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We consider the maximum capture problem with random utilities. The basic
assumption is that a firm wants to locate a given number of facilities in a com-
petitive market where customers choose the facility that maximizes their utility.
Utility is treated as random. In the location science literature, so far, the corre-
sponding choice probabilities of the customers are given by the multinomial logit
model (MNL). There exist several exact mixed integer linear reformulations to
the original NP–hard, non–linear program. Unfortunately, the MNL exhibits the
independence from irrelevant alternatives property, i. e. constant substitution
between facility locations. In contrast, the so–called mixed multinomial logit
model (MXL) allows for flexible substitution patterns. Moreover, the MXL is
able to approximate any random utility model arbitrarily close. In this paper,
we present an intelligible mixed integer linear program for the maximum capture
problem with customer demand modeled by the MXL. Empirical and managerial
insights are discussed based on a unique real world case study that shows the
applicability of our approach.

1 Introduction

We address the problem a firm faces when it modifies its network of facilities in a geographical
market (that is, to consolidate or to expand), when there are one or more competing firms
operating in the same geographical area. We assume the competitors do not react to the
modification of the network of facilities of the considered firm (Müller 2013 2014). We only
consider discrete, locational decisions, i. e. no decisions about the attributes of the facilities
(price, for example) are made. All facilities in the market, those of the considered firm and
those of possible competitors, compete for customer demand with each other. All firms want
to capture as much demand as possible. A customer perceives a specific utility for each
facility location. We further assume a customer chooses to patronize the facility location
that maximizes his utility. Utility is treated as a random quantity, because the firm does not
obtain entire information about the customers’ utility function, i. e. the firm does not observe
all factors that influence costumer choices. Several authors have examined this problem or
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closely related problems in the past (see de Palma et al. 1989, Eiselt et al. 1993, Drezner &
Drezner 1996, Benati 1999, and Ndiaye 2009, for example). Benati & Hansen (2002) make
restrictive assumptions about customers utility — i. e. utility is independent and identically
extreme value distributed (iid EV) — such that the customers’ choice probabilities for each
facility location are given by the multinomial logit model (MNL). They present a problem
formulation and algorithms for the so–called maximum capture problem with random utilities
(MCPRU). This problem is known to be NP–hard (Benati 1999 and Benati & Hansen 2002).
For the original non–linear mixed integer program (MIP) there exist three exact linear MIP
reformulations so far. Benati & Hansen (2002) where the first who presented a linear MIP
reformulation to the MCPRU. Their approach is based on variable substitution. Haase
(2009) has proposed to employ the constant substitution pattern of the MNL in order to
enable a linear MIP formulation (see also Aros-Vera et al. 2013). Finally, Zhang et al.
(2012) introduced an alternative approach based on variable substitution. A comparison of
the three approaches can be found in Haase & Müller (2014).
The MNL has been increasingly employed to model probabilistic customer behavior in facility
location models (see Marianov et al. 2008, Lüer-Villagra & Marianov 2013, Haase & Müller
2015, and Müller & Haase 2014, for example). Moreover, we find the use of the MNL in
other fields or applications of operations research, like assortment optimization (e. g. Kök
& Fisher 2007 and Rusmevichientong et al. 2010), revenue management (e. g. Talluri &
Van Ryzin 2004 and Suh & Aydin 2011), and public transport line planning (Klier & Haase
2015), for example. A major shortcoming of the MNL (and other related spatial interaction
models)1 in practical applications has been rarely discussed so far in the operations research
literature in general and in the location science literature in particular (see McFadden 1989):
the independence from irrelevant alternatives property, in short IIA (Ray 1973). Roughly
speaking, the IIA yields that for a given facility location every other facility location is an
equal substitute (constant substitution pattern, see Train 2009, p. 49). It is empirically well
evidenced that the IIA is unlikely to hold in many spatial choice situations (see Haynes et al.
1988, Haynes & Fotheringham 1990, Anderson et al. 1992, Hunt et al. 2004, Sener et al. 2011,
and Müller et al. 2012, for example). As a consequence, the predictive outcome — the MNL
choice probability — is biased (see Currim 1982 and Brownstone & Train 1999, for example).
The market shares based on the MNL choice probabilities are expected to be biased as well
(Müller & Haase 2014). Therefore, MNL choice probabilities in facility location models are
likely to produce solutions which are not optimal, because the customers supposably make
locational choices different from those predicted by the MNL.
In numerous empirical studies the mixed multinomial logit model (MXL) has been applied in
order to overcome the issues related to the MNL — in particular the IIA (see, for example,
McFadden 1986, Train 1998, Bhat & Guo 2004, Hess & Polak 2005, Smith 2005, Briesch
et al. 2013). The MXL is known to yield better predictions of the true customer behavior
(i. e., choices) compared to the MNL (see, for example, Hunt et al. 2004, Allenby et al. 2005,
and Jank & Kannan 2005). Moreover, the MXL is a very general choice model, because it is
able to approximate any random utility model arbitrarily close (McFadden & Train 2000).
The nice properties of the MXL have lead to an extensive use of this model in empirical
research on (customer) choice behavior (Ben-Akiva et al. 2002, Hensher & Greene 2003).
In contrast, we find only a few specific, but approximate, approaches to the MXL in the

1Mostly, gravity models like the Huff-Model or the multiplicative interaction model, for example. For more
details see Anas (1983).
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facility location planning literature so far (see Haase & Müller 2013 and Müller et al. 2009,
for example). The flexibility of the MXL in terms of customer choice behavior comes at
the cost of non–closed–form choice probabilities (in contrast to closed–form MNL choice
probabilities). Therefore, Monte Carlo simulation methods are used to compute the MXL
choice probabilities.
In this contribution we first introduce a stochastic, non–linear MIP to account for MXL
choice probabilities in the maximum capture problem. Then, we propose two original linear
MIP formulations based on Monte Carlo method (Niederreiter 1992, Kleywegt et al. 2002)
as the corresponding deterministic equivalents (see Owen & Daskin 1998 and Laporte et al.
1994, for example). This is followed by a discussion of the MXL in Section 2. In Section 3
we present a new formulation of the maximum capture problem with random utilities based
on MXL choice probabilities.

2 Customer Patronage

Consider a market where customers are located in zones denoted by nodes I (demand no-
des). Potential (and existing) facilities of the firm and facilities of competitors are located
in nodes M. M might contain an artificial facility denoting a so–called “no–choice” al-
ternative, indicating that customers might patronize no facility at all. The problem of the
firm is to select r facility locations from all potential locations J ⊂ M such that the total
expected patronage of the firm is maximized. In the following sections we describe models
and procedures to determine patronage, i. e. customer choice probabilities. We therefore
rely on Train (2009) if not stated otherwise.

2.1 MNL and MXL Choice Probabilities

We assume the customers located in i ∈ I to be homogeneous in their observable charac-
teristics like age, income and so on (Aros-Vera et al. 2013). An individual’s utility for an
alternative is a result of the alternative’s attributes as well as the individual’s characteris-
tics. Because there are aspects of utility that the analyst (the firm) does not observe, the
total utility Uij of customers located in i ∈ I patronizing a facility located at j ∈ M is
decomposed into a deterministic component vij and a stochastic component εij:

Uij = vij + εij. (1)

Everything that is not included in vij (i. e., not observed) is captured by εij. According to
utility maximization, a customer located in i ∈ I chooses to patronize a facility located in
j ∈M, iff

Uij > Uim ∀ m ∈M,m 6= j. (2)

Since we do not know εij, Uij is a random variable. Therefore, we are only able to make
probabilistic statements about the choice problem (2). We define

pij = Pr (Uij > Uim ∀ m ∈M,m 6= j) (3)
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as the probability that customers located in i ∈ I patronize a facility located at j ∈ M.
All discrete choice models (here, we consider only MNL and MXL) can be derived from 3
(McFadden 2001). If we assume that the stochastic component εij is iid EV, the probability
(3) is given by the MNL and

pMNL
ij =

evij∑
m∈M evim

. (4)

The MNL exhibits the IIA property, i. e., constant substitution patterns: the fraction
pMNL
ij /pMNL

ik remains constant whether or not a third facility is located at m ∈ M. This
is known as the red–bus–blue–bus paradox (Ben-Akiva & Lerman 1985, pp. 51–53). The
MXL overcomes this issue. Therefore, consider a set of so–called error components C and
the parameters

hijc observable attributes related to demand point i ∈ I and facility location j ∈ M
denoting the structure of substitution for error component c ∈ C, and

ηc a random term related to error component c ∈ C.

Now, we decompose the stochastic utility component εij of (1) as

εij =
∑
c∈C

ηchijc + εij (5)

with εij being still iid EV, then the MXL choice probabilities are derived from (3) as

pMXL
ij =

∫
η

(
evij+

∑
c∈C ηchijc∑

m∈M evim+
∑

c∈C ηchimc

)
f (η |θ ) dη. (6)

f (η |θ ) is a |C|–dimensional density function characterized by moment parameters θ. There
are no constraints in terms of the density function f . Any density function can be used. The
MNL of (4) is a special case of (6) where the mixing distribution f (η |θ ) is degenerate at fixed
moment parameters θ. In contrast to the constant fraction of the MNL choice probabilities
pMNL
ij /pMNL

ik , the fraction pMXL
ij /pMXL

ik depends on the existence of facility locations m ∈ M
other than j and k, because the denominator in (6) does not cancel out.
Usually, the substitution pattern between facility locations is imposed by a nesting structure.
Therefore, hijc might be operationalized as incidence parameters (“dummies”). For a given
i ∈ I and c ∈ C, hijc equals 1 for all j ∈ J that belong to the same nest, i. e. those
facility locations that are close substitutes to each other. To make this more visible consider
M = J = {A,B ,C} and C = {1, 2}. Let us assume A shares unobserved attributes with
B and B shares unobserved attributes with C, but A and C do not share any unobserved
attributes. Furthermore, the substitution pattern is the same for all i ∈ I. Then we would
specify the error components as:

η1 · hiA1
+ η2 · hiA2

= η1 · 1 + η2 · 0
η1 · hiB1

+ η2 · hiB2
= η1 · 1 + η2 · 1

η1 · hiC 1
+ η2 · hiC 2

= η1 · 0 + η2 · 1
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The degree of substitution is determined by ηc and f (η |θ ), respectively.

2.2 Simulation Procedures to Determine MXL Choice Probabilities

The MXL allows for great flexibility concerning the substitution patterns between facility
locations. However, this flexibility comes at the cost of a non–closed formulation of the MXL
choice probabilities pMXL

ij . Fortunately, they can be easily simulated: The MXL probabilities
pMXL
ij of (6) are a weighted average of the MNL of (4), evaluated at different values of the
|C|–dimensional vector η, with the weight given by the density of f (η |θ ). Therefore, we
rewrite (6) as

pMXL
ij =

∫
η

πij (η) f (η |θ ) dη, (7)

where

πij (η) =
evij+

∑
c∈C ηchijc∑

m∈M evim+
∑

c∈C ηchimc
. (8)

Note, for a given η (8) are MNL choice probabilities as given by (4). pMXL
ij is approximated

through simulation for given θ by

Procedure A1

For each i ∈ I

1. draw a realization of η from f (η |θ ) and label it ηs, with the superscript s = 1 referring
to the first draw. By this, we get values for ηsc ∀ c ∈ C.

2. Compute πij (ηs) of (8) for this draw.

3. Repeat steps 1 and 2 S times with s = 1, . . . , S and average the results:

p̌MXL
ij =

1

S

S∑
s=1

πij (ηs) . (9)

The outcome of this simulation procedure, the simulated probability p̌MXL
ij , is an unbiased

estimator of pMXL
ij by construction. Its variance decreases as S increases, and

∑
j∈M p̌MXL

ij =
1 ∀ i ∈ I.
Within a second procedure we immediately exploit (3) by applying a so–called accept-reject-
simulator to approximate the MXL choice probabilities of (6) as follows:

Procedure A2

For each i ∈ I

1. draw a realization of η from f (η |θ ) and label it ηs, with the superscript s = 1 referring
to the first draw.
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2. For each j ∈M draw a realization of εij from the extreme value distribution and label
it εsij with the superscript s = 1 referring to the first draw.

3. Now compute the total utility for all j ∈M as

U s
ij = vij +

∑
c∈C

ηschijc + εsij (10)

4. Compute

aijs =

{
1, if U s

ij > U s
ik ∀ k ∈M, k 6= j

0, otherwise
(11)

That is, aijs equals one, if j is the facility location that maximizes the utility of custo-
mers located in i given draw s (aijs = 1 is called an accept).

5. Repeat steps 1 to 4 S times with s = 1, . . . , S. Then, the simulated MXL choice
probability is the proportion of draws that are accepts:

p̌MXL
ij =

1

S

S∑
s=1

aijs. (12)

Again, p̌MXL
ij is an unbiased estimator of pMXL

ij by construction. The variance of p̌MXL
ij decre-

ases as S increases, and
∑

j∈M p̌MXL
ij = 1 ∀ i ∈ I. (9) and (12) yield different deterministic

equivalents to the maximum capture problem with flexible substitution patterns as shown
in the next section.

3 Maximum Capture Problem with Flexible Substitution
Patterns MCPFS

3.1 Model Formulations

Concerning the problem statement of the beginning of Section 2, we additionally define the
locational decision variable Yj, attaining the value 1 if a (new) facility is located at j ∈ J
and 0 otherwise. Let qi be the number of customers located in i ∈ I. Using the MXL choice
probabilities given in (6), the maximum capture problem with flexible substitution patterns
(MCPFS) can be formulated as

Program P1

Maximize FP1 =
∑
i∈I

qi
∑
j∈J

∫
η

(
Yje

vij+
∑

c∈C ηchijc∑
m∈M Yme

vim+
∑

c∈C ηchimc

)
f (η |θ ) dη (13)

6



Schwerpunkt: Operations & Supply Chain Management

Lehrstuhl für Betriebswirtschaftslehre, insb. Verkehr
Institut für Verkehrswirtschaft

subject to ∑
j∈J

Yj = r (14)

Yj ∈ {0, 1} ∀ j ∈ J (15)

The objective function (13) maximizes the expected patronage measured in numbers of
clients. (14) ensures the establishment of r facilities. Note, if C = ∅ (and S = 1), then
P1 becomes the MCPRU as proposed by Benati & Hansen (2002), denoted as P1MNL.
There exists no analytical solution to the stochastic, non–linear, MIP P1. However, we can
reformulate P1 as a linear MIP using (9) instead of (6) and a linear reformulation of (8)
as proposed by Haase (2009). The former suggestion yields the deterministic equivalent to
P1 by sample average approximation (Kleywegt et al. 2002, Birge & Louveaux 1997). The
latter yields one a tight linear MIP formulation of the deterministic equivalent (Haase &
Müller 2014). One might formulate P1 as a two-stage facility location problem as outlined
in Snyder (2006) and Klein Haneveld & van der Vlerk (1999). However, we remain with the
compact formulation to make the coherences with the MCPRU used in Benati & Hansen
(2002), Aros-Vera et al. (2013), and Haase & Müller (2014) more visible. We additionally
define the parameter

pijs =
evij+

∑
c∈C η

s
chijc∑

k∈M\J e
vik+

∑
c∈C η

s
chikc + evij+

∑
c∈C η

s
chijc

,

which is the choice probability of clients in i for patronizing a firm’s facility located at j for
draw s given that j is the only own facility established. I. e., the choice set consists of the
one new facility and all competitors’ facilities. pijs is the probability of the firm’s patronage,
whereas (1 − pijs) is the competitors’ patronage. Thus, the latter term is the “no–choice”
alternative from the firm’s point of view (the cumulated choice probability for patronizing
competitors’ facilities or patronizing no facility at all).
The non–negative variables Xijs represent the probability (i. e., the fraction) of customers
located in i ∈ I patronizing a facility located at j ∈ J for draw s, and X̃is denoting the
cumulative choice probabilities for the competitors’ facilities for demand point i ∈ I and
draw s. The linear deterministic equivalent to P1 is given by MIP

Program P2

Maximize FP2 =
∑
i∈I

qi
∑
j∈J

1

S

S∑
s=1

Xijs (16)
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subject to (14), (15), and

X̃is +
∑
j∈J

Xijs ≤ 1 ∀ i ∈ I; s = 1, . . . , S (17)

Xijs ≤ pijsYj ∀ i ∈ I; j ∈ J ; s = 1, . . . , S (18)

Xijs ≤
pijs

1− pijs
X̃is ∀ i ∈ I; j ∈ J ; s = 1, . . . , S (19)

Xijs ≥ 0 ∀ i ∈ I; j ∈ J ; s = 1, . . . , S (20)

X̃is ≥ 0 ∀ i ∈ I; s = 1, . . . , S (21)

The objective function (16) maximizes the simulated expected patronage measured in num-
bers of clients. Analogous to Haase & Müller (2015, p. 277), (17)–(19) together with the
objective function are a linear reformulation of the choice probabilities in (13). (17) ensure
that a demand node i’s final choice probabilities for going for the firm’s facilities as well
patronizing the competitors’ facilities sum up to 1. The linking constraints (18) allow choice
probabilities for a facility to be greater than 0 only if the corresponding facility is actually es-
tablished. Allowing for pijs yields a smaller upper bound by the corresponding LP–relaxation
than just using Xijs ≤ Yj and tighter bounds for Xijs (Haase & Müller 2015), because pijs
is distinctly smaller than 1. (19) ensure that the pre–calculated constant substitution ratios
between the choice probabilities for any two alternatives are obeyed. They are derived from
Xijs

X̃is
=

pijs
1−pijs . But, Xijs 6= pijs and X̃is 6= (1− pijs) (unless j is the only established facility).

Since
∑S

s=1Xijs/S are the approximate MXL choice probabilities of (9), FP2∗ ' FP1∗. In
particular, if S → ∞, then the optimal objective function value of P2 FP2∗ converges to
the optimal objective function value of P1 FP1∗ at most at the rate of O(1/

√
S) (Shapiro

1996). The procedure A1 that yields (9) is a so–called external sampling method (Mak et al.
1999), because sampling is performed external to (prior to) the solution procedure to solve
P2. Note, if C = ∅ and S = 1, then Xij1 are the MNL choice probabilities of (4) and P2
becomes the linear reformulation of the MCPRU as proposed by Haase & Müller (2014),
denoted as P2MNL. Several authors stress that the number of draws S might be very large
to achieve a “good” approximation (Verweij et al. 2003), Beraldi et al. 2004, Kall & Stein
1994, Ch. 1, Linderoth et al. 2006, Mak et al. 1999). For large S, we expect that P2 is
difficult to solve by standard IP solvers (Müller & Haase 2014). To reduce this difficulty,
we consider the external sampling method A2 and use (12) instead of (6) in a second —
simpler — deterministic equivalent to P1. Therefore, we redefine (11) as

aijs =

{
1, if U s

ij > U s
ik ∀ k ∈M \ J , k 6= j

0, otherwise.
(22)

That is, aijs = 1, if the utility of customers located in i ∈ I patronizing a firm’s facility
located at j ∈ J is larger than the utility values of each facility location of the competitor(s)
k ∈ M \ J . Further, we consider the non–negative variable Zis that — given draw s —
equals one if customers located in i ∈ I choose to patronize a located facility of the firm (0,
otherwise). Then,
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Program P3

Maximize FP3 =
∑
i∈I

qi
S

S∑
s=1

Zis (23)

subject to (14), (15), and

Zis ≤
∑
j∈J

aijsYj ∀ i ∈ I; s = 1, . . . , S (24)

Zis ∈ [0, 1] ∀ i ∈ I; s = 1, . . . , S (25)

is a deterministic equivalent to P1. For MIP P3, what is basically a simple exercise of
ReVelle’s MAXCAP (ReVelle 1986), the the same properties as for P2 hold. As such, we
assume FP3∗ u FP2∗ for “large” S. If C = ∅, then the solution of P3 approximates the
solution of MCPRU. That is, P3 with C = ∅, denoted as P3MNL, employs MNL choice
probabilities.
P3 reduces the number of constraints by at most 2 · |I| · |J | · S compared to P2. However,
since P3 is based on the external, crude frequency simulation procedure A2 we expect that
the number of draws S for P3 is larger than for P2 to obtain similar results (Lerman &
Manski 1981). This is particularly true, if the choice probabilities are rather low or high,
because the expected number of draws for an accept (i. e., aijs = 1 in (22)) is 1/

∑
j∈J pij.

Note that P2 can also be solved like in Mai & Lodi (2017).

3.2 Evaluation of Solutions

3.2.1 Lower Bound

Let

J ∗
(
FP#∗) =

{
j ∈ J

∣∣Y ∗j = 1
}

(26)

be an optimal solution of a given problem P# and M∗ is the corresponding set of located
facilities (established facility locations of the firm and the competitors). Consider this set
M∗ in (8) such that

π∗ij (η) =
evij+

∑
c∈C ηchijc∑

m∈M∗ e
vim+

∑
c∈C ηchimc

. (27)

Now, increase the number of draws in step 1 of procedure A1 from S to S ′ with S ′ �
S. Replace πij (ηs) by (27) in step 2 of A1. Then, compute the corresponding choice
probabilities in (9). Finally,

FP#
eval =

∑
i∈I

qi
∑

j∈J ∗(FP#)

p̌MXL
ij (28)

9
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is the evaluated objective function value for problem P#. If FP# ≈ FP#
eval then S might be

sufficiently large.

3.2.2 Solution Quality

Since FP2∗ and FP3∗ are estimates of FP1∗ we are interested in the quality of these estimates.
One measure of quality reported in the literature is the sample variance (Shapiro & Philpott
2007). The sample variance is the variance of the sample S that is used to obtain FP#∗

(with # = 2, 3):

ς2S (P2) =
1

S − 1

S∑
s=1

(
FP2∗ −

∑
i∈I

qi
∑
j∈J

X∗ijs

)2

(29)

ς2S (P3) =
1

S − 1

S∑
s=1

(
FP3∗ −

∑
i∈I

qiZ
∗
is

)2

(30)

The smaller the sample variance the more confident we are that FP#∗ ' FP1∗. Following
Train (2009, p. 252) we expect ς2S (P2) and ς2S (P3) to decrease in S and |I|.
However, we may end up with small sample variances due to unfortunate draws. For example,
in step 1 of A1 and A2, we might obtain η1 ≈ η2 ≈ · · · ≈ ηS. In such a case, (29) and (30)
are less useful. We suggest to solve P# N times (Bayraksan & Morton 2006, Romauch &
Hartl 2005). For each n = 1, . . . , N we consider a different, independent sequence of draws
sn = 1, . . . , S, yielding N different realizations η1n, . . . , η

S
n . The solution corresponding to

sequence n is denoted by FP#∗
n . Let FP#∗ denote the average over N solutions, then the

solution variance is given as

ς2S,N (P#) =
1

N (N − 1)

N∑
n=1

(
FP#∗
n − FP#∗

)2
. (31)

The smaller ς2S,N (P#) the more confident we are that FP#∗ ' FP1∗. We expect ς2S,N (P#)
to decline in S and N . Further, (31) is a valid lower bound to problem P#.

4 Conclusion

We have seen that the proposed simulation based approach is able to approximate the maxi-
mum capture problem with random utilities arbitrarily close. By an intelligible modification
of ReVelle’s MAXCAP we can approximate the objective function value of the original pro-
blem (proven NP–hard) with a deviation of less than one percent in circa one minute given
a (so–called large sized) problem set (400 demand points and 50 potential locations) using
GAMS/CPLEX. The presented case study verifies the applicability and appropriateness of
our approach. In particular, we see that a small number of draws seems to be sufficient for
the simulation. A second contribution of this paper is the finding that the presented appro-
ach is general in terms of the underlying utilities. In contrast to Benati & Hansen (2002),
who assume the stochastic part is iid EV, we do not make any restricting assumptions about
the stochastic part of utility. Roughly speaking, we are able to approximate the market
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share function (objective function) for a wide range of discrete choice models (such as nested
logit, mixed logit, and probit).
Given the quality of the approximate approach, the use of sophisticated, tailored software
(algorithms) to solve the maximum capture problem with random utilities becomes questi-
onable. Using our approach, practioners are enabled to use state of the art solvers to solve
their problems. Researchers are provided with a theoretically sound and capable approach
to approximate the maximum capture problem with random utilities in reasonable time.
Future research may focus on variance reducing methods concerning the simulation in order
to decrease computational effort while keeping the quality of the solution. We intend to
consider additional constraints or a multi–period approach. Particularly, the extension of
the approach to a design problem (considering decisions on opening times or capacities)
seems to be interesting. Another interesting future research direction is the integration of
the choice set generation process, i. e. the construction of Mi. It would be interesting to
investigate how multiple choices of facility locations can be considered.
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Marianov, V., Ŕıos, M., & Icaza, M. J. (2008). Facility location for market capture when
users rank facilities by shorter travel and waiting times. European Journal of Operational
Research, 191 (1), 30–42.

McFadden, D. (1986). The choice theory approach to market research. Marketing Science,
5, 275–297.

McFadden, D. (1989). Econometric modeling of locational behavior. Annals of Operations
Research, 18 (1), 1–15.

McFadden, D. (2001). Economic choices. American Economic Review, 91 (3), 351–378.

13



Schwerpunkt: Operations & Supply Chain Management

Lehrstuhl für Betriebswirtschaftslehre, insb. Verkehr
Institut für Verkehrswirtschaft

McFadden, D. & Train, K. (2000). Mixed MNL models for discrete choice response. Journal
of Applied Econometrics, 15 (5), 447–470.

Müller, S. (2013). Incorporating Discrete Choice Models in Competitive Facility Location
Planning Models. In 20th EURO Working Group on Locational Analysis Meeting, Ankara
(Turkey).

Müller, S. (2014). The Maximum Capture Problem with Flexible Substitution Patterns. In
ISOLDE XIII International Symposium on Locational Decisions, Naples (Italy).

Müller, S. & Haase, K. (2014). Customer segmentation in retail facility location planning.
Business Research, 7 (2), 235–261.

Müller, S., Haase, K., & Kless, S. (2009). A multi-period school location planning approach
with free school choice. Environment and Planning A, 41 (12), 2929–2945.

Müller, S., Haase, K., & Seidel, F. (2012). Exposing unobserved spatial similarity: Evidence
from German school choice data. Geographical Analysis., 44, 65–86.

Ndiaye, M. (2009). Customer behaviour modelling in the maximum capture model. In Indus-
trial Engineering and Engineering Management, 2009. IEEM 2009. IEEE International
Conference on, (pp. 2285–2289).

Niederreiter, H. (1992). Random Number Generation and Quasi-Monte Carlo Methods. So-
ciety for Industrial and Applied Mathematics.

Owen, S. & Daskin, M. (1998). Strategic facility location: A review. European Journal of
Operational Research, 111 (3), 423–447.

Ray, P. (1973). Independence of irrelevant alternatives. Econometrica, 41 (5), 987–991.

ReVelle, C. (1986). The maximum capture location problem, hotelling revisited on a network.
Journal of Regional Science, 26, 104–118.

Romauch, M. & Hartl, R. F. (2005). Dynamic Facility Location with Stochastic Demands.
In O. B. Lupanov, O. M. Kasim-Zade, A. V. Chaskin, & K. Steinhöfel (Eds.), Stochas-
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