

Risk Margin for the Runoff of Non-Life Insurance Reserves

Mario V. Wüthrich

Symposium des Hamburger Zentrums für Versicherungswissenschaft University of Hamburg, December 3, 2010

Valuation and cash flow prediction

Insurance contracts generate (random) insurance payment cash flows.

Aim:

C M.V. Wüthrich, ETH Zurich

Predict and **value** these insurance payment cash flows!

These predictions and valuations should always be based on the latest information available.

RiskLab

Reserves and provisions

- Prediction of the outstanding liabilities gives the (claims) reserves or the (claims) provisions.
- These reserves (or provisions)
 - should suffice to meet all future payments
 ⇒ reserves and solvency;
 - are the basis for future premium calculations;
 - determine the risk management process.
- These reserves are the most important insurance position at all.

What are the main requirements that these reserves should fulfill?

Full balance sheet approach

Balance sheet should be valued in a market-consistent way:

- market values where available;
- marked-to-model approach otherwise.

• Insurance liabilities: No market values.

cash bonds loans mortgages equity real estate derivatives hedge funds property tax assets	other liabilities insurance liabilities	
assets	liabilities	

• Therefore for reserves:

Market-consistent prediction of outstanding insurance liabilities in a marked-to-model approach.

• What does this exactly mean?

Technical provisions

- Solvency II Directive 2009/138/EC: Insurance liabilities should be valued at the amount for which they could be exchanged between knowledgeable willing parties in an arm's length transaction.
- The resulting amount is called technical provisions.
- The technical provisions are the sum of the **best-estimate reserves** and the **risk margin**.
- What are best-estimate reserves? Why a risk margin?

deterministic best-estimate reserves \iff **stochastic** claims payments

Best-estimate reserves for outstanding liabilities

• "The best-estimate should correspond to the probability weighted average of future cash flows taking account of time value of money."

Mathematical model: $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t \in \mathbb{N}})$ filtered probability space:

- \mathcal{F}_t information available at time $t \in \mathbb{N}$;
- $\varphi = (\varphi_t)_{t \in \mathbb{N}}$ stochastic discount function (financial deflator);
- $\mathbf{X} = (X_t)_{t \in \mathbb{N}}$ insurance liability cash flow, $(\mathcal{F}_t)_{t \in \mathbb{N}}$ -adapted.

Best-estimate reserves at time $k \in \mathbb{N}$ for liabilities $(X_t)_{t>k}$ (see [3])

$$\mathcal{R}_k(\mathbf{X}) \;=\; \sum_{t>k} \; \mathbb{E}\left[\left. rac{arphi_t}{arphi_k} \; X_t
ight| \mathcal{F}_k
ight].$$

RiskLab

Stochastic discounting of best-estimate reserves

- Find appropriate stochastic model $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t \in \mathbb{N}})$ and
 - $\varphi = (\varphi_t)_{t \in \mathbb{N}}$ stochastic discount function (financial deflator),
 - $\mathbf{X} = (X_t)_{t \in \mathbb{N}}$ insurance liability cash flow,

and calculate best-estimate reserves at time $k \in \mathbb{N}$

$$\mathcal{R}_k(\mathbf{X}) = \sum_{t>k} \mathbb{E} \left[\frac{\varphi_t}{\varphi_k} X_t \middle| \mathcal{F}_k \right]$$

• In general, with $(r_t^{(k)})_{t\geq 0}$ risk-free term structure at time k,

$$\mathcal{R}_k(\mathbf{X}) \neq \sum_{t>k} \frac{1}{\left(1+r_{t-k}^{(k)}\right)^{t-k}} \mathbb{E}\left[X_t | \mathcal{F}_k\right],$$

due to options, guarantees, inflation, etc.

C M.V. Wüthrich, ETH Zurich

Risk margin or market-value margin MVM

deterministic best-estimate reserves \iff **stochastic claims payments**

- How reliable is the prediction $\mathcal{R}_k(\mathbf{X})$ for $(X_t)_{t>k}$?
- A risk averse agent asks for a **risk margin** (market-value margin) for possible shortfalls in this prediction.
- The **technical provisions** (market-consistent value) for the outstanding insurance liabilities are then given by

$$\mathcal{R}_k^{(*)}(\mathbf{X}) = \mathcal{R}_k(\mathbf{X}) + \mathrm{MVM}_k(\mathbf{X}).$$

• How should we calculate this risk margin $MVM_k(\mathbf{X})$?

Solvency at time k

Solvency is given at time k iff:

- **(**) asset values cover technical provisions $\mathcal{R}_k^{(*)}(\mathbf{X})$ at time k, and
- **2** the possibility of an asset deficit $AD_{k+1} > 0$ at time k + 1 is sufficiently small (measured by an appropriate risk measure).

Conclusions for solvency calculation

We need a stochastic model that allows for:

() calculation of best-estimate reserves $\mathcal{R}_k(\mathbf{X})$ at time k;

- **2** calculation of risk margin $MVM_k(\mathbf{X})$ at time k;
- modeling of asset deficit AD_{k+1} at time k+1.

Note: Everything holds true for life and non-life insurance.

Risk margin in non-life insurance

- We give 3 different approaches for the calculation of the risk margin.
- In non-life insurance one often assumes that claims payments X are independent from financial market developments. This implies

$$\mathcal{R}_k(\mathbf{X}) = \sum_{t>k} \mathbb{E} [X_t | \mathcal{F}_k] P(k,t),$$

with P(t,k) price of the zero coupon bond with maturity t at time k.

• The claims development result (CDR) at time k + 1 is given by

$$\operatorname{CDR}(k+1) = \left(\sum_{t>k} \mathbb{E}\left[X_t | \mathcal{F}_k\right] P(k+1,t)\right) - \left(X_{k+1} + \mathcal{R}_{k+1}(\mathbf{X})\right).$$

The CDR at time k+1

$$\operatorname{CDR}(k+1) = \left(\sum_{t>k} \mathbb{E}\left[X_t \middle| \mathcal{F}_k\right] P(k+1,t)\right) - \left(X_{k+1} + \mathcal{R}_{k+1}(\mathbf{X})\right)$$

considers the **update of information** $\mathcal{F}_k \mapsto \mathcal{F}_{k+1}$:

- CDR(k+1) < 0: additional capital is needed;
- CDR(k + 1) > 0: we have a gain in the P&L statement.

Risk margin: approach 1

Cost-of-capital risk margin:

 Calculate the solvency capital requirement (SCR) for possible shortfalls in this CDR position.

 \implies This provides **risk measure** ρ_k for accounting year k+1.

2 The risk margin should be related to this SCR ρ_k .

RiskLab

Market-value margin 1 (current solvency practice)

The first cost-of-capital (CoC) approach defines the risk margin as

$$\mathrm{MVM}_{k}^{(1)}(\mathbf{X}) = r_{\mathrm{CoC}} \cdot \sum_{t>k} w_{t} \cdot \rho_{k},$$

where

- ρ_k risk measure (SCR) for possible shortfalls in CDR(k+1);
- r_{CoC} cost-of-capital rate $> r_0^{(k)}$ (risk-free rate at time k);
- $(w_{k+1}, w_{k+2}, w_{k+3}, \ldots)$ expected runoff of the outstanding liabilities $(X_{k+1}, X_{k+2}, X_{k+3}, \ldots)$ at time k.

Interpretation. The risk margin from this CoC approach should reflect the reward for risk bearing, i.e. an investor provides the SCRs $w_t \cdot \rho_k$ and therefore receives a rate of return $r_{\rm CoC} > r_0^{(k)}$ on these SCRs.

Difficulties with the market-value margin 1

$$\mathrm{MVM}_{k}^{(1)}(\mathbf{X}) = r_{\mathrm{CoC}} \cdot \sum_{t>k} w_{t} \cdot \rho_{k},$$

- runoff or going-concern view?
- stand-alone or diversified?
- o per line-of-business or whole insurance portfolio?

② Choice of
$$r_{
m CoC}$$
? Is $r_{
m CoC} = r_0^{(k)} + 6\%$ appropriate?

w_t · ρ_k is not a risk-based approximation to the SCRs ρ_t in accounting years t > k.

Risk margin: approach 2 (Salzmann-W. [1])

For simplicity, we choose nominal reserves, i.e. $P(k,t)\equiv 1.$

Then

$$\operatorname{CDR}(k+1) = \sum_{t>k} \mathbb{E} \left[X_t | \mathcal{F}_k \right] - \sum_{t>k} \mathbb{E} \left[X_t | \mathcal{F}_{k+1} \right].$$

This implies for t > k

$$\mathbb{E}\left[\left.\mathrm{CDR}(t)\right|\mathcal{F}_k\right] = 0,$$

and, moreover,

CDR(k+1), CDR(k+2),... are uncorrelated (not independent).

This follows because successive best-estimate predictions are martingales.

Split of total uncertainty

Uncorrelatedness provides the total prediction variance decomposition

$$\operatorname{Var}\left(\sum_{t>k} \operatorname{CDR}(t) \middle| \mathcal{F}_k\right) = \sum_{t>k} \operatorname{Var}\left(\operatorname{CDR}(t) \middle| \mathcal{F}_k\right).$$
(1)

- Formula (1) gives a **risk-based allocation** of the total uncertainty measured by the prediction variance to individual accounting years.
- In many models we can explicitly calculate Var (CDR(t) | F_k), e.g. Γ-Γ Bayes chain ladder model of Salzmann-W. [1].

Market-value margin 2 (split of total uncertainty)

The second cost-of-capital (CoC) approach defines the risk margin as

$$\mathrm{MVM}_{k}^{(2)}(\mathbf{X}) = r_{\mathrm{CoC}} \cdot \sum_{t > k} \Phi \cdot \mathrm{Var} \left(\mathrm{CDR}(t) | \mathcal{F}_{k} \right)^{1/2},$$

where

- $\rho_t = \Phi \cdot \operatorname{Var} \left(\operatorname{CDR}(t) | \mathcal{F}_k \right)^{1/2}$ standard deviation risk measure for possible shortfalls in $\operatorname{CDR}(t)$ on security level $\Phi > 0$;
- r_{CoC} cost-of-capital rate $> r_0^{(k)}$ (risk-free rate at time k).

Remarks.

- This provides a risk-adjusted market-value margin.
- Other (multi-period) risk measures are too involved and do not lead to applicable solutions (nested simulations).

Risk margin: approach 3 (economic approach)

Idea: The technical provisions $\mathcal{R}_k^{(*)}(\mathbf{X})$ should be a market-consistent price for the outstanding insurance liabilities:

- a rational investor calculates under risk aversion a margin for non-hedgeable (insurance technical) risks.
- In economic theory this is usually done with **utility functions** and/or with **probability distortions**.

For non-life claims reserving **probability distortions** are a feasible way, see W. et al. [3], Section 2.6.

Market-value margin 3 (chain-ladder framework 1/2)

For a particular chain-ladder claims reserving model (W.-Merz [4]):

• Best-estimate reserves:

$$\mathcal{R}_k(\mathbf{X}) = C_k \left(\prod_{t>k} f_t - 1\right),$$

where C_k are the cumulative payments at time k and f_t are the so-called chain-ladder factors.

• Technical provisions:

$$\mathcal{R}_{k}^{(*)}(\mathbf{X}) = C_{k} \left(\prod_{t>k} f_{t}^{(*)} - 1\right),$$

where $f_t^{(*)}$ are the risk-adjusted chain-ladder factors.

Market-value margin 3 (chain-ladder framework 2/2)

• Risk margin:

$$\mathrm{MVM}_k^{(3)}(\mathbf{X}) = \mathcal{R}_k^{(*)}(\mathbf{X}) - \mathcal{R}_k(\mathbf{X}) = C_k \left(\prod_{t>k} f_t^{(*)} - \prod_{t>k} f_t\right).$$

• Risk-adjusted chain-ladder factors: a sensible choice is

$$f_t^{(*)} = (f_t - 1) \exp\{h_t(\alpha)\} + 1 > f_t,$$

for $h_t(\alpha) > 0$ a positive function of the risk aversion parameter α .

Case studies: private liability insurance

Expected runoff pattern of risk margins $MVM_k^{(i)}(\mathbf{X})$ for approaches i = 1, 2, 3.

Case studies: life-time annuity

Expected runoff pattern of risk margins $MVM_k^{(i)}(\mathbf{X})$ for approaches i = 1, 3.

Case studies: motor third party liability insurance

Expected runoff pattern of risk margins $MVM_k^{(i)}(\mathbf{X})$ for approaches i = 1, 2.

Case studies: general liability insurance

Expected runoff pattern of risk margins $MVM_k^{(i)}(\mathbf{X})$ for approaches i = 1, 2.

Case studies: property insurance

Expected runoff pattern of risk margins $MVM_k^{(i)}(\mathbf{X})$ for approaches i = 1, 2.

Case studies: health insurance

Expected runoff pattern of risk margins $\mathrm{MVM}_k^{(i)}(\mathbf{X})$ for approaches i=1,2.

References

- Salzmann, R., Wüthrich, M.V. (2010). Cost-of-capital margin for a general insurance runoff. To appear in *Astin Bulletin*.
- Wüthrich, M.V. (2010). Runoff of the claims reserving uncertainty in non-life insurance: a case study. *Zavarovalniski horizonti* 6/3-4, Journal of the Slovenian Actuarial Association, 5-18.
- Wüthrich, M.V., Bühlmann, H., Furrer, H. (2010).
 Market-Consistent Actuarial Valuation. 2nd edition. Springer.
- Wüthrich, M.V., Merz, M. (2010). **Financial Modeling, Actuarial Valuation and Solvency**. Preliminary draft of book project.