two parties running LP with |JD|=4 

(see the appendix for the structures) and T=12 as well as a unilateral exchange of cost changes from the 

supplier to the buyer. In line with most practical applications, we assume by default that the buyer estab-

lishes the initial, uncoordinated solution and additionally evaluate a setting (RAND) where the initial 

solution is determined randomly. We vary the number of periods ( { }24,3∈T ), the problem structure 

(|JD|=10), the model type (MIP), and the number of suppliers (two (2S) and five (5S); to avoid distortions 

by incentive issues determined by the mechanism, we assumed lump sums of 0).  

For each of these sets, 216 instances have been generated by combining different random values for de-

mands, production coefficients, and capacities. For each instance, these random values have been drawn 

from normal distributions with base values of 1 (negative values have been replaced by 0 and all random 

values have been divided by their averages) and different combinations of coefficients of variation. De-

mand data differ by the coefficients of variation ( { }5.0,3.0,1.0∈dCV ) and the inclusion of an additional 

seasonality component (generation based on a cosine oscillation with an amplitude of 0 (no seasonality) 

or 0.2). For production coefficients and period capacities, { }2,5.1,1,7.0,5.0,2.0∈coeCV  
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and { }5.0,4.0,3.0,2.0,1.0,001.0∈capCV , respectively, have been chosen. The average capacity utilization 

has been set to 90%. For the model class MIP, overtime can only be taken in equally sized shifts of 1/8 of 

the average period capacity. 

Solving (CS1i) and its modifications is not trivial because of nonlinearities in the objective functions. 

Although there may be more elegant procedures (e.g., that of Baker and Lasdon 1985 for nonlinear pro-

gramming problems with continuous variables only), a simple separable programming approach (see, e.g., 

Williams 1994) has been sufficient to successfully implement our computational study. For each dimen-

sion j of ki, we transformed the nonlinear term ij
T
ij dk  in the objective functions of (CS1’i) and (CS1’’I) 

to ( )( ) ( )( )22 2121 ijijijij dkdk −−+ , derived upper and lower bounds for the quadratic terms and linearized 

them with 10 nodes (in preliminary tests, more exact linearizations did not yield significantly better re-

sults). The lower bounds used for the linearization have been set to 0, the upper bounds for kij to the 

maximum cost changes of items per period in previous proposals, and the upper bounds for dij equal to 

dpi. 

Out of the 3024 instances generated, we obtained 2795 with a suboptimality of the uncoordinated solution 

greater than 0.005%, which we analyzed further. Optimization problems have been solved using Xpress-

MP 2008A on a single thread of an Intel SMP with a clock speed of 3.20 GHz and 1.99 GB RAM. We 

applied a time limit of 600 sec. for (C)1 and 10 sec. for the other models solved in the scheme. For the 

analysis of the results, we calculate the performance indicators ( )( ) NcccUNC N

n noptnoptnunc∑ =
−=

1 ,,, , the 

average gap between the costs of the uncoordinated solution cunc,n, and the costs of the solution to (C) 

copt,n, and ( )( ) NcccCS N

n noptnoptncor∑ =
−=

1 ,,, , the average gap between copt,n and the costs after 20 itera-

tions of the scheme ccor,n.  

 
                                                           
1 Using this time limit, all instances of (C) have been solved to optimality except for 34 instances for the MIP with 
|JD|=4 and 103 instances for the MIP with |JD|=10. There, the average remaining gaps have been 0.53% and 0.56%, 
respectively.  
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 BASE T=24 T=3 |JD|=10 2S |JD|=10,  2S   |JD|=10,  5S 

UNC 15.1% 22.5% 10.9% 28.2% 15.1% 28.2% 28.2% 

CS 5.7% 8.1% 2.2% 9.2% 4.9% 9.7% 7.7% 

Table 1: Basic computational results  

We present our basic results in Table 1. The size of instances and the number of suppliers turned out as 

important drivers for the performance of the scheme. Not surprisingly, increases of both |JD| and T led to 

(modest) decreases in performance. Although considerable improvements have been found for each test 

set, the results suggest that managers applying the mechanism benefit by limiting coordination activities 

on a small number of (key) items and periods (e.g., T=3), where near-optimal solutions could be obtained. 

Moreover, the solution performance of the scheme tends to increases with multiple suppliers.  This might 

seem surprising at first glance, but can be explained by the option of the buyer for recombining a larger 

number of different proposals of the suppliers and the more detailed knowledge about their cost 

changes iχ . 

For all instances, more than 60% of UNC could be mitigated after 20 iterations. This modest number of 

iterations has several advantages. Decision makers are able to participate interactively in the coordination 

process and to manually control the cost-effects of the proposals exchanged. In addition, the duration of 

the coordination process is kept short and little information is disclosed, which keeps the risk low for a 

reconstruction of model parameters by other parties. 

Table 2 provides the results of further sensitivity analyses. If an MIP is used instead of an LP, increases of 

UNC, but only minor decreases in the convergence rate have been observed, which underlines the versa-

tility of the scheme. Moreover, using a randomly generated starting solution does not significantly affect 

the gap closure, which suggests that the performance of the scheme is not bound to the choice of the ini-

tial solution. Finally, we evaluated different ratios between average overtime and backorder costs. Since 

the initial solution is determined by the buyer here, increases of this ratio lead to increases of both UNC 

and CS, whereas decreases yield reversed effects. In both cases, however, the relative reduction of UNC 
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compared to the base setting has been greater, which underlines our suggestion that the coordination 

hardness is maximized for equally distributed costs among parties. 

 MIP T=3, MIP  |JD|=10,  MIP |JD|=10, 5S, MIP RAND 5:1 1:5 

UNC 21.8% 21.2% 35.1% 35.1% 114012.5% 66.4% 8.9% 

CS 7.9% 4.3% 12.7% 10.8% 6.7% 18.7% 2.7% 

Table 2: Sensitivities for different parameterizations 

7. Conclusion 

This paper proposes a mechanism for coordinating complex LP or MIP run by two or more self-interested 

parties holding private information. We have been able to show finite convergence of the underlying 

scheme in the case where all but one party report their cost changes and only include continuous variables 

in their optimization models. We have further provided a more effective modification of this scheme, 

which is also applicable with discrete decisions of two or more decentralized parties and yields consider-

able improvements over initial solutions after 20 iterations in computational tests. Moreover, we have 

designed a strategy-proof mechanism for evaluating the schemes and provided a lower bound on its effi-

ciency. Characteristics of the mechanism – like the exchange of primal, insensitive information only, 

truth-telling as a weakly dominant strategy, few iterations, and no central entity needed – favor the practi-

cal applicability. 

The empirical verification of the scheme has been limited in this paper to deterministic models for supply 

chains consisting of one buyer and one or several suppliers. Hence, further research possibilities include 

customizations and computational studies for different organizational structures like three-tier supply 

chains as well as for stochastic programming models with discrete probabilities, which can be rewritten as 

usual LP and, hence, constitute a further potential application of the scheme proposed. 
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Appendix 

Proofs 

PROOF OF LEMMA 1.  1. We begin with a proof of Lemma 2, a technical result, which is needed for 

proving this lemma and Theorem 1. 
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LEMMA 2. Consider (CS1i) with xi fixed to an arbitrary value f
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PROOF OF LEMMA 2. Write (CS1fi) for (CS1i) with xi fixed to f
ix . (CS1fi) can be reduced to 
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(CS1fi-D), the dual problem to (CS1fi), is 

( ) ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

=∀≥−≥−+−−∑ ∑
= =

i i

i

e

e
iie

e

e

T
i

Tf
i

st
iie

T
i

Te
i

st
iiie

Te
i

st
iii

T
i ee, AxxAxxxxcM

1 1
00 0,...,  0|min λλλλλ

λ
. 

According to duality theory, the objective function values of the optimal solutions to (CS1fi) and (CS1fi-

D) are equal, which proves this lemma.                    ⁭ 

We now proceed with the proof of the first statement of Lemma 1. Since there are feasible solutions to 

(C) and thus to (DPi), it suffices to show that constraints (3), (4), and (7) do not render (CS1i) infeasible. 

Since these constraints do not depend on xi, (CS1i) is feasible, provided the feasibility of (CS1fi) for at 

least one f
ix . To demonstrate the latter, we prove the feasibility and the boundedness of the dual problem 

(CS1fi-D), which has been stated in the proof of Lemma 2. (CS1fi-D) has a feasible solution since λi0 can 

take any value greater than zero. The optimal solution to (CS1fi-D) is bounded, e.g., if  
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Due to the assumptions of this lemma (1.), 
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The condition ∑
=
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1λ can be omitted in (25) since (25) implies ( ) 0

1
≤−∑

=

αλie

e

e

e
i

st
i

T
i

i

xxc  and 

( ) 0
1

≥−∑
=

αλ
ie

e

e
i

st
iiei xxA  for any scalar 0≥α  with ∑

=

=
ie

e
ie

1
1αλ . Together with (24), we get that (CS1fi-D) 

is bounded if ( ) T
i

Tf
i

st
ii Axx −≥0λ 00 ≥∀ iλ . This inequality is fulfilled for, e.g., st

i
f

i xx = . Hence, (CS1fi-

D) has a feasible, bounded solution and, according to duality theory, (CS1fi) and thus (CS1i). 

2. Since we only consider the properties of *
ix , we can omit (3), (4), and (7). Then, (CS1i) reduces to 

 ( ) ( )i
st
ii

T
ii

st
i

T
i xxAkxxc −+−max    

 s.t.  (5), (6).  

Each solution xi is a vertex of the polytope defined by inequalities (5) and (6), and hence, a vertex solu-

tion to (DPi)2.                                    ⁭ 

PROOF OF THEOREM 1. The proof of this theorem is structured into five parts. In (a), we prove that 

(CS1i) always yields a feasible solution. This allows us to derive a lower bound on the costs of the solu-

tions ii Xx ∈ that have not been identified after the termination of the scheme (b). Based on that, we can 

characterize a subset of the solutions to (C) for which the system-wide costs are greater than or equal to 

the costs of ( )l
I

ll xxx ,...,1= , the system-wide solution resulting from the last run of (CS2I) (c). Since this 

subset comprises an r-neighborhood of xl, the optimality of xl follows (d). Last (e), we show that the con-

vergence is finite. 

(a) By Lemma 1, (CS1i) yields a feasible solution if  

∑
=

≤
ie

e

e
iie

T
i

st
i

T
i xcxc

1
λ  0≥∀ ieλ  (e=1,…, ie ) , ∑

=

≥
ie

e

e
iiei

st
ii xAxA

1
λ ,∑

=

=
ie

e
ie

1
1λ . (26) 

                                                           
2 Note that (DPi) and (CS1i) may have several optimal solutions including non-vertex solutions. Here we assume that 
(CS1i) is solved using an algorithm that limits its search to vertex solutions (e.g., a primal simplex).  
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We prove by contradiction that (26) is fulfilled for all starting solutions used in the scheme. For this pur-

pose, we assume the existence of 0≥ieλ  with ∑
=

>
ie

e

e
iie

T
i

st
i

T
i xcxc

1
λ , ∑

=

≥
ie

e

e
iiei

st
ii xAxA

1
λ  and ∑

=

=
ie

e
ie

1
1λ . 

Since (DPi) are LP, the solution ∑
=

=
ie

e

e
iiei xx

1

' λ is feasible. Since starting solutions st
ix have been optimal 

for the last run of (CS-EVALi), i
T
i

st
i

T
i xcxc ≤  holds for all feasible ix with ii

st
ii xAxA ≥  and, hence, also 

for '
ii xx = . Hence,  ∑

=

=≤
ie

e

e
iie

T
ii

T
i

st
i

T
i xcxcxc

1

' λ  and a contradiction results.  

(b) As a consequence, with the termination of the scheme, 01 ≤
iCSZ  holds and, hence, 

( ) ( ) 0≤−+− i
st
ii

T
ii

st
i

T
i xxAkxxc  for any xi. With i

f
i xx = , we get by Lemma 2 that there are scalars 

0≥ieλ  (e=0,…, ie ) with  

( )∑
=

−−+≥
ie

e
ie

Te
i

st
ii

T
ii

st
i

T
ii

T
i xxcMxcxc

1
0 λλ , ( ) ( )∑

=

−≥−+
ie

e

T
i

T
i

st
iie

T
i

Te
i

st
ii AxxAxx

1
0 λλ . (27) 

Next, we show by contradiction the existence of scalars 0≥ieμ  (e=1,…, ie ) with  

( )∑
=

−−≥
ie

e
ie

Te
i

st
ii

st
i

T
ii

T
i xxcxcxc

1
μ , ( ) ( )∑

=

−≥−
ie

e

T
i

T
i

st
iie

T
i

Te
i

st
i AxxAxx

1
μ . (28) 

Assume the contrary, i.e.,  

( )∑
=

−−<
ie

e
ie

Te
i

st
ii

st
i

T
ii

T
i xxcxcxc

1

'λ  0' ≥∀ ieλ  (e=1,…, ie ), ( ) ( )∑
=

−≥−
ie

e

T
i

T
i

st
iie

T
i

Te
i

st
i AxxAxx

1

'λ . (29) 

Together with (27) , we get that there are 0≥ieλ  with  

( ) ( )∑
=

−−−<
ie

e
ieie

Te
i

st
ii

T
ii xxcM

1

'
0 λλλ  0' ≥∀ ieλ , ( ) ( )∑

=

−−≥
ie

e
ieie

T
i

Te
i

st
ii Axx

1

'
0 λλλ . (30) 
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Recall the definition of Mi, ( ) ( )2121
ii

T
iiii

T
i xxcxxAM −−>−  iii Xxx ∈∀ 21, . Substituting 

( )∑
=

−=
ie

e
ie

Te
i

st
ii xxx

1

'1 λ  and ( )∑
=

−=
ie

e
ie

Te
i

st
ii xxx

1

2 λ in (30), we obtain ( )Tiiii xxA 21
0 −≥λ . Multiplying this 

inequality by T
iM and replacing 21, ii xx again yields ( )21

0 iii
T
i

T
ii xxAMM −≥λ ( )( )ieie

e

e

e
i

st
i

T
i

i

xxc λλ −−−> ∑
=

'

1
, 

which contradicts (30). 

(c) Define S
iX as the subset of the solutions to (CS1i) for which 0≥ieμ  (e=1,…, ie ) exist that fulfill (28) 

and∑
=

≤
ie

e
ie

1
1μ . Hence, S

ii Xx ∈∀ , there are 0≥ieμ with ( ) ( )∑
=

⎟
⎠
⎞⎜

⎝
⎛ −+−−≥

ie

e
ie

st
i

st
iie

Te
i

st
ii

st
i

T
ii

T
i xxxxcxcxc

1

'μμ ,  

( ) ( ) ( )∑
=

−≥⎟
⎠
⎞⎜

⎝
⎛ −+−

ie

e

T
i

T
i

st
iie

T
i

Tst
i

st
iie

T
i

Te
i

st
i AxxAxxAxx

1

'μμ , and ∑
=

≤
ie

e
ie

1
1μ  for all scalars 0' ≥ieμ  

(e=1,…, ie ). Set ∑
=

−=
ie

e
ieig

1

' 1 μμ  for stg = , 0' =igμ  otherwise, and define scalars '
ieieie μμλ +=  

(e=1,…, ie ). Since E
i

st
i Xx ∈ , ( )∑

=

−−≥
ie

e
ie

Te
i

st
ii

st
i

T
ii

T
i xxcxcxc

1
λ , ( ) ( )∑

=

−≥−
ie

e

T
i

T
i

st
iie

T
i

Te
i

st
i AxxAxx

1
λ , 

and ∑
=

=
ie

e
ie

1
1λ  S

ii Xx ∈∀ . Hence, S
ii Xx ∈∀ , there are 0≥ieλ  with 

∑
=

≥
ie

e

e
iie

T
ii

T
i xcxc

1
λ , ( ) ,

1
∑
=

≥
ie

e

T
i

Te
iie

T
i

T
i AxAx λ  ∑

=

=
ie

e
ie

1
1λ . (31) 

Denote l
ie

l
Ix λ, (i=1,…,I-1, e=1,…, ie ) as the last solution to (CS2I) before the termination of the scheme. 

Then, 

∑∑∑∑
−

= =

−

= =

+≤+
1

1 1

1

1 1

I

i

e

e

e
iieI

T
I

I

i

e

e

e
i

l
ie

l
I

T
I

ii

xcxc χλχλ II Xx ∈∀ , 0≥ieλ , i=1,…I-1, .
1

1 1
0 ∑∑

−

= =

+≥
I

i

e

e

e
iieII

i

xAb πλ  (32) 
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Let l
ix  be the optimal solution to (CS-EVALi) subject to ∑

=

=
ie

e

e
ii

l
iei xA

1
λπ . Replacing ( )init

i
e
i

T
i

e
i xxc −=χ  

and e
ii

e
i xA=π  in (32), we get with (26) (setting l

i
st
i xx =  there) that ∑ ∑∑

−

= ==

+≤
1

1 11

I

i

e

e

e
iie

T
iI

T
I

I

i

l
i

T
i

i

xcxcxc λ  

0≥∀ ieλ  (i=1,…,I-1, e=1,…, ie ) and all II Xx ∈  with ∑ ∑
−

= =

+≥
1

1 1
0

I

i

e

e

e
iieiII

i

xAxAb λ . Since, for all i=1,…,I-

1, l
ix  has been used as the starting solution in (CS1i) before terminating the scheme, we get together with 

(31) that  

∑∑
==

≤
I

i
i

T
i

I

i

l
i

T
i xcxc

11
 S

iiII XxXx ∈∈∀  , , i=1,…,I-1,  ∑
=

≥
I

i
ii xAb

1
0 . (33) 

(d) For any S
ii Xx ∉ characterized by (28) with l

i
st
i xx =  and∑

=

>=
ie

e
iie

1
1μμ , there is a S

ii Xx ∈κ  with 

( )κκ l
ii

l
ii xxxx −+= , iμκ 1= . Hence, the r-neighborhood ( )l

ir xB  of l
ix defined with an Euclidean metric 

and the radius r>0 chosen such small that κκ
i

l
ii xxxr ∀−≤

2
comprises solely S

ii Xx ∈ . Since xI can be 

chosen freely among XI in (33), there is a system-wide feasible solution ( )l
I

ll xxx ,...,1=  for which 

∑∑
==

≤
I

i

B
i

T
i

I

i

l
i

T
i xcxc

11
( ) .,...,1 , IixBx l

ir
B
i =∈∀  Hence, on each edge outgoing from lx , there is a solution 

( )Ii xxx ,...,1=  with ∑∑
==

≤
I

i
i

T
i

I

i

l
i

T
i xcxc

11
. Since no further improvements are possible when moving 

from l
ix into the direction of any of its outgoing edges, lx  is the optimal solution to (C).  

(e) By Lemma 1, only vertices and, hence, a finite number of different solutions are identified by (CS1i). 

Then, (CS2I) is run a finite number of times, too.                    ⁭ 

 

 



 

32  

Example for the Calculation of the Marginal System-wide Surplus (with Non-

Complementary Solutions) 

Consider two different RPi A, B that are competing for the use of one central resource which is expand-

able by the IP at maximum by 3[CU] (CU=capacity unit) with costs of 1[$/CU]. Moreover, let A have 

offered within the scheme two proposals A1, A2 with overuses of 1[CU] and 2[CU] of this resource by A 

compared to the initial solution and resulting cost savings of 2$ and 5$, respectively. B1, B2, the propos-

als generated by B, show overuses of 1[CU] and 3[CU] of this resource by B and savings of 2$ and 5$, 

respectively. The best solution for the whole system is the simultaneous implementation of A2 and B1 

resulting in a system-wide surplus of 5-2+2-1=4$. Marginal surpluses are 4-(5-3)=2$ for A (only B2 is 

implemented if A does not participate) and 4-(5-2)=1$ for B. Hence, the sum of marginal surpluses is less 

than the surplus realized by the scheme. 

Centralized Master Planning Model 

min ∑∑∑∑∑∑
= == == =

++
EJ

j

T

t
jtj

M

m

T

t
mtmmt

J

j

T

t
jtj BLblOockoIh

1 11 11 1
  

s.t. T, tJj   IBLdXIBL E
jtjt-jtjtjtjt ,...,1,...,1  11 ==∀++=++ −   

 TJ,tJjIXrXI E

Sk
jtktjkjtjt

j

 ,...,1,...,1      1 =+=∀+=+ ∑
∈

−   

 TtMm OkokXa mtmtmt

J

j
jtmj ,...,1,,...,1     

1
==∀+≤∑

=

  

 E
jT JjBL ,...,1      0 =∀=   

 E
j JjBL ,...,1      00 =∀=   

 JjI j ,...,1       00 =∀=   

 T,tJjBL E
jt ,...,0,...,1       0 ==∀≥    
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 TJ,tjI jt ,...,0,...,1       0 ==∀≥                                                                               

 0∈mtO  (for LP: 0≥mtO )   TtMm ,...,1,,...,1 ==∀   

 TJ,tjX jt ,...,1,...,1       0 ==∀≥  

 

Indices and index sets: 

j,k items, j=1,…,J; 1,…, JE is the subset of items sold to external customers 

m resources (e.g. personnel, machines,…), m=1,…,M 

t periods, t=1,…,T 

Sj set of immediate successors of item j in the bill of materials. 

Data: 

amj capacity needed on resource m for one unit of item j 

blj backorder costs for one unit of item j in a period 

djt demand for item j in period t 

hj holding costs for one unit of item j in a period 

kmt available capacity of resource m in period t 

komt additional capacity of resource m with one unit of overtime in period t (e.g., one shift) 

ocm costs for one unit of overtime on resource m in a period 

jkr  number of units of item j required to produce one unit of the immediate successor item k. 

Variables: 

BLjt amount of backorders of item j in period t 

Ijt inventory of item j at the end of period t 

Omt amount of overtime on resource m in period t 

Xjt production amount of item j in period t. 
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Structure of Test Instances 

|JD|=4, J=16, M=7         |JD|=10, J=32, M=14 

 

 

 

Explanations: 

j items j  

set of items that are produced 
on a specific resource  

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

24 

25 

23 

22 

21 

20 

19 

18 

17 

16 

15 

14 

26 

27 

28 

29 

30 

31 

32 

S 

S1 

S2 

S3 

S4 

S5 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

B (Buyer) S (Supplier(s)) 

S1 

S2 

B 

2S separate production of items by  
S1; S2 (|JD|=4),  

        S1,S2; S3-S5 (|JD|=10) 
 
5S  S1; S2; S3; S4; S5 (|JD|=10) 
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