Dr. Sven Klaaßen
Research Associate
Address
Office
Office hours
- by appointment
Contact
Research Interests
- Machine Learning
- Causal Inference
- Deep Learning
- Inference in High-Dimensional Settings
Curriculum Vitae (available here)
Publications
Bach, P., Chernozhukov, V., Klaassen, S., Kurz, M., Spindler, M. (2024):
DoubleML – An Object-Oriented Implementation of Double Machine Learning in R (https://doi.org/10.18637/jss.v108.i03).
Journal of Statistical Software, 108 (3), 1-56.
Schacht, O., Klaassen, S., Schwarz, S., Spindler, M., Grünbaum, D., Imhof, S., (2023):
Causally learning an optimal rework policy (https://proceedings.mlr.press/v218/schacht23a.html).
Proceedings of Machine Learning Research 218, 3-24.
Klaassen, S., Kueck, J., Spindler, M., Chernozhukov, V. (2023):
Uniform Inference in High-Dimensional Gaussian Graphical Models (https://doi.org/10.1093/biomet/asac030).
Biometrika 110 (1), 51-68.
Klaassen, S., Kueck, J., Spindler, M. (2022):
Transformation Models in High-Dimensions (https://www.tandfonline.com/doi/full/10.1080/07350015.2021.1906259).
Journal of Business & Economic Statistics 40 (3), 1168-1178.
Farbmacher, H., Guber, R., Klaassen, S. (2022):
Instrument Validity Tests with Causal Forests (https://www.tandfonline.com/doi/full/10.1080/07350015.2020.1847122).
Journal of Business & Economic Statistics 40 (2), 605-614.
Klaassen, S., 2020. Essays on Valid Inference in High-dimensions, Dissertation
Working Papers
Bach, P., Klaassen, S., Kueck, J., Spindler, M. (2023):
Uniform Inference in High-Dimensional Additive Models (https://doi.org/10.48550/arXiv.2004.01623).
Klaassen, S. (2021):
A Note on High-Dimensional Confidence Regions (https://doi.org/10.48550/arXiv.2105.09028).
Klaassen, S., Teichert-Kluge, J., Bach, P., Chernozhukov, V., Spindler, M., Vijaykumar, S. (2024):
DoubleMLDeep: Estimation of Causal Effects with Multimodal Data (https://doi.org/10.48550/arXiv.2402.01785).
Bach, P., Schacht, O., Chernozhukov, V., Klaassen, S., Spindler, M. (2024):
Hyperparameter Tuning for Causal Inference with Double Machine Learning: A Simulation Study (https://doi.org/10.48550/arXiv.2402.04674).
Work in Progress
Estimation of Price Elasticities with Text and Images
Estimation of Treatment Effects with Multimodal Data under unobserved confounding
When to calibrate your propensity score
Sensitivity Analysis for Difference-in-Differences Estimators
L1-Boosting: Rate of Convergence
Adaptive Discrete Smoothing for (High-Dimensional and Nonlinear) Panel Data
Causal Rework Policy Estimation
Education
2022 | Visiting Scholar at MIT, Department of Economics |
Since 2021 | Postdoc in Statistics, Hamburg Business School (Hamburg University) |
2020 | Ph. D. in Statistics, Hamburg Business School (Hamburg University) |
2016 | M.Sc. Business Mathematics, University of Hamburg |
2014 | B.Sc. Business Mathematics, University of Hamburg |